Skip to content
2000
Volume 26, Issue 4
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

Moonlighting proteins, defined by their ability to perform distinct, independent functions beyond their primary roles, have garnered attention in metabolic regulation and drug discovery. This review highlights the emerging significance of these proteins in diverse physiological and pathological processes. With examples like glycolytic enzymes and Krebs cycle components, we explore their involvement in transcriptional regulation, immune responses, and stress modulation. Their unique ability to mediate host-pathogen interactions and disease progression underscores their potential as therapeutic targets. Advanced technologies, such as proteomics and bioinformatics, have revolutionized the identification and characterization of these proteins, unraveling their structural and functional complexities. This synthesis aims to bridge gaps in understanding protein multifunctionality and advocates its implications in drug development. By targeting specific functions of moonlighting proteins while preserving their essential roles, new strategies in pharmacology and personalized medicine are envisioned. The review also proposes a roadmap for leveraging these proteins' multifunctionality to address current challenges in therapeutic interventions.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002378207250709231938
2025-07-28
2026-02-02
Loading full text...

Full text loading...

References

  1. JefferyC.J. Molecular mechanisms for multitasking: Recent crystal structures of moonlighting proteins.Curr. Opin. Struct. Biol.200414666366810.1016/j.sbi.2004.10.00115582389
    [Google Scholar]
  2. PiatigorskyJ. Multifunctional lens crystallins and corneal enzymes. More than meets the eye.Ann. N. Y. Acad. Sci.1998842171510.1111/j.1749‑6632.1998.tb09626.x9599288
    [Google Scholar]
  3. PiatigorskyJ. Lens crystallins. Innovation associated with changes in gene regulation.J. Biol. Chem.199226774277428010.1016/S0021‑9258(18)42826‑81537817
    [Google Scholar]
  4. JefferyC.J. Moonlighting proteins: Old proteins learning new tricks.Trends Genet.200319841541710.1016/S0168‑9525(03)00167‑712902157
    [Google Scholar]
  5. JefferyC.J. Moonlighting proteins: An update.Mol. Biosyst.20095434535010.1039/b900658n19396370
    [Google Scholar]
  6. HendersonB. AllanE. CoatesA.R.M. Stress wars: the direct role of host and bacterial molecular chaperones in bacterial infection.Infect. Immun.20067473693370610.1128/IAI.01882‑0516790742
    [Google Scholar]
  7. WereluszP. GaliniakS. MołońM. Molecular functions of moonlighting proteins in cell metabolic processes.Biochim. Biophys. Acta Mol. Cell Res.20241871111959810.1016/j.bbamcr.2023.11959837774631
    [Google Scholar]
  8. QiY. HeX. WangX.J. KohanyO. JurkaJ. HannonG.J. Distinct catalytic and non-catalytic roles of ARGONAUTE4 in RNA-directed DNA methylation.Nature200644371141008101210.1038/nature0519816998468
    [Google Scholar]
  9. HannaJ. HathawayN.A. ToneY. CrosasB. ElsasserS. KirkpatrickD.S. LeggettD.S. GygiS.P. KingR.W. FinleyD. Deubiquitinating enzyme Ubp6 functions noncatalytically to delay proteasomal degradation.Cell200612719911110.1016/j.cell.2006.07.03817018280
    [Google Scholar]
  10. KunertA. LosseJ. GruszinC. HühnM. KaendlerK. MikkatS. VolkeD. HoffmannR. JokirantaT.S. SeebergerH. MoellmannU. HellwageJ. ZipfelP.F. Immune evasion of the human pathogen Pseudomonas aeruginosa: elongation factor Tuf is a factor H and plasminogen binding protein.J. Immunol.200717952979298810.4049/jimmunol.179.5.297917709513
    [Google Scholar]
  11. MarkovaN.G. Pinkas-SarafovaA. SimonM. A metabolic enzyme of the short-chain dehydrogenase/reductase superfamily may moonlight in the nucleus as a repressor of promoter activity.J. Invest. Dermatol.200612692019203110.1038/sj.jid.570034716691198
    [Google Scholar]
  12. HuangY. BayfieldM.A. IntineR.V. MaraiaR.J. Separate RNA-binding surfaces on the multifunctional La protein mediate distinguishable activities in tRNA maturation.Nat. Struct. Mol. Biol.200613761161810.1038/nsmb111016799560
    [Google Scholar]
  13. JangH.H. LeeK.O. ChiY.H. JungB.G. ParkS.K. ParkJ.H. LeeJ.R. LeeS.S. MoonJ.C. YunJ.W. ChoiY.O. KimW.Y. KangJ.S. CheongG.W. YunD.J. RheeS.G. ChoM.J. LeeS.Y. Two enzymes in one: Two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function.Cell2004117562563510.1016/j.cell.2004.05.00215163410
    [Google Scholar]
  14. ShimojimaM. Hoffmann-BenningS. GaravitoR.M. BenningC. Ferredoxin-dependent glutamate synthase moonlights in plant sulfolipid biosynthesis by forming a complex with SQD1.Arch. Biochem. Biophys.2005436120621410.1016/j.abb.2005.02.00515752726
    [Google Scholar]
  15. DeutschD. Haze-FildermanA. BlumenfeldA. DafniL. LeiserY. ShayB. Gruenbaum-CohenY. RosenfeldE. FermonE. ZimmermannB. HaegewaldS. BernimoulinJ.P. TaylorA.L. Amelogenin, a major structural protein in mineralizing enamel, is also expressed in soft tissues: brain and cells of the hematopoietic system.Eur J. Oral Sci.2006114s1183189(Suppl. 1)10.1111/j.1600‑0722.2006.00301.x16674683
    [Google Scholar]
  16. ChenX.J. WangX. KaufmanB.A. ButowR.A. Aconitase couples metabolic regulation to mitochondrial DNA maintenance.Science2005307571071471710.1126/science.110639115692048
    [Google Scholar]
  17. EntelisN. BrandinaI. KamenskiP. KrasheninnikovI.A. MartinR.P. TarassovI. A glycolytic enzyme, enolase, is recruited as a cofactor of tRNA targeting toward mitochondria in Saccharomyces cerevisiae.Genes Dev.200620121609162010.1101/gad.38570616738406
    [Google Scholar]
  18. HallD.A. ZhuH. ZhuX. RoyceT. GersteinM. SnyderM. Regulation of gene expression by a metabolic enzyme.Science2004306569548248410.1126/science.109677315486299
    [Google Scholar]
  19. ScheererP. BorchertA. KraussN. WessnerH. GerthC. HöhneW. KuhnH. Structural basis for catalytic activity and enzyme polymerization of phospholipid hydroperoxide glutathione peroxidase-4 (GPx4).Biochemistry200746319041904910.1021/bi700840d17630701
    [Google Scholar]
  20. FreundC. KühneR. ParkS. ThiemkeK. ReinherzE.L. WagnerG. Structural investigations of a GYF domain covalently linked to a proline-rich peptide.J. Biomol. NMR200327214314910.1023/A:102498302970012913410
    [Google Scholar]
  21. NielsenT.K. LiuS. LührmannR. FicnerR. Structural basis for the bifunctionality of the U5 snRNP 52K protein (CD2BP2).J. Mol. Biol.2007369490290810.1016/j.jmb.2007.03.07717467737
    [Google Scholar]
  22. de PeredaJ.M. WaasW.F. JanY. RuoslahtiE. SchimmelP. PascualJ. Crystal structure of a human peptidyl-tRNA hydrolase reveals a new fold and suggests basis for a bifunctional activity.J. Biol. Chem.200427998111811510.1074/jbc.M31144920014660562
    [Google Scholar]
  23. DupuyJ. VolbedaA. CarpentierP. DarnaultC. MoulisJ.M. Fontecilla-CampsJ.C. Crystal structure of human iron regulatory protein 1 as cytosolic aconitase.Structure200614112913910.1016/j.str.2005.09.00916407072
    [Google Scholar]
  24. WaldenW.E. SeleznevaA.I. DupuyJ. VolbedaA. Fontecilla-CampsJ.C. TheilE.C. VolzK. Structure of dual function iron regulatory protein 1 complexed with ferritin IRE-RNA.Science200631458071903190810.1126/science.113311617185597
    [Google Scholar]
  25. EdgellD.R. DerbyshireV. RoeyP.V. LaBonneS. StangerM.J. LiZ. BoydT.M. ShubD.A. BelfortM. Intron-encoded homing endonuclease I-TevI also functions as a transcriptional autorepressor.Nat. Struct. Mol. Biol.2004111093694410.1038/nsmb82315361856
    [Google Scholar]
  26. Van RoeyP. WaddlingC.A. FoxK.M. BelfortM. DerbyshireV. Intertwined structure of the DNA-binding domain of intron endonuclease I-TevI with its substrate.EMBO J.200120143631363710.1093/emboj/20.14.363111447104
    [Google Scholar]
  27. WistowG. PiatigorskyJ. Recruitment of enzymes as lens structural proteins.Science198723648081554155610.1126/science.35896693589669
    [Google Scholar]
  28. PiatigorskyJ. WistowG.J. Enzyme/crystallins: Gene sharing as an evolutionary strategy.Cell19895719710.1016/0092‑8674(89)90956‑2
    [Google Scholar]
  29. JefferyC.J. Moonlighting proteins.Trends Biochem. Sci.199924181110.1016/S0968‑0004(98)01335‑810087914
    [Google Scholar]
  30. WistowG.J. MuldersJ.W.M. de JongW.W. The enzyme lactate dehydrogenase as a structural protein in avian and crocodilian lenses.Nature1987326611362262410.1038/326622a03561501
    [Google Scholar]
  31. HubertsD.H.E.W. van der KleiI.J. Moonlighting proteins: An intriguing mode of multitasking.Biochim. Biophys. Acta Mol. Cell Res.20101803452052510.1016/j.bbamcr.2010.01.02220144902
    [Google Scholar]
  32. SriramG. MartinezJ.A. McCabeE.R.B. LiaoJ.C. DippleK.M. Single-gene disorders: What role could moonlighting enzymes play?Am. J. Hum. Genet.200576691192410.1086/43079915877277
    [Google Scholar]
  33. JefferyC.J. Mass spectrometry and the search for moonlighting proteins.Mass Spectrom. Rev.200524677278210.1002/mas.2004115605385
    [Google Scholar]
  34. ZhangZ-Y. Network component analysis.Encyclopedia of Systems Biology. DubitzkyW. WolkenhauerO. ChoK-H. YokotaH. New YorkSpringer2013151210.1007/978‑1‑4419‑9863‑7_404
    [Google Scholar]
  35. ChenC. LiuH. ZabadS. RiveraN. RowinE. HassanM. Gomez De JesusS.M. Llinás SantosP.S. KravchenkoK. MikhovaM. KettererS. ShenA. ShenS. NavasE. HoranB. RaudseppJ. JefferyC. MoonProt 3.0: An update of the moonlighting proteins database.Nucleic Acids Res.202149D1D368D37210.1093/nar/gkaa110133245761
    [Google Scholar]
  36. ManiM. ChenC. AmbleeV. LiuH. MathurT. ZwickeG. ZabadS. PatelB. ThakkarJ. JefferyC.J. MoonProt: A database for proteins that are known to moonlight.Nucleic Acids Res.201543D1D277D28210.1093/nar/gku95425324305
    [Google Scholar]
  37. FreyP.A. The Leloir pathway: A mechanistic imperative for three enzymes to change the stereochemical configuration of a single carbon in galactose.FASEB J.199610446147010.1096/fasebj.10.4.86473458647345
    [Google Scholar]
  38. MeyerJ. Walker-JonahA. HollenbergC.P. Galactokinase encoded by GAL1 is a bifunctional protein required for induction of the GAL genes in Kluyveromyces lactis and is able to suppress the gal3 phenotype in Saccharomyces cerevisiae.Mol. Cell. Biol.199111115454546110.1128/mcb.11.11.5454‑5461.19911922058
    [Google Scholar]
  39. FerreiraÉ.R. HorjalesE. Bonfim-MeloA. CortezC. da SilvaC.V. De GrooteM. SobreiraT.J.P. CruzM.C. LimaF.M. CorderoE.M. YoshidaN. da SilveiraJ.F. MortaraR.A. BahiaD. Unique behavior of Trypanosoma cruzi mevalonate kinase: A conserved glycosomal enzyme involved in host cell invasion and signaling.Sci. Rep.2016612461010.1038/srep2461027113535
    [Google Scholar]
  40. SokerS. TakashimaS. MiaoH.Q. NeufeldG. KlagsbrunM. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor.Cell199892673574510.1016/S0092‑8674(00)81402‑69529250
    [Google Scholar]
  41. HeW. BaiG. ZhouH. WeiN. WhiteN.M. LauerJ. LiuH. ShiY. DumitruC.D. LettieriK. ShubayevV. JordanovaA. GuergueltchevaV. GriffinP.R. BurgessR.W. PfaffS.L. YangX.L. CMT2D neuropathy is linked to the neomorphic binding activity of glycyl-tRNA synthetase.Nature2015526757571071410.1038/nature1551026503042
    [Google Scholar]
  42. GuptaV. BamezaiR.N.K. Human pyruvate kinase M2: A multifunctional protein.Protein Sci.201019112031204410.1002/pro.50520857498
    [Google Scholar]
  43. ParkisonC. AshizawaK. McPhieP. LinK. ChengS. The monomer of pyruvate kinase, subtype M1, is both a kinase and a cytosolic thyroid hormone binding protein.Biochem. Biophys. Res. Commun.1991179166867410.1016/0006‑291X(91)91424‑B1883388
    [Google Scholar]
  44. RobbinsA.H. StoutC.D. The structure of aconitase.Proteins19895428931210.1002/prot.3400504062798408
    [Google Scholar]
  45. PhilpottC.C. KlausnerR.D. RouaultT.A. The bifunctional iron-responsive nlm binding protein/cytosolic aconitase: The role of active-site residues in ligand binding and regulation.Proc. Natl. Acad. Sci. USA199491157321732510.1073/pnas.91.15.73218041788
    [Google Scholar]
  46. BasilionJ.P. RouaultT.A. MassinopleC.M. KlausnerR.D. BurgessW.H. The iron-responsive nlm-binding protein: Localization of the RNA-binding site to the aconitase active-site cleft.Proc. Natl. Acad. Sci. USA199491257457810.1073/pnas.91.2.5748290565
    [Google Scholar]
  47. CitronB.A. DavisM.D. MilstienS. GutierrezJ. MendelD.B. CrabtreeG.R. KaufmanS. Identity of 4a-carbinolamine dehydratase, a component of the phenylalanine hydroxylation system, and DCoH, a transregulator of homeodomain proteins.Proc. Natl. Acad. Sci. USA19928924118911189410.1073/pnas.89.24.118911465414
    [Google Scholar]
  48. HentzeM.W. PreissT. The REM phase of gene regulation.Trends Biochem. Sci.201035842342610.1016/j.tibs.2010.05.00920554447
    [Google Scholar]
  49. Franco-SerranoL. CedanoJ. Perez-PonsJ.A. Mozo-VillariasA. PiñolJ. AmelaI. QuerolE. A hypothesis explaining why so many pathogen virulence proteins are moonlighting proteins.Pathog. Dis.2018765fty04610.1093/femspd/fty04629718264
    [Google Scholar]
  50. MeyerhofO. On the enzymatic formation of lactic acid in muscle extract. Part III: Lactic acid formation from fermentable hexoses.Biochem. Z.1927183176215
    [Google Scholar]
  51. WolfA.J. ReyesC.N. LiangW. BeckerC. ShimadaK. WheelerM.L. ChoH.C. PopescuN.I. CoggeshallK.M. ArditiM. UnderhillD.M. Hexokinase is an innate immune receptor for the detection of bacterial peptidoglycan.Cell2016166362463610.1016/j.cell.2016.05.07627374331
    [Google Scholar]
  52. HerreroP. Martínez-CampaC. MorenoF. The hexokinase 2 protein participates in regulatory DNA‐protein complexes necessary for glucose repression of the SUC2 gene in Saccharomyces cerevisiae.FEBS Lett.19984341-2717610.1016/S0014‑5793(98)00872‑29738454
    [Google Scholar]
  53. RodríguezA. CeraT. HerreroP. MorenoF. The hexokinase 2 protein regulates the expression of the GLK1, HXK1 and HXK2 genes of Saccharomyces cerevisiae.Biochem. J.2001355362563110.1042/bj355062511311123
    [Google Scholar]
  54. Rodríguez-SaavedraC. Morgado-MartínezL.E. Burgos-PalaciosA. King-DíazB. López-CoriaM. Sánchez-NietoS. Moonlighting proteins: The case of the hexokinases.Front. Mol. Biosci.2021870197510.3389/fmolb.2021.70197534235183
    [Google Scholar]
  55. BlahaC.S. RamakrishnanG. JeonS.M. NogueiraV. RhoH. KangS. BhaskarP. TerryA.R. AissaA.F. FrolovM.V. PatraK.C. Brooks RobeyR. HayN. A non-catalytic scaffolding activity of hexokinase 2 contributes to EMT and metastasis.Nat. Commun.202213189910.1038/s41467‑022‑28440‑335173161
    [Google Scholar]
  56. RobertsD.J. Tan-SahV.P. DingE.Y. SmithJ.M. MiyamotoS. Hexokinase-II positively regulates glucose starvation-induced autophagy through TORC1 inhibition.Mol. Cell201453452110.1016/j.molcel.2013.12.019
    [Google Scholar]
  57. ChaputM. ClaesV. PortetelleD. CludtsI. CravadorA. BurnyA. GrasH. TartarA. The neurotrophic factor neuroleukin is 90% homologous with phosphohexose isomerase.Nature1988332616345445510.1038/332454a03352744
    [Google Scholar]
  58. GurneyM.E. ApatoffB.R. SpearG.T. BaumelM.J. AntelJ.P. BaniaM.B. RederA.T. Neuroleukin: A lymphokine product of lectin-stimulated T cells.Science1986234477657458110.1126/science.30206903020690
    [Google Scholar]
  59. KainulainenV. LoimarantaV. PekkalaA. EdelmanS. AntikainenJ. KylväjäR. LaaksonenM. LaakkonenL. FinneJ. KorhonenT.K. Glutamine synthetase and glucose-6-phosphate isomerase are adhesive moonlighting proteins of Lactobacillus crispatus released by epithelial cathelicidin LL-37.J. Bacteriol.2012194102509251910.1128/JB.06704‑1122389474
    [Google Scholar]
  60. AguileraA. Deletion of the phosphoglucose isomerase structural gene makes growth and sporulation glucose dependent in Saccharomyces cerevisiae.Mol. Gen. Genet.1986204231031610.1007/BF004255153020369
    [Google Scholar]
  61. NyunoyaH. IshikawaT. Relationship between deficiency of phosphoglucose isomerase in Coprinus macrorhizus and fruiting body formation.J. Bacteriol.1980144143243410.1128/jb.144.1.432‑434.19807191420
    [Google Scholar]
  62. ZhangP. WeiD. LiZ. SunZ. PanJ. ZhuX. Cryptococcal phosphoglucose isomerase is required for virulence factor production, cell wall integrity and stress resistance.FEMS Yeast Res.2015157fov07210.1093/femsyr/fov07226271120
    [Google Scholar]
  63. YaakoubH. LatgéJ.P. PaponN. Central sugar metabolism and the cell wall.MBio2022135e021042210.1128/mbio.02104‑2236094091
    [Google Scholar]
  64. KatakuraY. SanoR. HashimotoT. NinomiyaK. ShioyaS. Lactic acid bacteria display on the cell surface cytosolic proteins that recognize yeast mannan.Appl. Microbiol. Biotechnol.201086131932610.1007/s00253‑009‑2295‑y19898842
    [Google Scholar]
  65. RudneyJ.D. ChenR. The vital status of human buccal epithelial cells and the bacteria associated with them.Arch. Oral Biol.200651429129810.1016/j.archoralbio.2005.09.00316239000
    [Google Scholar]
  66. KinnbyB. BoothN.A. SvensäterG. Plasminogen binding by oral streptococci from dental plaque and inflammatory lesions.Microbiology2008154392493110.1099/mic.0.2007/013235‑018310038
    [Google Scholar]
  67. EspositoG. VitaglianoL. CostanzoP. BorrelliL. BaroneR. PavoneL. IzzoP. ZagariA. SalvatoreF. Human aldolase A natural mutants: Relationship between flexibility of the C-terminal region and enzyme function.Biochem. J.20043801515610.1042/bj2003194114766013
    [Google Scholar]
  68. CroweJ.D. SievwrightI.K. AuldG.C. MooreN.R. GowN.A.R. BoothN.A. Candida albicans binds human plasminogen: Identification of eight plasminogen‐binding proteins.Mol. Microbiol.20034761637165110.1046/j.1365‑2958.2003.03390.x12622818
    [Google Scholar]
  69. TunioS.A. OldfieldN.J. BerryA. Ala’AldeenD.A.A. WooldridgeK.G. TurnerD.P.J. The moonlighting protein fructose-1, 6-bisphosphate aldolase of Neisseria meningitidis: surface localization and role in host cell adhesion.Mol. Microbiol.201076360561510.1111/j.1365‑2958.2010.07098.x20199602
    [Google Scholar]
  70. LuM. SautinY.Y. HollidayL.S. GluckS.L. The glycolytic enzyme aldolase mediates assembly, expression, and activity of vacuolar H+-ATPase.J. Biol. Chem.2004279108732873910.1074/jbc.M30387120014672945
    [Google Scholar]
  71. LuM. AmmarD. IvesH. AlbrechtF. GluckS.L. Physical interaction between aldolase and vacuolar H+-ATPase is essential for the assembly and activity of the proton pump.J. Biol. Chem.200728234244952450310.1074/jbc.M70259820017576770
    [Google Scholar]
  72. JobinM.C. BrassardJ. QuessyS. GottschalkM. GrenierD. Acquisition of host plasmin activity by the Swine pathogen Streptococcus suis serotype 2.Infect. Immun.200472160661010.1128/IAI.72.1.606‑610.200414688145
    [Google Scholar]
  73. HaraM.R. AgrawalN. KimS.F. CascioM.B. FujimuroM. OzekiY. TakahashiM. CheahJ.H. TankouS.K. HesterL.D. FerrisC.D. HaywardS.D. SnyderS.H. SawaA. S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding.Nat. Cell Biol.20057766567410.1038/ncb126815951807
    [Google Scholar]
  74. IkedaY. YamajiR. IrieK. KiokaN. MurakamiA. Glyceraldehyde-3-phosphate dehydrogenase regulates cyclooxygenase-2 expression by targeting mRNA stability.Arch. Biochem. Biophys.2012528214114710.1016/j.abb.2012.09.00423000033
    [Google Scholar]
  75. KimS.C. GuoL. WangX. Nuclear moonlighting of cytosolic glyceraldehyde-3-phosphate dehydrogenase regulates Arabidopsis response to heat stress.Nat. Commun.2020111343910.1038/s41467‑020‑17311‑432651385
    [Google Scholar]
  76. GimpelM. BrantlS. Dual‐function small regulatory RNAs in bacteria.Mol. Microbiol.2017103338739710.1111/mmi.1355827750368
    [Google Scholar]
  77. LayA.J. JiangX.M. KiskerO. FlynnE. UnderwoodA. CondronR. HoggP.J. Phosphoglycerate kinase acts in tumour angiogenesis as a disulphide reductase.Nature2000408681486987310.1038/3504859611130727
    [Google Scholar]
  78. LabroussaaF. Arricau-BouveryN. DubranaM.P. SaillardC. Entry of Spiroplasma citri into Circulifer haematoceps cells involves interaction between spiroplasma phosphoglycerate kinase and leafhopper actin.Appl. Environ. Microbiol.20107661879188610.1128/AEM.02384‑0920118377
    [Google Scholar]
  79. NishiyamaK. TakakiT. SugiyamaM. FukudaI. AisoM. MukaiT. OdamakiT. XiaoJ. OsawaR. OkadaN. Extracellular vesicles produced by Bifidobacteriumlongum export mucin-binding proteins.Appl. Environ. Microbiol.20208619e01464e2010.1128/AEM.01464‑2032737132
    [Google Scholar]
  80. GuanB. JiangY.T. LinD.L. LinW.H. XueH.W. Phosphatidic acid suppresses autophagy through competitive inhibition by binding GAPC (glyceraldehyde-3-phosphate dehydrogenase) and PGK (phosphoglycerate kinase) proteins.Autophagy202218112656267010.1080/15548627.2022.204644935289711
    [Google Scholar]
  81. CandelaM. BergmannS. ViciM. VitaliB. TurroniS. EikmannsB.J. HammerschmidtS. BrigidiP. Binding of human plasminogen to Bifidobacterium.J. Bacteriol.2007189165929593610.1128/JB.00159‑0717557824
    [Google Scholar]
  82. PirovichD.B. Da’daraA.A. SkellyP.J. Schistosoma mansoni phosphoglycerate mutase: A glycolytic ectoenzyme with thrombolytic potential.Parasite2022294110.1051/parasite/202204236083036
    [Google Scholar]
  83. GhoshA.K. CoppensI. GårdsvollH. PlougM. Jacobs-LorenaM. Plasmodium ookinetes coopt mammalian plasminogen to invade the mosquito midgut.Proc. Natl. Acad. Sci. USA201110841171531715810.1073/pnas.110365710821949403
    [Google Scholar]
  84. KnaustA. WeberM.V.R. HammerschmidtS. BergmannS. FroschM. KurzaiO. Cytosolic proteins contribute to surface plasminogen recruitment of Neisseria meningitidis.J. Bacteriol.200718983246325510.1128/JB.01966‑0617307854
    [Google Scholar]
  85. JolodarA. FischerP. BergmannS. BüttnerD.W. HammerschmidtS. BrattigN.W. Molecular cloning of an α-enolase from the human filarial parasite Onchocerca volvulus that binds human plasminogen.Biochim. Biophys. Acta Gene Struct. Expr.200316272-311112010.1016/S0167‑4781(03)00083‑612818429
    [Google Scholar]
  86. FlodenA.M. WattJ.A. BrissetteC.A. Borrelia burgdorferi enolase is a surface-exposed plasminogen binding protein.PLoS One2011611e2750210.1371/journal.pone.002750222087329
    [Google Scholar]
  87. Ul HaqI. BrantlS. Moonlighting in Bacillus subtilis: The small proteins SR1P and SR7P regulate the moonlighting activity of glyceraldehyde 3-phosphate dehydrogenase A (GapA) and enolase in RNA degradation.Microorganisms202195104610.3390/microorganisms905104634066298
    [Google Scholar]
  88. MaQ. JiangH. MaL. ZhaoG. XuQ. GuoD. HeN. LiuH. MengZ. LiuJ. ZhuL. LinQ. WuX. LiM. LuoS. FangJ. LuZ. The moonlighting function of glycolytic enzyme enolase-1 promotes choline phospholipid metabolism and tumor cell proliferation.Proc. Natl. Acad. Sci. USA202312015e220943512010.1073/pnas.220943512037011206
    [Google Scholar]
  89. LiS. SwansonS.K. GogolM. FlorensL. WashburnM.P. WorkmanJ.L. SuganumaT. Serine and SAM responsive complex SESAME regulates histone modification crosstalk by sensing cellular metabolism.Mol. Cell201560340842110.1016/j.molcel.2015.09.02426527276
    [Google Scholar]
  90. LeeJ. KimH.K. HanY.M. KimJ. Pyruvate kinase isozyme type M2 (PKM2) interacts and cooperates with Oct-4 in regulating transcription.Int. J. Biochem. Cell Biol.20084051043105410.1016/j.biocel.2007.11.00918191611
    [Google Scholar]
  91. HoremansS. PitouliasM. HollandA. PateauE. LechaplaisC. EkaterinaD. PerretA. SoultanasP. JanniereL. Pyruvate kinase, a metabolic sensor powering glycolysis, drives the metabolic control of DNA replication.BMC Biol.20222018710.1186/s12915‑022‑01278‑335418203
    [Google Scholar]
  92. KatoM. WynnR.M. ChuangJ.L. TsoS.C. MachiusM. LiJ. ChuangD.T. Structural basis for inactivation of the human pyruvate dehydrogenase complex by phosphorylation: role of disordered phosphorylation loops.Structure200816121849185910.1016/j.str.2008.10.01019081061
    [Google Scholar]
  93. WalterT. AronsonA. Specific binding of the E2 subunit of pyruvate dehydrogenase to the upstream region of Bacillus thuringiensis protoxin genes.J. Biol. Chem.1999274127901790610.1074/jbc.274.12.790110075684
    [Google Scholar]
  94. DalloS.F. KannanT.R. BlaylockM.W. BasemanJ.B. Elongation factor Tu and E1 β subunit of pyruvate dehydrogenase complex act as fibronectin binding proteins in Mycoplasma pneumoniae.Mol. Microbiol.20024641041105110.1046/j.1365‑2958.2002.03207.x12421310
    [Google Scholar]
  95. NeusiusD. KleinknechtL. TehJ.T. OstermeierM. KelterbornS. EirichJ. HegemannP. FinkemeierI. BohneA.V. NickelsenJ. Lysine acetylation regulates moonlighting activity of the E2 subunit of the chloroplast pyruvate dehydrogenase complex in Chlamydomonas.Plant J.202211161780180010.1111/tpj.1592435899410
    [Google Scholar]
  96. BergéM. PezzattiJ. González-RuizV. DegeorgesL. Mottet-OsmanG. RudazS. ViollierP.H. Bacterial cell cycle control by citrate synthase independent of enzymatic activity.eLife20209e5227210.7554/eLife.52272
    [Google Scholar]
  97. NumataO. Multifunctional proteins in Tetrahymena: 14-nm filament protein/citrate synthase and translation elongation factor-1 alpha.Int. Rev. Cytol.199616413510.1016/S0074‑7696(08)62383‑98575889
    [Google Scholar]
  98. KrantzM. KlippE. Moonlighting proteins: An approach to systematize the concept.In Silico Biol.2020133-4718310.3233/ISB‑19047332285845
    [Google Scholar]
  99. DangL. WhiteD.W. GrossS. BennettB.D. BittingerM.A. DriggersE.M. FantinV.R. JangH.G. JinS. KeenanM.C. MarksK.M. PrinsR.M. WardP.S. YenK.E. LiauL.M. RabinowitzJ.D. CantleyL.C. ThompsonC.B. Vander HeidenM.G. SuS.M. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate.Nature20094627274739744
    [Google Scholar]
  100. http://dx.doi.org/10.1038/nature08617Elzinga, S.D.J.; Bednarz, A.L.; van Oosterum, K.; Dekker, P.J.T.; Grivell, L. Yeast mitochondrial NAD + -dependent isocitrate dehydrogenase is an RNA-binding protein.Nucleic Acids Res.199321235328533110.1093/nar/21.23.53287505425
    [Google Scholar]
  101. BunikV. KaehneT. DegtyarevD. ShcherbakovaT. ReiserG. Novel isoenzyme of 2‐oxoglutarate dehydrogenase is identified in brain, but not in heart.FEBS J.2008275204990500610.1111/j.1742‑4658.2008.06632.x18783430
    [Google Scholar]
  102. SykesS.E. HajdukS.L. Dual functions of α-ketoglutarate dehydrogenase E2 in the Krebs cycle and mitochondrial DNA inheritance in Trypanosoma brucei.Eukaryot. Cell2013121789010.1128/EC.00269‑1223125353
    [Google Scholar]
  103. RenkemaG.H. WortmannS.B. SmeetsR.J. VenselaarH. AntoineM. VisserG. Ben-OmranT. van den HeuvelL.P. TimmersH.J.L.M. SmeitinkJ.A. RodenburgR.J.T. SDHA mutations causing a multisystem mitochondrial disease: novel mutations and genetic overlap with hereditary tumors.Eur. J. Hum. Genet.201523220220910.1038/ejhg.2014.8024781757
    [Google Scholar]
  104. GebertN. GebertM. OeljeklausS. von der MalsburgK. StroudD.A. KulawiakB. WirthC. ZahediR.P. DolezalP. WieseS. SimonO. Dual function of Sdh3 in the respiratory chain and TIM22 protein translocase of the mitochondrial inner membrane.Mol. Cell.201144581110.1016/j.molcel.2011.09.025.
    [Google Scholar]
  105. Ait-El-MkademS. Dayem-QuereM. GusicM. ChaussenotA. BannwarthS. FrançoisB. GeninE.C. FragakiK. Volker-TouwC.L.M. VasnierC. SerreV. van GassenK.L.I. LespinasseF. RichterS. EisenhoferG. RouzierC. MochelF. De Saint-MartinA. Abi WardeM.T. de Sain-van der VeldeM.G.M. JansJ.J.M. AmielJ. AvsecZ. MertesC. HaackT.B. StromT. MeitingerT. BonnenP.E. TaylorR.W. GagneurJ. van HasseltP.M. RötigA. DelahoddeA. ProkischH. FuchsS.A. Paquis-FlucklingerV. Mutations in MDH2, encoding a Krebs cycle enzyme, cause early-onset severe encephalopathy.Am. J. Hum. Genet.2017100115115910.1016/j.ajhg.2016.11.01427989324
    [Google Scholar]
  106. ChenY.H. LiuS.J. GaoM.M. ZengT. LinG.W. TanN.N. TangH.L. LuP. SuT. SunW.W. XieL.C. YiY.H. LongY.S. MDH2 is an RNA binding protein involved in downregulation of sodium channel Scn1a expression under seizure condition.Biochim. Biophys. Acta Mol. Basis Dis.2017186361492149910.1016/j.bbadis.2017.04.01828433711
    [Google Scholar]
  107. YanoN. MuramotoK. ShimadaA. TakemuraS. BabaJ. FujisawaH. MochizukiM. Shinzawa-ItohK. YamashitaE. TsukiharaT. YoshikawaS. The Mg2+− containing water cluster of mammalian cytochrome c oxidase collects four pumping proton equivalents in each catalytic cycle.J. Biol. Chem.201629146238822389410.1074/jbc.M115.71177027605664
    [Google Scholar]
  108. EskesR. DesagherS. AntonssonB. MartinouJ.C. Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane.Mol. Cell. Biol.200020392993510.1128/MCB.20.3.929‑935.200010629050
    [Google Scholar]
  109. ZhangX. YangS. ChenJ. SuZ. Unraveling the regulation of hepatic gluconeogenesis.Front. Endocrinol. (Lausanne)2019980210.3389/fendo.2018.0080230733709
    [Google Scholar]
  110. OzimekP. van DijkR. LatchevK. GancedoC. WangD.Y. van der KleiI.J. VeenhuisM. Pyruvate carboxylase is an essential protein in the assembly of yeast peroxisomal oligomeric alcohol oxidase.Mol. Biol. Cell200314278679710.1091/mbc.e02‑07‑041712589070
    [Google Scholar]
  111. OzimekP.Z. KlompmakerS.H. VisserN. VeenhuisM. van der KleiI.J. The transcarboxylase domain of pyruvate carboxylase is essential for assembly of the peroxisomal flavoenzyme alcohol oxidase.FEMS Yeast Res.2007771082109210.1111/j.1567‑1364.2007.00214.x17316367
    [Google Scholar]
  112. VoetD. VoetJ.G. PrattC.W. Fundamentals of Biochemistry: Life. at the Molecular Level.3rd edHoboken, NJWiley2008
    [Google Scholar]
  113. LehningerA.L. NelsonD.L. CoxM.M. Lehninger Principles of Biochemistry.3rd edNew YorkWorth Publishers2000
    [Google Scholar]
  114. Díez-FernándezC. HuL. CerveraJ. HäberleJ. RubioV. Understanding carbamoyl phosphate synthetase (CPS1) deficiency by using the recombinantly purified human enzyme: Effects of CPS1 mutations that concentrate in a central domain of unknown function.Mol. Genet. Metab.2014112212313210.1016/j.ymgme.2014.04.00324813853
    [Google Scholar]
  115. MatsumotoS. HäberleJ. KidoJ. MitsubuchiH. EndoF. NakamuraK. Urea cycle disorders: Update.J. Hum. Genet.201964983384710.1038/s10038‑019‑0614‑431110235
    [Google Scholar]
  116. HussainM. PetersG. ChhatwalG.S. HerrmannM. A lithium chloride-extracted, broad-spectrum-adhesive 42-kilodalton protein of Staphylococcus epidermidis is ornithine carbamoyltransferase.Infect. Immun.199967126688669010.1128/IAI.67.12.6688‑6690.199910569792
    [Google Scholar]
  117. SampaleanuL.M. ValléeF. SlingsbyC. HowellP.L. Structural studies of duck delta 1 and delta 2 crystallin suggest conformational changes occur during catalysis.Biochemistry20014092732274210.1021/bi002272k11258884
    [Google Scholar]
  118. MessenguyF. WiameJ.M. The control of ornithinetranscarbamylase activity by arginase in Saccharomyces cerevisiae.FEBS Lett.196931474910.1016/0014‑5793(69)80093‑111946965
    [Google Scholar]
  119. GeT. YangJ. ZhouS. WangY. LiY. TongX. The role of the pentose phosphate pathway in diabetes and cancer.Front. Endocrinol. (Lausanne)20201136510.3389/fendo.2020.0036532582032
    [Google Scholar]
  120. DanielyD. PortnoiM. ShaganM. PorgadorA. Givon-LaviN. LingE. DaganR. NebenzahlY.M. Pneumococcal 6-phosphogluconate-dehydrogenase, a putative adhesin, induces protective immune response in mice.Clin. Exp. Immunol.2006144225426310.1111/j.1365‑2249.2006.03047.x16634799
    [Google Scholar]
  121. Karkowska-KuletaJ. Kedracka-KrokS. Rapala-KozikM. KamyszW. BielinskaS. KarafovaA. KozikA. Molecular determinants of the interaction between human high molecular weight kininogen and Candida albicans cell wall: Identification of kininogen-binding proteins on fungal cell wall and mapping the cell wall-binding regions on kininogen molecule.Peptides201132122488249610.1016/j.peptides.2011.10.02122074954
    [Google Scholar]
  122. SewerynK. Karkowska-KuletaJ. WolakN. BochenskaO. Kedracka-KrokS. KozikA. Rapala-KozikM. Kinetic and thermodynamic characterization of the interactions between the components of human plasma kinin-forming system and isolated and purified cell wall proteins of Candida albicans.Acta Biochim. Pol.201562482583510.18388/abp.2015_114226636139
    [Google Scholar]
  123. KozikA. Karkowska-KuletaJ. ZajacD. BochenskaO. Kedracka-KrokS. JankowskaU. Rapala-KozikM. Fibronectin-, vitronectin- and laminin-binding proteins at the cell walls of Candida parapsilosis and Candida tropicalis pathogenic yeasts.BMC Microbiol.201515119710.1186/s12866‑015‑0531‑426438063
    [Google Scholar]
  124. JefferyC.J. An introduction to protein moonlighting.Biochem. Soc. Trans.20144261679168310.1042/BST2014022625399589
    [Google Scholar]
  125. CopleyR.R. Moonlighting proteins: The functional diversity of multidimensional proteins. Molecular Cell.Research20201867111812510.1016/j.bbamcr.2019.118125
    [Google Scholar]
  126. HendersonB. HSPs in immune regulation and immunotherapy.FEMS Immunol. Med. Microbiol.201862324325010.1093/femsim/fix094
    [Google Scholar]
  127. PancholiV. Moonlighting proteins and their multiple roles in cellular function.Microbiol. Mol. Biol. Rev.200165347350510.1128/MMBR.65.3.473‑505.2001
    [Google Scholar]
  128. OwY.L.P. GreenD.R. HaoZ. MakT.W. Cytochrome c: Functions beyond respiration.Nat. Rev. Mol. Cell Biol.20089753254210.1038/nrm243418568041
    [Google Scholar]
  129. GerkeV. MossS.E. Annexins: from structure to function.Physiol. Rev.200282233137110.1152/physrev.00030.200111917092
    [Google Scholar]
  130. HorwitzJ. Crystallins and the molecular chaperone system.Prog. Retin. Eye Res.200322212314510.1016/S1350‑9462(02)00054‑9
    [Google Scholar]
  131. PollardT.D. Actin and actin-binding proteins.Cold Spring Harb. Perspect. Biol.201688a01822610.1101/cshperspect.a01822626988969
    [Google Scholar]
  132. McKennaM.D. Glutamate dehydrogenase: A multifaceted enzyme.J. Biol. Chem.200027526187741878110.1074/jbc.M002098200
    [Google Scholar]
  133. StamlerJ.S. Hemoglobin as a nitric oxide sensor.Nature1997388663919820210.1038/41128
    [Google Scholar]
  134. DidiasovaM. The roles of aldolase in cancer metastasis.Cancer Lett.2019453849010.1016/j.canlet.2019.02.019
    [Google Scholar]
  135. CastelliC. RivoltiniL. RiniF. BelliF. TestoriA. MaioM. MazzaferroV. CoppaJ. SrivastavaP.K. ParmianiG. Heat shock proteins: Biological functions and clinical application as personalized vaccines for human cancer.Cancer Immunol. Immunother.200453322723310.1007/s00262‑003‑0481‑914689240
    [Google Scholar]
  136. NakanoT. GotoS. TakaokaY. TsengH.P. FujimuraT. KawamotoS. OnoK. ChenC.L. A novel moonlight function of glyceraldehyde‐3‐phosphate dehydrogenase (GAPDH) for immunomodulation.Biofactors201844659760810.1002/biof.137928753256
    [Google Scholar]
  137. QiaoG. WuA. ChenX. TianY. LinX. Enolase 1, a moonlighting protein, as a potential target for cancer treatment.Int. J. Biol. Sci.202117143981399210.7150/ijbs.6355634671213
    [Google Scholar]
  138. DayanA. YeheskelA. LamedR. FlemingerG. Ashur-FabianO. Dihydrolipoamide dehydrogenase moonlighting activity as a DNA chelating agent.Proteins2021891212810.1002/prot.2599132761961
    [Google Scholar]
  139. MolaviG. SamadiN. HosseingholiE.Z. The roles of moonlight ribosomal proteins in the development of human cancers.J. Cell. Physiol.201923468327834110.1002/jcp.2772230417503
    [Google Scholar]
  140. Abolhassani RadS. ClaytonE.J. CorneliusE.J. HowesT.R. KohalmiS.E. Moonlighting proteins: Putting the spotlight on enzymes.Plant Signal. Behav.20181310e151707510.1080/15592324.2018.151707530252596
    [Google Scholar]
  141. ChiY.H. PaengS.K. KimM.J. HwangG.Y. MelencionS.M.B. OhH.T. LeeS.Y. Redox-dependent functional switching of plant proteins accompanying with their structural changes.Front Plant. Sci.2013427710.3389/fpls.2013.0027723898340
    [Google Scholar]
  142. HaageA. DhasarathyA. Working a second job: Cell adhesion proteins that moonlight in the nucleus.Front. Cell Dev. Biol.202311116355337169022
    [Google Scholar]
  143. CopleyS.D. Moonlighting is mainstream: Paradigm adjustment required.BioEssays201234757858810.1002/bies.20110019122696112
    [Google Scholar]
  144. HendersonB. FaresM.A. Martin, AC Protein Moonlighting in Biology and Medicine.Wiley2016
    [Google Scholar]
  145. Pardo-LorenteN. GkanogiannisA. CozzutoL. Gañez ZapaterA. EspinarL. GhoseR. SeverinoJ. García-LópezL. AydinR.G. MartinL. NeguemborM.V. DaraiE. CosmaM.P. Batlle-MoreraL. PonomarenkoJ. SdelciS. Nuclear localization of MTHFD2 is required for correct mitosis progression.Nat. Commun.2024151952910.1038/s41467‑024‑51847‑z39532843
    [Google Scholar]
  146. MaJ. SettonJ. LeeN.Y. RiazN. PowellS.N. The therapeutic significance of mutational signatures from DNA repair deficiency in cancer.Nat. Commun.201891329210.1038/s41467‑018‑05228‑y30120226
    [Google Scholar]
  147. MoonS.K. JeongE.J. TonogG. JinC.M. LeeJ. KimH. Comprehensive workflow encompassing discovery, verification, and quantification of indicator peptide in snail mucin using LC-quadrupole Orbitrap high-resolution tandem mass spectrometry.Food Res. Int.202418011405410.1016/j.foodres.2024.11405438395548
    [Google Scholar]
  148. CabralG. MossW.J. BrownK.M. Proteomic approaches for protein kinase substrate identification in Apicomplexa.Mol. Biochem. Parasitol.202425911163310.1016/j.molbiopara.2024.11163338821187
    [Google Scholar]
  149. SaridakisI. AdoniK.R. LeischnerT. BrutiuB.R. ShaabanS. FerrariG. ThalassinosK. MaulideN. Rational modification of a cross-linker for improved flexible protein structure modeling.Anal. Chem.20259721273128010.1021/acs.analchem.4c0531939785238
    [Google Scholar]
  150. JiangS. JiangJ. YanT. YinH. WangL. ZhangJ. Machine learning-based two-dimensional ultraviolet spectroscopy for monitoring protein structures and dynamics.Processes202513229010.3390/pr13020290
    [Google Scholar]
  151. LiaoJ.C. BoscoloR. YangY.L. TranL.M. SabattiC. RoychowdhuryV.P. Network component analysis: Reconstruction of regulatory signals in biological systems.Proc. Natl. Acad. Sci. USA200310026155221552710.1073/pnas.213663210014673099
    [Google Scholar]
  152. Martínez-ÁlvarezJ.A. Vargas-MayaN.I. Olmedo-MonfilV. Ramírez-MontielF.B. Padilla-VacaF. FrancoB. Non-canonical virulence-associated proteins from pathogenic fungi: A review.Academia Molecul Biol. Genom202521110.20935/AcadMolBioGen7517
    [Google Scholar]
  153. ReshmaP.R. TomL. DhanyaN.P. SafnaH.K. RaphaelV.P. BhagyeshV.B. JosephB. Two novel aroyl hydrazones from 4-methoxybenzhydrazide: Comprehensive Study including synthesis, x-ray crystallography, dft analysis, antibacterial activity and molecular docking.J. Mol. Struct.20252025141866
    [Google Scholar]
  154. PapageorgiouA.C. PoudelN. MattssonJ. Protein structure analysis and validation with X-ray crystallography. Protein downstream processing: Design, development, and application of high and low-resolution methods.Methods Mol. Biol.2021217837740410.1007/978‑1‑0716‑0775‑6_25
    [Google Scholar]
  155. DhakalA. GyawaliR. WangL. ChengJ. Artificial intelligence in cryo-EM protein particle picking: recent advances and remaining challenges.Brief. Bioinform.2024261bbaf01110.1093/bib/bbaf01139820248
    [Google Scholar]
  156. ShaoL. SunM. ZhangJ. XuH. YangH. LiH. WangH. CuiZ. LiD. WangH. Label-free super-resolution microscopy for long-term monitoring the dynamic interactions of cellular organelles.Chem. Res. Chin. Univ.2024406994100310.1007/s40242‑024‑4006‑8
    [Google Scholar]
  157. CamiaB. LongoM. BergonziA. DezzaI. BiggiogeraM. RediC.A. CasascoA. MontiM. The localization and function of the moonlighting protein Clathrin during oocyte maturation.Dev. Biol.202551711210.1016/j.ydbio.2024.09.00139241854
    [Google Scholar]
  158. AlsaiariS.K. EshaghiB. DuB. KanelliM. LiG. WuX. ZhangL. ChaddahM. LauA. YangX. LangerR. JaklenecA. CRISPR–Cas9 delivery strategies for the modulation of immune and non-immune cells.Nat. Rev. Mater.2024101446110.1038/s41578‑024‑00725‑7
    [Google Scholar]
  159. StynenB. TournuH. TavernierJ. Van DijckP. Diversity in genetic in vivo methods for protein-protein interaction studies: from the yeast two-hybrid system to the mammalian split-luciferase system.Microbiol. Mol. Biol. Rev.201276233138210.1128/MMBR.05021‑1122688816
    [Google Scholar]
  160. ZhuL. HuqE. Characterization of light-regulated protein-protein interactions by in vivo Coimmunoprecipitation (Co-IP) assays in plants.Methods Mol. Biol.20192026293910.1007/978‑1‑4939‑9612‑4_3.1
    [Google Scholar]
  161. KaykasA. MoonR.T. A plasmid-based system for expressing small interfering RNA libraries in mammalian cells.BMC Cell Biol.2004511610.1186/1471‑2121‑5‑1615119963
    [Google Scholar]
  162. SingiriJ.R. PriyankaG. TrishlaV.S. Adler-AgmonZ. GrafiG. Moonlight is perceived as a Signal promoting genome reorganization, changes in protein and metabolite profiles and plant growth.Plants2023125112110.3390/plants1205112136903981
    [Google Scholar]
  163. LiuX. PengT. XuM. LinS. HuB. ChuT. LiuB. XuY. DingW. LiL. CaoC. WuP. Spatial multi-omics: Deciphering technological landscape of integration of multi-omics and its applications.J. Hematol. Oncol.20241717210.1186/s13045‑024‑01596‑939182134
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002378207250709231938
Loading
/content/journals/cdm/10.2174/0113892002378207250709231938
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test