Skip to content
2000
image of Anticancer Potential of Polyphenols in Legumes: Mechanisms and Insights

Abstract

Introduction

Cancer poses a tough global health challenge, prompting the exploration of innovative prevention and treatment strategies. Polyphenols, bioactive compounds abundant in various plant-based foods, have gained significant attention for their potential anticancer properties. Legumes, characterized by their excellent nutritional profile, offer a promising source of polyphenols such as ferulic acid, caffeic acid, genistein, and kaempferol, which exhibit notable antioxidative and anti-inflammatory effects.

Methods

This review systematically analyzed peer-reviewed literature on the polyphenolic content of various legumes. No original research or experimental work was carried out as part of this study. Databases such as PubMed, Google Scholar, Scopus, SpringerLink, and ScienceDirect were searched for studies focusing on the identification and pharmacokinetic profiles of legume-derived polyphenols. Emphasis was placed on examining the mechanisms of action, including modulation of cell signalling pathways, induction of apoptosis, inhibition of angiogenesis, and influence on detoxification enzymes. The review also assessed the ADME (absorption, distribution, metabolism, and excretion) properties of key polyphenols to evaluate their bioavailability and therapeutic efficacy.

Results

The analysis revealed that legumes are significant sources of polyphenols with demonstrated anticancer activity. Compounds like genistein and kaempferol modulate key signalling pathways such as PI3K/Akt, MAPK, and NF-kB, which are involved in cell proliferation, survival, and inflammation. Additionally, these polyphenols can promote apoptosis and inhibit angiogenesis, thereby impeding tumor growth and metastasis.

Discussion

The findings underscore the potential of legume-derived polyphenols in cancer prevention and management. By addressing the ADME of Polyphenols, this study aims to deepen our understanding of their pharmacological potential, providing a foundation for developing dietary strategies and functional foods to effectively prevent and manage cancer. Addressing the limitations in bioavailability through novel delivery systems and dietary formulations could enhance their effectiveness.

Conclusion

Combining polyphenol-rich legume diets with conventional cancer therapies may offer a synergistic therapeutic effect and promote better health outcomes. However, it is essential to first establish through rigorous scientific research that polyphenols do not produce any unwanted adverse effects when used alongside standard medications. Further research focusing on improving bioavailability and validating in vivo efficacy will be crucial for translating these findings into practical cancer prevention treatment approaches.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002377364250906070612
2025-09-29
2025-11-05
Loading full text...

Full text loading...

References

  1. Jemal A. Bray F. Center M.M. Ferlay J. Ward E. Forman D. Global cancer statistics. CA Cancer J. Clin. 2011 61 2 69 90 10.3322/caac.20107
    [Google Scholar]
  2. Bray F. Ferlay J. Soerjomataram I. Siegel R.L. Torre L.A. Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018 68 6 394 424 10.3322/caac.21492
    [Google Scholar]
  3. Global cancer burden growing, amidst mounting need for services. 2024 Available from:https://www.who.int/news/item/01-02-2024-global-cancer-burden-growing--amidst-mounting-need-for-services
  4. Doll R. Cancers weakly related to smoking. Br. Med. Bull. 1996 52 1 35 49 10.1093/oxfordjournals.bmb.a011531
    [Google Scholar]
  5. Mentella M.C. Scaldaferri F. Ricci C. Gasbarrini A. Miggiano G.A.D. Cancer and mediterranean diet: A review. Nutrients 2019 11 9 2059 10.3390/nu11092059
    [Google Scholar]
  6. Caprara G. Mediterranean-type dietary pattern and physical activity: The winning combination to counteract the rising burden of non-communicable diseases(Ncds). Nutrients 2021 13 2 429 10.3390/nu13020429
    [Google Scholar]
  7. Durazzo A. Lucarini M. Souto E.B. Cicala C. Caiazzo E. Izzo A.A. Novellino E. Santini A. Polyphenols: A concise overview on the chemistry, occurrence, and human health. Phytother. Res. 2019 33 9 2221 2243 10.1002/ptr.6419
    [Google Scholar]
  8. Yang C.S. Chung J.Y. Yang G. Chhabra S.K. Lee M.J. Tea and tea polyphenols in cancer prevention. J. Nutr. 2000 130 2 472S 478S 10.1093/jn/130.2.472S
    [Google Scholar]
  9. Cragg G.M. Newman D.J. Plants as a source of anti-cancer agents. J. Ethnopharmacol. 2005 100 1-2 72 79 10.1016/j.jep.2005.05.011
    [Google Scholar]
  10. Butler M.S. Natural products to drugs: Natural product-derived compounds in clinical trials. Nat. Prod. Rep. 2008 25 3 475 10.1039/b514294f
    [Google Scholar]
  11. El Gharras H. Polyphenols: Food sources, properties and applications – A review. Int. J. Food Sci. Technol. 2009 44 12 2512 2518 10.1111/j.1365‑2621.2009.02077.x
    [Google Scholar]
  12. Iqbal I. Wilairatana P. Saqib F. Nasir B. Wahid M. Latif M.F. Iqbal A. Naz R. Mubarak M.S. Plant polyphenols and their potential benefits on cardiovascular health: A review. Molecules 2023 28 17 6403 10.3390/molecules28176403
    [Google Scholar]
  13. Rasouli H. Farzaei M.H. Khodarahmi R. Polyphenols and their benefits: A review. Int. J. Food Prop. 2017 1 42 10.1080/10942912.2017.1354017
    [Google Scholar]
  14. Zhang H. Tsao R. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr. Opin. Food Sci. 2016 8 33 42 10.1016/j.cofs.2016.02.002
    [Google Scholar]
  15. Keating E. Martel F. 2018 Antimetabolic effects of polyphenols in breast cancer cells: Focus on glucose uptake and metabolism. Front. Nutr. 5 25 [https://doi.org/10.3389/fnut.2018.00025
    [Google Scholar]
  16. Tufail M. Jiang C.H. Li N. Altered metabolism in cancer: Insights into energy pathways and therapeutic targets. Mol. Cancer 2024 23 1 203 10.1186/s12943‑024‑02119‑3
    [Google Scholar]
  17. Zeb A. Concept, mechanism, and applications of phenolic antioxidants in foods. J. Food Biochem. 2020 44 9 10.1111/jfbc.13394
    [Google Scholar]
  18. Quiñones M. Miguel M. Aleixandre A. Beneficial effects of polyphenols on cardiovascular disease. Pharmacol. Res. 2013 68 1 125 131 10.1016/j.phrs.2012.10.018
    [Google Scholar]
  19. Zhou Y. Zheng J. Li Y. Xu D.P. Li S. Chen Y.M. Li H.B. Natural polyphenols for prevention and treatment of cancer. Nutrients 2016 8 8 515 10.3390/nu8080515
    [Google Scholar]
  20. Naeem H. Momal U. Imran M. Shahbaz M. Hussain M. Alsagaby S.A. Al Abdulmonem W. Umar M. Mujtaba A. El-Ghorab A.H. Ghoneim M.M. Shaker M.E. Abdelgawad M.A. AL JBawi, E.; Bawi, E. Anticancer perspectives of genistein: A comprehensive review. Int. J. Food Prop. 2023 26 2 3305 3341 10.1080/10942912.2023.2281257
    [Google Scholar]
  21. Higdon J.V. Frei B. Tea catechins and polyphenols: Health effects, metabolism, and antioxidant functions. Crit. Rev. Food Sci. Nutr. 2003 43 1 89 143 10.1080/10408690390826464
    [Google Scholar]
  22. Scalbert A. Johnson I.T. Saltmarsh M. Polyphenols: Antioxidants and beyond. Am. J. Clin. Nutr. 2005 81 1 215S 217S 10.1093/ajcn/81.1.215S
    [Google Scholar]
  23. Bravo L. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev. 1998 56 11 317 333 10.1111/j.1753‑4887.1998.tb01670.x
    [Google Scholar]
  24. Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010 2 12 1231 1246 10.3390/nu2121231
    [Google Scholar]
  25. Tresserra-Rimbau A. Lamuela-Raventos R.M. Moreno J.J. Polyphenols, food and pharma. Current knowledge and directions for future research. Biochem. Pharmacol. 2018 156 186 195 10.1016/j.bcp.2018.07.050
    [Google Scholar]
  26. Wang H. Oo Khor T. Shu L. Su Z.Y. Fuentes F. Lee J.H. Tony Kong A-N. Plants vs. cancer: A review on natural phytochemicals in preventing and treating cancers and their druggability. Anticancer. Agents Med. Chem. 2012 12 10 1281 1305 10.2174/187152012803833026
    [Google Scholar]
  27. Roberto Bei. Camilla Palumbo; Laura Masuelli; Mario Turriziani; Michele Malaguarnera; Fabio Galvano; Malaguarnera, M.; Galvano, F. Impaired expression and function of cancer-related enzymes by anthocyans: An update. Curr. Enzym. Inhib. 2012 8 1 2 21 10.2174/157340812800228937
    [Google Scholar]
  28. Bhat K.P.L. Pezzuto J.M. Cancer chemopreventive activity of resveratrol. Ann. N. Y. Acad. Sci. 2002 957 1 210 229 10.1111/j.1749‑6632.2002.tb02918.x
    [Google Scholar]
  29. Hanahan D. Weinberg R.A. Hallmarks of cancer: The next generation. Cell 2011 144 5 646 674 10.1016/j.cell.2011.02.013
    [Google Scholar]
  30. Eilat-Adar S. Sinai T. Yosefy C. Henkin Y. Nutritional recommendations for cardiovascular disease prevention. Nutrients 2013 5 9 3646 3683 10.3390/nu5093646
    [Google Scholar]
  31. Bei R. Inhibition of ErbB receptors, Hedgehog and NF-kappaB signaling by polyphenols in cancer. Front. Biosci. 2013 18 4 1290 10.2741/4180
    [Google Scholar]
  32. Kunnumakkara A.B. Anand P. Aggarwal B.B. Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett. 2008 269 2 199 225 10.1016/j.canlet.2008.03.009
    [Google Scholar]
  33. Crozier A. Jaganath I.B. Clifford M.N. Dietary phenolics: Chemistry, bioavailability and effects on health. Nat. Prod. Rep. 2009 26 8 1001 10.1039/b802662a
    [Google Scholar]
  34. Manach C. Scalbert A. Morand C. Rémésy C. Jiménez L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004 79 5 727 747 10.1093/ajcn/79.5.727
    [Google Scholar]
  35. Singla R.K. Dubey A.K. Garg A. Sharma R.K. Fiorino M. Ameen S.M. Haddad M.A. Al-Hiary M. Natural polyphenols: Chemical classification, definition of classes, subcategories, and structures. J. AOAC Int. 2019 102 5 1397 1400 10.5740/jaoacint.19‑0133
    [Google Scholar]
  36. Cartea M.E. Francisco M. Soengas P. Velasco P. Phenolic compounds in brassica vegetables. Molecules 2010 16 1 251 280 10.3390/molecules16010251
    [Google Scholar]
  37. Spatafora C. Tringali C. Natural-derived polyphenols as potential anticancer agents. Anticancer. Agents Med. Chem. 2012 12 8 902 918 10.2174/187152012802649996
    [Google Scholar]
  38. Niedzwiecki A. Roomi M. Kalinovsky T. Rath M. Anticancer efficacy of polyphenols and their combinations. Nutrients 2016 8 9 552 10.3390/nu8090552
    [Google Scholar]
  39. Adlercreutz H. Mazur W. Phytestrogens and western diseases. Ann. Med. 1997 29 2 95 120 10.3109/07853899709113696
    [Google Scholar]
  40. Panche A.N. Diwan A.D. Chandra S.R. Flavonoids: An overview. J. Nutr. Sci. 2016 5 47 10.1017/jns.2016.41
    [Google Scholar]
  41. Guo F. Xiong H. Wang X. Jiang L. Yu N. Hu Z. Sun Y. Tsao R. Phenolics of green pea (Pisum sativum L.) Hulls, their plasma and urinary metabolites, bioavailability, and in vivo antioxidant activities in a rat model. J. Agric. Food Chem. 2019 67 43 11955 11968 10.1021/acs.jafc.9b04501
    [Google Scholar]
  42. Lafarga T. Villaró S. Bobo G. Simó J. Aguiló-Aguayo I. Bioaccessibility and antioxidant activity of phenolic compounds in cooked pulses. Int. J. Food Sci. Technol. 2019 54 5 1816 1823 10.1111/ijfs.14082
    [Google Scholar]
  43. Jamar G. Estadella D. Pisani L.P. Contribution of anthocyanin‐rich foods in obesity control through gut microbiota interactions. Biofactors 2017 43 4 507 516 10.1002/biof.1365
    [Google Scholar]
  44. Singh B. Singh J.P. Kaur A. Singh N. Phenolic composition and antioxidant potential of grain legume seeds: A review. Food Res. Int. 2017 101 1 16 10.1016/j.foodres.2017.09.026
    [Google Scholar]
  45. Maharjan P. Penny J. Partington D.L. Panozzo J.F. Genotype and environment effects on the chemical composition and rheological properties of field peas. J. Sci. Food Agric. 2019 99 12 5409 5416 10.1002/jsfa.9801
    [Google Scholar]
  46. Domínguez-Arispuro D.M. Cuevas-Rodríguez E.O. Milán-Carrillo J. León-López L. Gutiérrez-Dorado R. Reyes-Moreno C. Optimal germination condition impacts on the antioxidant activity and phenolic acids profile in pigmented desi chickpea (Cicer arietinum L.) seeds. J. Food Sci. Technol. 2018 55 2 638 647 10.1007/s13197‑017‑2973‑1
    [Google Scholar]
  47. de Camargo A.C. Favero B.T. Morzelle M.C. Franchin M. Alvarez-Parrilla E. de la Rosa L.A. Geraldi M.V. Maróstica Júnior M.R. Shahidi F. Schwember A.R. Is chickpea a potential substitute for soybean? Phenolic bioactives and potential health benefits. Int. J. Mol. Sci. 2019 20 11 2644 10.3390/ijms20112644
    [Google Scholar]
  48. Seo Y.J. Kim B.S. Chun S.Y. Park Y.K. Kang K.S. Kwon T.G. Apoptotic effects of genistein, biochanin-A and apigenin on LNCaP and PC-3 cells by p21 through transcriptional inhibition of polo-like kinase-1. J. Korean Med. Sci. 2011 26 11 1489 1494 10.3346/jkms.2011.26.11.1489
    [Google Scholar]
  49. Megías C. Cortés-Giraldo I. Alaiz M. Vioque J. Girón-Calle J. Isoflavones in chickpea (Cicer arietinum) protein concentrates. J. Funct. Foods 2016 21 186 192 10.1016/j.jff.2015.12.012
    [Google Scholar]
  50. Bitocchi E. Rau D. Bellucci E. Rodriguez M. Murgia M.L. Gioia T. Santo D. Nanni L. Attene G. Papa R. Beans (Phaseolus ssp.) as a model for understanding crop evolution. Front Plant. Sci. 2017 8 722 10.3389/fpls.2017.00722
    [Google Scholar]
  51. Nicolás-García M. Arzate-Vázquez I. Perea-Flores M.J. Méndez-Méndez J.V. Perucini-Avendaño M. Gómez-Patiño M.B. Dávila-Ortiz G. An overview of instrumented indentation technique for the study of micromechanical properties in food: A case study on bean seed coat. Biosyst. Eng. 2021 204 377 385 10.1016/j.biosystemseng.2021.02.006
    [Google Scholar]
  52. Dias R. Oliveira H. Fernandes I. Simal-Gandara J. Perez-Gregorio R. Recent advances in extracting phenolic compounds from food and their use in disease prevention and as cosmetics. Crit. Rev. Food Sci. Nutr. 2021 61 7 1130 1151 10.1080/10408398.2020.1754162
    [Google Scholar]
  53. Nicolás-García M. Perucini-Avendaño M. Jiménez-Martínez C. Perea-Flores M.J. Gómez-Patiño M.B. Arrieta-Báez D. Dávila-Ortiz G. Bean phenolic compound changes during processing: Chemical interactions and identification. J. Food Sci. 2021 86 3 643 655
    [Google Scholar]
  54. Nicolás-García M. Jiménez-Martínez C. Perucini-Avendaño M. Hildeliza Camacho-Díaz B. Ruperto Jiménez-Aparicio A. Dávila-Ortiz G. 2022 Phenolic compounds in legumes: Composition, processing and gut health. In J. C. Jimenez-Lopez A. Clemente (Eds.), Legumes Research—Volume 2. IntechOpen. 10.5772/intechopen.98202
    [Google Scholar]
  55. Nicolás-García M. Jiménez-Martínez C. Perucini-Avendaño M. Hildeliza Camacho-Díaz B. Ruperto Jiménez-Aparicio A. Dávila-Ortiz G. Phenolic compounds in legumes: Composition, processing and gut health. In:Legumes Research. Jimenez-Lopez J.C. Clemente A. IntechOpen 2022 2 10.5772/intechopen.98202
    [Google Scholar]
  56. Rahman M.M. Rahaman M.S. Islam M.R. Rahman F. Mithi F.M. Alqahtani T. Almikhlafi M.A. Alghamdi S.Q. Alruwaili A.S. Hossain M.S. Ahmed M. Das R. Emran T.B. Uddin M.S. Role of phenolic compounds in human disease: Current knowledge and future prospects. Molecules 2021 27 1 233 10.3390/molecules27010233
    [Google Scholar]
  57. Awika J.M. Rose D.J. Simsek S. Complementary effects of cereal and pulse polyphenols and dietary fiber on chronic inflammation and gut health. Food Funct. 2018 9 3 1389 1409 10.1039/C7FO02011B
    [Google Scholar]
  58. Gan Y. Fu Y. Yang L. Chen J. Lei H. Liu Q. Cyanidin-3- O -Glucoside and cyanidin protect against intestinal barrier damage and 2,4,6-trinitrobenzenesulfonic acid-induced colitis. J. Med. Food 2020 23 1 90 99 10.1089/jmf.2019.4524
    [Google Scholar]
  59. Zhou T. Meng C. He P. Soy isoflavones and their effects on xenobiotic metabolism. Curr. Drug Metab. 2019 20 1 46 53 10.2174/1389200219666180427170213
    [Google Scholar]
  60. Ferreira C.D. Ziegler V. Lindemann I.S. Hoffmann J.F. Vanier N.L. Oliveira M. Quality of black beans as a function of long-term storage and moldy development: Chemical and functional properties of flour and isolated protein. Food Chem. 2018 246 473 480 10.1016/j.foodchem.2017.11.118
    [Google Scholar]
  61. Telles A.C. Kupski L. Furlong E.B. Phenolic compound in beans as protection against mycotoxins. Food Chem. 2017 214 293 299 10.1016/j.foodchem.2016.07.079
    [Google Scholar]
  62. Meenu M. Chen P. Mradula M. Chang S.K.C. Xu B. New insights into chemical compositions and health‐promoting effects of black beans (Phaseolus vulgaris L.). Food Front. 2023 4 3 1019 1038 10.1002/fft2.246
    [Google Scholar]
  63. Guajardo-Flores D. Serna-Saldívar S.O. Gutiérrez-Uribe J.A. Evaluation of the antioxidant and antiproliferative activities of extracted saponins and flavonols from germinated black beans (Phaseolus vulgaris L.). Food Chem. 2013 141 2 1497 1503 10.1016/j.foodchem.2013.04.010
    [Google Scholar]
  64. Ingle K.P. Al-Khayri J.M. Chakraborty P. Narkhede G.W. Suprasanna P. Bioactive compounds of horse gram (Macrotyloma uniflorum lam. tableVerdc.). In:Bioactive Compounds in Underutilized Vegetables and Legumes. Murthy H.N. Paek K.Y. Springer International Publishing 2021 583 621 10.1007/978‑3‑030‑57415‑4_36
    [Google Scholar]
  65. Sreerama Y.N. Sashikala V.B. Pratape V.M. Variability in the distribution of phenolic compounds in milled fractions of chickpea and horse gram: Evaluation of their antioxidant properties. J. Agric. Food Chem. 2010 58 14 8322 8330 10.1021/jf101335r
    [Google Scholar]
  66. Saha S. Verma R.J. Antinephrolithiatic and antioxidative efficacy of Dolichos biflorus seeds in a lithiasic rat model. Pharm. Biol. 2015 53 1 16 30 10.3109/13880209.2014.909501
    [Google Scholar]
  67. Menaka C. Helitha A.M. Role of methanolic extract of Dolichosbiflorus seeds in hyperlipidaemic models of wister albino rats. Int. J. Modern Res. and Reviews 2013 1 1 35 43
    [Google Scholar]
  68. Poiroux G. Barre A. Van Damme E. Benoist H. Rougé P. Plant lectins targeting o-glycans at the cell surface as tools for cancer diagnosis, prognosis and therapy. Int. J. Mol. Sci. 2017 18 6 1232 10.3390/ijms18061232
    [Google Scholar]
  69. Newman D.J. Cragg G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 2012 75 3 311 335 10.1021/np200906s
    [Google Scholar]
  70. Le Marchand L. Murphy S.P. Hankin J.H. Wilkens L.R. Kolonel L.N. Intake of flavonoids and lung cancer. J. Natl. Cancer Inst. 2000 92 2 154 160 10.1093/jnci/92.2.154
    [Google Scholar]
  71. Nakachi K. Suemasu K. Suga K. Takeo T. Imai K. Higashi Y. Influence of drinking green tea on breast cancer malignancy among japanese patients. Jpn. J. Cancer Res. 1998 89 3 254 261 10.1111/j.1349‑7006.1998.tb00556.x
    [Google Scholar]
  72. Key T.J. Sharp G.B. Appleby P.N. Beral V. Goodman M.T. Soda M. Mabuchi K. Soya foods and breast cancer risk: A prospective study in Hiroshima and Nagasaki, Japan. Br. J. Cancer 1999 81 7 1248 1256 10.1038/sj.bjc.6690837
    [Google Scholar]
  73. Arts I.C.W. Jacobs D.R. Gross M. Harnack L.J. Folsom A.R. Dietary catechins and cancer incidence among postmenopausal women: The Iowa Women’s Health Study (United States). Cancer Causes Control 2002 13 4 373 382 10.1023/A:1015290131096
    [Google Scholar]
  74. Yang G. Xing J. Aikemu B. Sun J. Zheng M. Kaempferol exhibits a synergistic effect with doxorubicin to inhibit proliferation, migration, and invasion of liver cancer. Oncol. Rep. 2021 45 4 32 10.3892/or.2021.7983
    [Google Scholar]
  75. Salman Jasim H. Al-kubaisi Z.A. Al-Shmgani H.S. Cytotoxic potential activity of quercetin derivatives on MCF-7 breast cancer cell line. Bionatura 2023 8 1 1 5 10.21931/RB/2023.08.01.92
    [Google Scholar]
  76. Staedler D. Idrizi E. Kenzaoui B.H. Juillerat-Jeanneret L. Drug combinations with quercetin: Doxorubicin plus quercetin in human breast cancer cells. Cancer Chemother. Pharmacol. 2011 68 5 1161 1172 10.1007/s00280‑011‑1596‑x
    [Google Scholar]
  77. Geng Y. Chen S. Yang Y. Miao H. Li X. Li G. Ma J. Zhang T. Ren T. Li Y. Li L. Liu L. Yang J. Wang Z. Zou L. Liu K. Li Y. Yan S. Cui X. Sun X. Yang B. Zhang L. Han X. Wang C. Chen B. Yue X. Liang W. Ren J. Jia J. Gu J. Li Z. Zhao T. Wang P. Wei D. Qiu S. Xiang D. Xu X. Chen W. He M. Yang L. Wang H. Chen T. Hua R. Wang X. Wu X. Gong W. Wang G. Li M. Zhang W. Shao R. Wu W. Liu Y. Long-term exposure to genistein inhibits the proliferation of gallbladder cancer by downregulating the MCM complex. Sci. Bull. 2022 67 8 813 824 10.1016/j.scib.2022.01.011
    [Google Scholar]
  78. Xiang L. He B. Liu Q. Hu D. Liao W. Li R. Peng X. Wang Q. Zhao G. Antitumor effects of curcumin on the proliferation, migration and apoptosis of human colorectal carcinoma HCT 116 cells. Oncol. Rep. 2020 44 5 1997 2008 10.3892/or.2020.7765
    [Google Scholar]
  79. Liu Y. Shen Z. Zhu T. Lu W. Fu Y. Curcumin enhances the anti-cancer efficacy of paclitaxel in ovarian cancer by regulating the miR-9-5p/BRCA1 axis. Front. Pharmacol. 2023 13 1014933 10.3389/fphar.2022.1014933
    [Google Scholar]
  80. Altayli E. Koru Ö. Öngörü Ö. İde T. Açikel C. Sarper M. Elçi̇ M.P. Ilikçi Sağkan R. Astarci E. Tok D. Özenç S. Ural A.U. Avcu F. Avcu F. An in vitro and in vivo investigation of the cytotoxic effects of caffeic acid (3,4-dihydroxycinnamic acid) phenethyl ester and bortezomib in multiple myeloma cells. Turk. J. Med. Sci. 2015 45 38 46 10.3906/sag‑1401‑127
    [Google Scholar]
  81. Maity S. Kinra M. Nampoothiri M. Arora D. Pai K.S.R. Mudgal J. Caffeic acid, a dietary polyphenol, as a promising candidate for combination therapy. Chem. Zvesti 2022 76 3 1271 1283 10.1007/s11696‑021‑01947‑7
    [Google Scholar]
  82. Wang T. Gong X. Jiang R. Li H. Du W. Kuang G. Ferulic acid inhibits proliferation and promotes apoptosis via blockage of PI3K/Akt pathway in osteosarcoma cell. Am. J. Transl. Res. 2016 8 2 968 980
    [Google Scholar]
  83. Fahrioğlu U. Dodurga Y. Elmas L. Seçme M. Ferulic acid decreases cell viability and colony formation while inhibiting migration of MIA PaCa-2 human pancreatic cancer cells in vitro. Gene 2016 576 1 476 482 10.1016/j.gene.2015.10.061
    [Google Scholar]
  84. Singh Tuli H. Kumar A. Ramniwas S. Coudhary R. Aggarwal D. Kumar M. Sharma U. Chaturvedi Parashar N. Haque S. Sak K. Ferulic acid: A natural phenol that inhibits neoplastic events through modulation of oncogenic signaling. Molecules 2022 27 21 7653 10.3390/molecules27217653
    [Google Scholar]
  85. Al-Thamiree Mezban S. Fox S.W. Genistein and coumestrol reduce MCF-7 breast cancer cell viability and inhibit markers of preferential metastasis, bone matrix attachment and tumor-induced osteoclastogenesis. Arch. Biochem. Biophys. 2023 740 109583 10.1016/j.abb.2023.109583
    [Google Scholar]
  86. Kim S.H. Choi K.C. Anti-cancer effect and underlying mechanism(s) of Kaempferol, a phytoestrogen, on the regulation of apoptosis in diverse cancer cell models. Toxicol. Res. 2013 29 4 229 234 10.5487/TR.2013.29.4.229
    [Google Scholar]
  87. Fouzder C. Mukhuty A. Kundu R. Kaempferol inhibits Nrf2 signalling pathway via downregulation of Nrf2 mRNA and induces apoptosis in NSCLC cells. Arch. Biochem. Biophys. 2021 697 108700 10.1016/j.abb.2020.108700
    [Google Scholar]
  88. Tyszka-Czochara M. Konieczny P. Majka M. Caffeic acid expands anti-tumor effect of metformin in human metastatic cervical carcinoma htb-34 cells: Implications of ampk activation and impairment of fatty acids de novo biosynthesis. Int. J. Mol. Sci. 2017 18 2 462 10.3390/ijms18020462
    [Google Scholar]
  89. Sawata Y. Matsukawa T. Doi S. Tsunoda T. Arikawa N. Matsunaga N. Ohnuki K. Shirasawa S. Kotake Y. A novel compound, ferulic acid-bound resveratrol, induces the tumor suppressor gene p15 and inhibits the three-dimensional proliferation of colorectal cancer cells. Mol. Cell. Biochem. 2019 462 1-2 25 31 10.1007/s11010‑019‑03606‑8
    [Google Scholar]
  90. Liu H. Lee G. Lee J.I. Ahn T.G. Kim S.A. Effects of genistein on anti-tumor activity of cisplatin in human cervical cancer cell lines. Obstet. Gynecol. Sci. 2019 62 5 322 10.5468/ogs.2019.62.5.322
    [Google Scholar]
  91. Alorda-Clara M. Torrens-Mas M. Morla-Barcelo P.M. Roca P. Sastre-Serra J. Pons D.G. Oliver J. High concentrations of genistein decrease cell viability depending on oxidative stress and inflammation in colon cancer cell lines. Int. J. Mol. Sci. 2022 23 14 7526 10.3390/ijms23147526
    [Google Scholar]
  92. Imran M. Salehi B. Sharifi-Rad J. Aslam Gondal T. Saeed F. Imran A. Shahbaz M. Tsouh Fokou P.V. Umair Arshad M. Khan H. Guerreiro S.G. Martins N. Estevinho L.M. Kaempferol: A key emphasis to its anticancer potential. Molecules 2019 24 12 2277 10.3390/molecules24122277
    [Google Scholar]
  93. Shahbaz M. Imran M. Alsagaby S.A. Naeem H. Al Abdulmonem W. Hussain M. Abdelgawad M.A. El-Ghorab A.H. Ghoneim M.M. El-Sherbiny M. Atoki A.V. Awuchi C.G. Anticancer, antioxidant, ameliorative and therapeutic properties of kaempferol. Int. J. Food Prop. 2023 26 1 1140 1166 10.1080/10942912.2023.2205040
    [Google Scholar]
  94. Qattan M.Y. Khan M.I. Alharbi S.H. Verma A.K. Al-Saeed F.A. Abduallah A.M. Al Areefy A.A. Therapeutic importance of kaempferol in the treatment of cancer through the modulation of cell signalling pathways. Molecules 2022 27 24 8864 10.3390/molecules27248864
    [Google Scholar]
  95. Gao S.S. Choi B.M. Chen X.Y. Zhu R.Z. Kim Y. So H. Park R. Sung M. Kim B.R. Kaempferol suppresses cisplatin-induced apoptosis via inductions of heme oxygenase-1 and glutamate-cysteine ligase catalytic subunit in hei-oc1 cells. Pharm. Res. 2010 27 2 235 245 10.1007/s11095‑009‑0003‑3
    [Google Scholar]
  96. Arul N. Cho Y.Y. A rising cancer prevention target of rsk2 in human skin cancer. Front. Oncol. 2013 3 10.3389/fonc.2013.00201
    [Google Scholar]
  97. Cho Y.Y. Yao K. Pugliese A. Malakhova M.L. Bode A.M. Dong Z. A regulatory mechanism for rsk2 nh2-terminal kinase activity. Cancer Res. 2009 69 10 4398 4406 10.1158/0008‑5472.CAN‑08‑4959
    [Google Scholar]
  98. Choi E.J. Ahn W.S. Kaempferol induced the apoptosis via cell cycle arrest in human breast cancer MDA-MB-453 cells. Nutr. Res. Pract. 2008 2 4 322 10.4162/nrp.2008.2.4.322
    [Google Scholar]
  99. Imran M. Rauf A. Shah Z.A. Saeed F. Imran A. Arshad M.U. Ahmad B. Bawazeer S. Atif M. Peters D.G. Mubarak M.S. Chemo‐preventive and therapeutic effect of the dietary flavonoid kaempferol: A comprehensive review. Phytother. Res. 2019 33 2 263 275 10.1002/ptr.6227
    [Google Scholar]
  100. Luo H. Daddysman M.K. Rankin G.O. Jiang B.H. Chen Y.C. Kaempferol enhances cisplatin’s effect on ovarian cancer cells through promoting apoptosis caused by down regulation of cMyc. Cancer Cell Int. 2010 10 1 16 10.1186/1475‑2867‑10‑16
    [Google Scholar]
  101. Felice M.R. Maugeri A. De Sarro G. Navarra M. Barreca D. Molecular pathways involved in the anti-cancer activity of flavonols: A focus on myricetin and kaempferol. Int. J. Mol. Sci. 2022 23 8 4411 10.3390/ijms23084411
    [Google Scholar]
  102. Kashafi E. Moradzadeh M. Mohamadkhani A. Erfanian S. Kaempferol increases apoptosis in human cervical cancer HeLa cells via PI3K/AKT and telomerase pathways. Biomed. Pharmacother. 2017 89 573 577 10.1016/j.biopha.2017.02.061
    [Google Scholar]
  103. Huang W.W. Tsai S.C. Peng S.F. Lin M.W. Chiang J.H. Chiu Y.J. Fushiya S. Tseng M.T. Yang J-S. Kaempferol induces autophagy through AMPK and AKT signaling molecules and causes G2/M arrest via downregulation of CDK1/cyclin B in SK-HEP-1 human hepatic cancer cells. Int. J. Oncol. 2013 42 6 2069 2077 10.3892/ijo.2013.1909
    [Google Scholar]
  104. Kang J.W. Kim J.H. Song K. Kim S.H. Yoon J.H. Kim K.S. Kaempferol and quercetin, components of Ginkgo biloba extract (EGb 761), induce caspase‐3‐dependent apoptosis in oral cavity cancer cells. Phytother. Res. 2010 24 S1 213 217 10.1002/ptr.2913
    [Google Scholar]
  105. Lu L. Wang Y. Ou R. Feng Q. Ji L. Zheng H. Guo Y. Qi X. Kong A.N.T. Liu Z. DACT2 epigenetic stimulator exerts dual efficacy for colorectal cancer prevention and treatment. Pharmacol. Res. 2018 129 318 328 10.1016/j.phrs.2017.11.032
    [Google Scholar]
  106. Sferrazza G. Corti M. Brusotti G. Pierimarchi P. Temporini C. Serafino A. Calleri E. Nature-derived compounds modulating Wnt/ -catenin pathway: A preventive and therapeutic opportunity in neoplastic diseases. Acta Pharm. Sin. B 2020 10 10 1814 1834 10.1016/j.apsb.2019.12.019
    [Google Scholar]
  107. Sharma A.R. Nam J.S. Kaempferol stimulates WNT/β-catenin signaling pathway to induce differentiation of osteoblasts. J. Nutr. Biochem. 2019 74 108228 10.1016/j.jnutbio.2019.108228
    [Google Scholar]
  108. Niu Y.X. Zhang Y. Wei L.Q. Xu Y. The inducing effects of ferulic acid on the apoptosis of gastric cancer SGC-7901 cells and its influence on COX-2, surviving, XIAP and p53. Western J. Traditional Chin Med. 2019 32 19 23
    [Google Scholar]
  109. Fu J. Wang H. Inhibitory effect of ferulic acid mediated by miR 34a on transplanted tumor of human cervical cancer in nude mice. Zhongguo Laonianxue Zazhi 2021 41 13 2833 2835 10.3969/j.issn.1005‑9202.2021.13.041
    [Google Scholar]
  110. Bao X. Li W. Jia R. Meng D. Zhang H. Xia L. Molecular mechanism of ferulic acid and its derivatives in tumor progression. Pharmacol. Rep. 2023 75 4 891 906 10.1007/s43440‑023‑00494‑0
    [Google Scholar]
  111. Wu J. Wang Y.X. Wei N. Wu X.S. Liu X. Ferulic acid inhibits lung cancer growth and its mechanism. Zhejiang Med. J. 2018 40 1303 1306
    [Google Scholar]
  112. Li D. Rui Y. Guo S. Luan F. Liu R. Zeng N. Ferulic acid: A review of its pharmacology, pharmacokinetics and derivatives. Life Sci. 2021 284 119921 10.1016/j.lfs.2021.119921
    [Google Scholar]
  113. Luo L. Zhu S. Tong Y. Peng S. Ferulic acid induces apoptosis of hela and caski cervical carcinoma cells by down-regulating the Phosphatidylinositol 3-Kinase (PI3K)/Akt signaling pathway. Med. Sci. Monit. 2020 26 920095 10.12659/MSM.920095
    [Google Scholar]
  114. Owen K.L. Brockwell N.K. Parker B.S. Jak-stat signalling: A double-edged sword of immune regulation and cancer progression. Cancers 2019 11 12 2002 10.3390/cancers11122002
    [Google Scholar]
  115. Guo F. Zhao R.M. Li J.L. Liu Y.X. Yang S.J. Ferulic acid inhibits lung cancer cell proliferation and metastasis by regulating JAK2/STAT6 immune signalling pathway. Chin. J. Immunol. 2021 37 04 459 10.3969/j.issn.1000‑484X
    [Google Scholar]
  116. Jung J.E. Kim H.S. Lee C.S. Park D.H. Kim Y.N. Lee M.J. Lee J.W. Park J.W. Kim M.S. Ye S.K. Chung M.H. Caffeic acid and its synthetic derivative CADPE suppress tumor angiogenesis by blocking STAT3-mediated VEGF expression in human renal carcinoma cells. Carcinogenesis 2007 28 8 1780 1787 10.1093/carcin/bgm130
    [Google Scholar]
  117. Kang N.J. Lee K.W. Kim B.H. Bode A.M. Lee H.J. Heo Y.S. Boardman L. Limburg P. Lee H.J. Dong Z. Coffee phenolic phytochemicals suppress colon cancer metastasis by targeting MEK and TOPK. Carcinogenesis 2011 32 6 921 928 10.1093/carcin/bgr022
    [Google Scholar]
  118. Chung L.C. Chiang K.C. Feng T.H. Chang K.S. Chuang S.T. Chen Y.J. Tsui K.H. Lee J.C. Juang H.H. Caffeic acid phenethyl ester upregulates N-myc downstream regulated gene 1 via ERK pathway to inhibit human oral cancer cell growth in vitro and in vivo. Mol. Nutr. Food Res. 2017 61 9 1600842 10.1002/mnfr.201600842
    [Google Scholar]
  119. Hassan N.A. El-Bassossy H.M. Mahmoud M.F. Fahmy A. Caffeic acid phenethyl ester, a 5-lipoxygenase enzyme inhibitor, alleviates diabetic atherosclerotic manifestations: Effect on vascular reactivity and stiffness. Chem. Biol. Interact. 2014 213 28 36 10.1016/j.cbi.2014.01.019
    [Google Scholar]
  120. Samec M. Liskova A. Koklesova L. Mersakova S. Strnadel J. Kajo K. Pec M. Zhai K. Smejkal K. Mirzaei S. Hushmandi K. Ashrafizadeh M. Saso L. Brockmueller A. Shakibaei M. Büsselberg D. Kubatka P. Flavonoids targeting hif-1: Implications on cancer metabolism. Cancers 2021 13 1 130 10.3390/cancers13010130
    [Google Scholar]
  121. Gu W. Yang Y. Zhang C. Zhang Y. Chen L. Shen J. Li G. Li Z. Li L. Li Y. Dong H. Caffeic acid attenuates the angiogenic function of hepatocellular carcinoma cells via reduction in JNK-1-mediated HIF-1α stabilization in hypoxia. RSC Advances 2016 6 86 82774 82782 10.1039/C6RA07703J
    [Google Scholar]
  122. Pelinson L.P. Assmann C.E. Palma T.V. da Cruz I.B.M. Pillat M.M. Mânica A. Stefanello N. Weis G.C.C. de Oliveira Alves A. de Andrade C.M. Ulrich H. Morsch V.M.M. Schetinger M.R.C. Bagatini M.D. Antiproliferative and apoptotic effects of caffeic acid on SK-Mel-28 human melanoma cancer cells. Mol. Biol. Rep. 2019 46 2 2085 2092 10.1007/s11033‑019‑04658‑1
    [Google Scholar]
  123. Alam M. Ahmed S. Elasbali A.M. Adnan M. Alam S. Hassan M.I. Pasupuleti V.R. Therapeutic implications of caffeic acid in cancer and neurological diseases. Front. Oncol. 2022 12 860508 10.3389/fonc.2022.860508
    [Google Scholar]
  124. Alam M. Ashraf G.M. Sheikh K. Khan A. Ali S. Ansari M.M. Adnan M. Pasupuleti V.R. Hassan M.I. Potential therapeutic implications of caffeic acid in cancer signaling: Past, present, and future. Front. Pharmacol. 2022 13 845871 10.3389/fphar.2022.845871
    [Google Scholar]
  125. Hsu T.H. Chu C.C. Hung M.W. Lee H.J. Hsu H.J. Chang T.C. Caffeic acid phenethyl ester induces E2F‐1‐mediated growth inhibition and cell‐cycle arrest in human cervical cancer cells. FEBS J. 2013 280 11 2581 2593 10.1111/febs.12242
    [Google Scholar]
  126. Chae H.S. Xu R. Won J.Y. Chin Y.W. Yim H. Molecular targets of genistein and its related flavonoids to exert anticancer effects. Int. J. Mol. Sci. 2019 20 10 2420 10.3390/ijms20102420
    [Google Scholar]
  127. Akiyama T. Ishida J. Nakagawa S. Ogawara H. Watanabe S. Itoh N. Shibuya M. Fukami Y. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J. Biol. Chem. 1987 262 12 5592 5595 10.1016/S0021‑9258(18)45614‑1
    [Google Scholar]
  128. Zaczek A. Brandt B. Bielawski K.P. The diverse signalling network of EGFR, HER2, HER3 and HER4 tyrosine kinase receptors and the consequences for therapeutic approaches. Histol. Histopathol. 2005 20 3 1005 1015 10.14670/HH‑20.1005
    [Google Scholar]
  129. Gao J. Li H.R. Jin C. Jiang J-H. Ding J-Y. Strategies to overcome acquired resistance to EGFR TKI in the treatment of non-small cell lung cancer. Clin. Transl. Oncol. 2019 21 10 1287 1301 10.1007/s12094‑019‑02075‑1
    [Google Scholar]
  130. Capdevila J. Elez E. Macarulla T. Ramos F.J. Ruiz-Echarri M. Tabernero J. Anti-epidermal growth factor receptor monoclonal antibodies in cancer treatment. Cancer Treat. Rev. 2009 35 4 354 363 10.1016/j.ctrv.2009.02.001
    [Google Scholar]
  131. Choi Y.H. Zhang L. Lee W.H. Park K.Y. Genistein-induced G2/M arrest is associated with the inhibition of cyclin B1 and the induction of p21 in human breast carcinoma cells. Int. J. Oncol. 1998 13 391 396 10.3892/ijo.13.2.391
    [Google Scholar]
  132. Ismail I.A. Kang K.S. Lee H.A. Kim J.W. Sohn Y.K. Genistein-induced neuronal apoptosis and G2/M cell cycle arrest is associated with MDC1 up-regulation and PLK1 down-regulation. Eur. J. Pharmacol. 2007 575 1-3 12 20 10.1016/j.ejphar.2007.07.039
    [Google Scholar]
  133. Yan G.R. Zou F.Y. Dang B.L. Zhang Y. Yu G. Liu X. He Q.Y. Genistein‐induced mitotic arrest of gastric cancer cells by downregulating KIF 20 A, a proteomics study. Proteomics 2012 12 14 2391 2399 10.1002/pmic.201100652
    [Google Scholar]
  134. Matsukawa Y. Marui N. Sakai T. Satomi Y. Yoshida M. Matsumoto K. Genistein arrests cell cycle progression at G2-M. Cancer Res. 1993 53 6 1328 1331
    [Google Scholar]
  135. Shin S.B. Woo S.U. Chin Y.W. Jang Y.J. Yim H. Sensitivity of tp53 ‐mutated cancer cells to the phytoestrogen genistein is associated with direct inhibition of plk1 activity. J. Cell. Physiol. 2017 232 10 2818 2828 10.1002/jcp.25680
    [Google Scholar]
  136. Shin S.B. Woo S.U. Yim H. Cotargeting Plk1 and androgen receptor enhances the therapeutic sensitivity of paclitaxel-resistant prostate cancer. Ther. Adv. Med. Oncol. 2019 11 1758835919846375 10.1177/1758835919846375
    [Google Scholar]
  137. Montgomery J.S. Price D.K. Figg W.D. The androgen receptor gene and its influence on the development and progression of prostate cancer. J. Pathol. 2001 195 2 138 146 10.1002/1096‑9896(200109)195:2<138:AID‑PATH961>3.0.CO;2‑Y
    [Google Scholar]
  138. Basak S. Pookot D. Noonan E.J. Dahiya R. Genistein down-regulates androgen receptor by modulating HDAC6-Hsp90 chaperone function. Mol. Cancer Ther. 2008 7 10 3195 3202 10.1158/1535‑7163.MCT‑08‑0617
    [Google Scholar]
  139. Davis J.N. Muqim N. Bhuiyan M. Kucuk O. Pienta K.J. Sarkar F.H. Inhibition of prostate specific antigen expression by genistein in prostate cancer cells. Int. J. Oncol. 2000 10.3892/ijo.16.6.1091
    [Google Scholar]
  140. Pihlajamaa P. Zhang F.P. Saarinen L. Mikkonen L. Hautaniemi S. Jänne O.A. The phytoestrogen genistein is a tissue-specific androgen receptor modulator. Endocrinology 2011 152 11 4395 4405 10.1210/en.2011‑0221
    [Google Scholar]
  141. Lai W.W. Hsu S.C. Chueh F.S. Chen Y.Y. Yang J.S. Lin J.P. Lien J.C. Tsai C.H. Chung J.G. Quercetin inhibits migration and invasion of SAS human oral cancer cells through inhibition of NF-κB and matrix metalloproteinase-2/-9 signalling pathways. Anticancer Res. 2013 33 5 1941 1950
    [Google Scholar]
  142. Miao Z. Feng J. Ding J. Newly discovered angiogenesis inhibitors and their mechanisms of action. Acta Pharmacol. Sin. 2012 33 9 1103 1111 10.1038/aps.2012.97
    [Google Scholar]
  143. Aggarwal B.B. Shishodia S. Molecular targets of dietary agents for prevention and therapy of cancer. Biochem. Pharmacol. 2006 71 10 1397 1421 10.1016/j.bcp.2006.02.009
    [Google Scholar]
  144. Lee K.W. Kang N.J. Heo Y.S. Rogozin E.A. Pugliese A. Hwang M.K. Bowden G.T. Bode A.M. Lee H.J. Dong Z. Raf and MEK protein kinases are direct molecular targets for the chemopreventive effect of quercetin, a major flavonol in red wine. Cancer Res. 2008 68 3 946 955 10.1158/0008‑5472.CAN‑07‑3140
    [Google Scholar]
  145. Chen X. Dong X.S. Gao H.Y. Jiang Y.F. Jin Y.L. Chang Y.Y. Chen L.Y. Wang J.H. Suppression of HSP27 increases the anti-tumor effects of quercetin in human leukemia U937 cells. Mol. Med. Rep. 2016 13 1 689 696 10.3892/mmr.2015.4600
    [Google Scholar]
  146. Kashyap D. Mittal S. Sak K. Singhal P. Tuli H.S. Molecular mechanisms of action of quercetin in cancer: Recent advances. Tumour Biol. 2016 37 10 12927 12939 10.1007/s13277‑016‑5184‑x
    [Google Scholar]
  147. Cao H.H. Tse A.K.W. Kwan H.Y. Yu H. Cheng C.Y. Su T. Fong W.F. Yu Z.L. Quercetin exerts anti-melanoma activities and inhibits STAT3 signaling. Biochem. Pharmacol. 2014 87 3 424 434 10.1016/j.bcp.2013.11.008
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002377364250906070612
Loading
/content/journals/cdm/10.2174/0113892002377364250906070612
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: kaempferol ; caffeic acid ; polyphenols ; Legumes ; anticancer ; bioactive compounds
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test