Skip to content
2000
Volume 26, Issue 7
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

Introduction

Cancer poses a tough global health challenge, prompting the exploration of innovative prevention and treatment strategies. Polyphenols, bioactive compounds abundant in various plant-based foods, have gained significant attention for their potential anticancer properties. Legumes, characterized by their excellent nutritional profile, offer a promising source of polyphenols such as ferulic acid, caffeic acid, genistein, and kaempferol, which exhibit notable antioxidative and anti-inflammatory effects.

Methods

This review systematically analyzed peer-reviewed literature on the polyphenolic content of various legumes. No original research or experimental work was carried out as part of this study. Databases such as PubMed, Google Scholar, Scopus, SpringerLink, and ScienceDirect were searched for studies focusing on the identification and pharmacokinetic profiles of legume-derived polyphenols. Emphasis was placed on examining the mechanisms of action, including modulation of cell signalling pathways, induction of apoptosis, inhibition of angiogenesis, and influence on detoxification enzymes. The review also assessed the ADME (absorption, distribution, metabolism, and excretion) properties of key polyphenols to evaluate their bioavailability and therapeutic efficacy.

Results

The analysis revealed that legumes are significant sources of polyphenols with demonstrated anticancer activity. Compounds like genistein and kaempferol modulate key signalling pathways such as PI3K/Akt, MAPK, and NF-kB, which are involved in cell proliferation, survival, and inflammation. Additionally, these polyphenols can promote apoptosis and inhibit angiogenesis, thereby impeding tumor growth and metastasis.

Discussion

The findings underscore the potential of legume-derived polyphenols in cancer prevention and management. By addressing the ADME of Polyphenols, this study aims to deepen our understanding of their pharmacological potential, providing a foundation for developing dietary strategies and functional foods to effectively prevent and manage cancer. Addressing the limitations in bioavailability through novel delivery systems and dietary formulations could enhance their effectiveness.

Conclusion

Combining polyphenol-rich legume diets with conventional cancer therapies may offer a synergistic therapeutic effect and promote better health outcomes. However, it is essential to first establish through rigorous scientific research that polyphenols do not produce any unwanted adverse effects when used alongside standard medications. Further research focusing on improving bioavailability and validating in vivo efficacy will be crucial for translating these findings into practical cancer prevention treatment approaches.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002377364250906070612
2025-09-29
2026-01-31
Loading full text...

Full text loading...

References

  1. JemalA. BrayF. CenterM.M. FerlayJ. WardE. FormanD. Global cancer statistics.CA Cancer J. Clin.2011612699010.3322/caac.20107
    [Google Scholar]
  2. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.21492
    [Google Scholar]
  3. Global cancer burden growing, amidst mounting need for services.2024Available from: https://www.who.int/news/item/01-02-2024-global-cancer-burden-growing--amidst-mounting-need-for-services
  4. DollR. Cancers weakly related to smoking.Br. Med. Bull.1996521354910.1093/oxfordjournals.bmb.a011531
    [Google Scholar]
  5. MentellaM.C. ScaldaferriF. RicciC. GasbarriniA. MiggianoG.A.D. Cancer and mediterranean diet: A review.Nutrients2019119205910.3390/nu11092059
    [Google Scholar]
  6. CapraraG. Mediterranean-type dietary pattern and physical activity: The winning combination to counteract the rising burden of non-communicable diseases(Ncds).Nutrients202113242910.3390/nu13020429
    [Google Scholar]
  7. DurazzoA. LucariniM. SoutoE.B. CicalaC. CaiazzoE. IzzoA.A. NovellinoE. SantiniA. Polyphenols: A concise overview on the chemistry, occurrence, and human health.Phytother. Res.20193392221224310.1002/ptr.6419
    [Google Scholar]
  8. YangC.S. ChungJ.Y. YangG. ChhabraS.K. LeeM.J. Tea and tea polyphenols in cancer prevention.J. Nutr.20001302472S478S10.1093/jn/130.2.472S
    [Google Scholar]
  9. CraggG.M. NewmanD.J. Plants as a source of anti-cancer agents.J. Ethnopharmacol.20051001-2727910.1016/j.jep.2005.05.011
    [Google Scholar]
  10. ButlerM.S. Natural products to drugs: Natural product-derived compounds in clinical trials.Nat. Prod. Rep.200825347510.1039/b514294f
    [Google Scholar]
  11. El GharrasH. Polyphenols: Food sources, properties and applications – A review.Int. J. Food Sci. Technol.200944122512251810.1111/j.1365‑2621.2009.02077.x
    [Google Scholar]
  12. IqbalI. WilairatanaP. SaqibF. NasirB. WahidM. LatifM.F. IqbalA. NazR. MubarakM.S. Plant polyphenols and their potential benefits on cardiovascular health: A review.Molecules20232817640310.3390/molecules28176403
    [Google Scholar]
  13. RasouliH. FarzaeiM.H. KhodarahmiR. Polyphenols and their benefits: A review.Int. J. Food Prop.201714210.1080/10942912.2017.1354017
    [Google Scholar]
  14. ZhangH. TsaoR. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects.Curr. Opin. Food Sci.20168334210.1016/j.cofs.2016.02.002
    [Google Scholar]
  15. KeatingE. MartelF. Antimetabolic effects of polyphenols in breast cancer cells: Focus on glucose uptake and metabolism.Front. Nutr.201852510.3389/fnut.2018.00025
    [Google Scholar]
  16. TufailM. JiangC.H. LiN. Altered metabolism in cancer: Insights into energy pathways and therapeutic targets.Mol. Cancer202423120310.1186/s12943‑024‑02119‑3
    [Google Scholar]
  17. ZebA. Concept, mechanism, and applications of phenolic antioxidants in foods.J. Food Biochem.202044910.1111/jfbc.13394
    [Google Scholar]
  18. QuiñonesM. MiguelM. AleixandreA. Beneficial effects of polyphenols on cardiovascular disease.Pharmacol. Res.201368112513110.1016/j.phrs.2012.10.018
    [Google Scholar]
  19. ZhouY. ZhengJ. LiY. XuD.P. LiS. ChenY.M. LiH.B. Natural polyphenols for prevention and treatment of cancer.Nutrients20168851510.3390/nu8080515
    [Google Scholar]
  20. NaeemH. MomalU. ImranM. ShahbazM. HussainM. AlsagabyS.A. Al AbdulmonemW. UmarM. MujtabaA. El-GhorabA.H. GhoneimM.M. ShakerM.E. AbdelgawadM.A. AL JBawi, E.; Bawi, E. Anticancer perspectives of genistein: A comprehensive review.Int. J. Food Prop.20232623305334110.1080/10942912.2023.2281257
    [Google Scholar]
  21. HigdonJ.V. FreiB. Tea catechins and polyphenols: Health effects, metabolism, and antioxidant functions.Crit. Rev. Food Sci. Nutr.20034318914310.1080/10408690390826464
    [Google Scholar]
  22. ScalbertA. JohnsonI.T. SaltmarshM. Polyphenols: Antioxidants and beyond.Am. J. Clin. Nutr.2005811215S217S10.1093/ajcn/81.1.215S
    [Google Scholar]
  23. BravoL. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance.Nutr. Rev.1998561131733310.1111/j.1753‑4887.1998.tb01670.x
    [Google Scholar]
  24. TsaoR. Chemistry and biochemistry of dietary polyphenols.Nutrients20102121231124610.3390/nu2121231
    [Google Scholar]
  25. Tresserra-RimbauA. Lamuela-RaventosR.M. MorenoJ.J. Polyphenols, food and pharma. Current knowledge and directions for future research.Biochem. Pharmacol.201815618619510.1016/j.bcp.2018.07.050
    [Google Scholar]
  26. WangH. Oo KhorT. ShuL. SuZ.Y. FuentesF. LeeJ.H. Tony KongA-N. Plants vs. cancer: A review on natural phytochemicals in preventing and treating cancers and their druggability.Anticancer. Agents Med. Chem.201212101281130510.2174/187152012803833026
    [Google Scholar]
  27. RobertoBei Camilla Palumbo; Laura Masuelli; Mario Turriziani; Michele Malaguarnera; Fabio Galvano; Malaguarnera, M.; Galvano, F. Impaired expression and function of cancer-related enzymes by anthocyans: An update.Curr. Enzym. Inhib.20128122110.2174/157340812800228937
    [Google Scholar]
  28. BhatK.P.L. PezzutoJ.M. Cancer chemopreventive activity of resveratrol.Ann. N. Y. Acad. Sci.2002957121022910.1111/j.1749‑6632.2002.tb02918.x
    [Google Scholar]
  29. HanahanD. WeinbergR.A. Hallmarks of cancer: The next generation.Cell2011144564667410.1016/j.cell.2011.02.013
    [Google Scholar]
  30. Eilat-AdarS. SinaiT. YosefyC. HenkinY. Nutritional recommendations for cardiovascular disease prevention.Nutrients2013593646368310.3390/nu5093646
    [Google Scholar]
  31. BeiR. Inhibition of ErbB receptors, Hedgehog and NF-kappaB signaling by polyphenols in cancer.Front. Biosci.2013184129010.2741/4180
    [Google Scholar]
  32. KunnumakkaraA.B. AnandP. AggarwalB.B. Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins.Cancer Lett.2008269219922510.1016/j.canlet.2008.03.009
    [Google Scholar]
  33. CrozierA. JaganathI.B. CliffordM.N. Dietary phenolics: Chemistry, bioavailability and effects on health.Nat. Prod. Rep.2009268100110.1039/b802662a
    [Google Scholar]
  34. ManachC. ScalbertA. MorandC. RémésyC. JiménezL. Polyphenols: Food sources and bioavailability.Am. J. Clin. Nutr.200479572774710.1093/ajcn/79.5.727
    [Google Scholar]
  35. SinglaR.K. DubeyA.K. GargA. SharmaR.K. FiorinoM. AmeenS.M. HaddadM.A. Al-HiaryM. Natural polyphenols: Chemical classification, definition of classes, subcategories, and structures.J. AOAC Int.201910251397140010.5740/jaoacint.19‑0133
    [Google Scholar]
  36. CarteaM.E. FranciscoM. SoengasP. VelascoP. Phenolic compounds in brassica vegetables.Molecules201016125128010.3390/molecules16010251
    [Google Scholar]
  37. SpataforaC. TringaliC. Natural-derived polyphenols as potential anticancer agents.Anticancer. Agents Med. Chem.201212890291810.2174/187152012802649996
    [Google Scholar]
  38. NiedzwieckiA. RoomiM. KalinovskyT. RathM. Anticancer efficacy of polyphenols and their combinations.Nutrients20168955210.3390/nu8090552
    [Google Scholar]
  39. AdlercreutzH. MazurW. Phytestrogens and western diseases.Ann. Med.19972929512010.3109/07853899709113696
    [Google Scholar]
  40. PancheA.N. DiwanA.D. ChandraS.R. Flavonoids: An overview.J. Nutr. Sci.201654710.1017/jns.2016.41
    [Google Scholar]
  41. GuoF. XiongH. WangX. JiangL. YuN. HuZ. SunY. TsaoR. Phenolics of green pea (Pisum sativum L.) Hulls, their plasma and urinary metabolites, bioavailability, and in vivo antioxidant activities in a rat model.J. Agric. Food Chem.20196743119551196810.1021/acs.jafc.9b04501
    [Google Scholar]
  42. LafargaT. VillaróS. BoboG. SimóJ. Aguiló-AguayoI. Bioaccessibility and antioxidant activity of phenolic compounds in cooked pulses.Int. J. Food Sci. Technol.20195451816182310.1111/ijfs.14082
    [Google Scholar]
  43. JamarG. EstadellaD. PisaniL.P. Contribution of anthocyanin‐rich foods in obesity control through gut microbiota interactions.Biofactors201743450751610.1002/biof.1365
    [Google Scholar]
  44. SinghB. SinghJ.P. KaurA. SinghN. Phenolic composition and antioxidant potential of grain legume seeds: A review.Food Res. Int.201710111610.1016/j.foodres.2017.09.026
    [Google Scholar]
  45. MaharjanP. PennyJ. PartingtonD.L. PanozzoJ.F. Genotype and environment effects on the chemical composition and rheological properties of field peas.J. Sci. Food Agric.201999125409541610.1002/jsfa.9801
    [Google Scholar]
  46. Domínguez-ArispuroD.M. Cuevas-RodríguezE.O. Milán-CarrilloJ. León-LópezL. Gutiérrez-DoradoR. Reyes-MorenoC. Optimal germination condition impacts on the antioxidant activity and phenolic acids profile in pigmented desi chickpea (Cicer arietinum L.) seeds.J. Food Sci. Technol.201855263864710.1007/s13197‑017‑2973‑1
    [Google Scholar]
  47. de CamargoA.C. FaveroB.T. MorzelleM.C. FranchinM. Alvarez-ParrillaE. de la RosaL.A. GeraldiM.V. Maróstica JúniorM.R. ShahidiF. SchwemberA.R. Is chickpea a potential substitute for soybean? Phenolic bioactives and potential health benefits.Int. J. Mol. Sci.20192011264410.3390/ijms20112644
    [Google Scholar]
  48. SeoY.J. KimB.S. ChunS.Y. ParkY.K. KangK.S. KwonT.G. Apoptotic effects of genistein, biochanin-A and apigenin on LNCaP and PC-3 cells by p21 through transcriptional inhibition of polo-like kinase-1.J. Korean Med. Sci.201126111489149410.3346/jkms.2011.26.11.1489
    [Google Scholar]
  49. MegíasC. Cortés-GiraldoI. AlaizM. VioqueJ. Girón-CalleJ. Isoflavones in chickpea (Cicer arietinum) protein concentrates.J. Funct. Foods20162118619210.1016/j.jff.2015.12.012
    [Google Scholar]
  50. BitocchiE. RauD. BellucciE. RodriguezM. MurgiaM.L. GioiaT. SantoD. NanniL. AtteneG. PapaR. Beans (Phaseolus ssp.) as a model for understanding crop evolution.Front Plant. Sci.2017872210.3389/fpls.2017.00722
    [Google Scholar]
  51. Nicolás-GarcíaM. Arzate-VázquezI. Perea-FloresM.J. Méndez-MéndezJ.V. Perucini-AvendañoM. Gómez-PatiñoM.B. Dávila-OrtizG. An overview of instrumented indentation technique for the study of micromechanical properties in food: A case study on bean seed coat.Biosyst. Eng.202120437738510.1016/j.biosystemseng.2021.02.006
    [Google Scholar]
  52. DiasR. OliveiraH. FernandesI. Simal-GandaraJ. Perez-GregorioR. Recent advances in extracting phenolic compounds from food and their use in disease prevention and as cosmetics.Crit. Rev. Food Sci. Nutr.20216171130115110.1080/10408398.2020.1754162
    [Google Scholar]
  53. Nicolás-GarcíaM. Perucini-AvendañoM. Jiménez-MartínezC. Perea-FloresM.J. Gómez-PatiñoM.B. Arrieta-BáezD. Dávila-OrtizG. Bean phenolic compound changes during processing: Chemical interactions and identification.J. Food Sci.2021863643655
    [Google Scholar]
  54. Nicolás-GarcíaM. Jiménez-MartínezC. Perucini-AvendañoM. Hildeliza Camacho-DíazB. Ruperto Jiménez-AparicioA. Dávila-OrtizG. Phenolic compounds in legumes: Composition, processing and gut health.Legumes Research. Jimenez-LopezJ.C. ClementeA. IntechOpen2022210.5772/intechopen.98202
    [Google Scholar]
  55. RahmanM.M. RahamanM.S. IslamM.R. RahmanF. MithiF.M. AlqahtaniT. AlmikhlafiM.A. AlghamdiS.Q. AlruwailiA.S. HossainM.S. AhmedM. DasR. EmranT.B. UddinM.S. Role of phenolic compounds in human disease: Current knowledge and future prospects.Molecules202127123310.3390/molecules27010233
    [Google Scholar]
  56. AwikaJ.M. RoseD.J. SimsekS. Complementary effects of cereal and pulse polyphenols and dietary fiber on chronic inflammation and gut health.Food Funct.2018931389140910.1039/C7FO02011B
    [Google Scholar]
  57. GanY. FuY. YangL. ChenJ. LeiH. LiuQ. Cyanidin-3- O -Glucoside and cyanidin protect against intestinal barrier damage and 2,4,6-trinitrobenzenesulfonic acid-induced colitis.J. Med. Food2020231909910.1089/jmf.2019.4524
    [Google Scholar]
  58. ZhouT. MengC. HeP. Soy isoflavones and their effects on xenobiotic metabolism.Curr. Drug Metab.2019201465310.2174/1389200219666180427170213
    [Google Scholar]
  59. FerreiraC.D. ZieglerV. LindemannI.S. HoffmannJ.F. VanierN.L. OliveiraM. Quality of black beans as a function of long-term storage and moldy development: Chemical and functional properties of flour and isolated protein.Food Chem.201824647348010.1016/j.foodchem.2017.11.118
    [Google Scholar]
  60. TellesA.C. KupskiL. FurlongE.B. Phenolic compound in beans as protection against mycotoxins.Food Chem.201721429329910.1016/j.foodchem.2016.07.079
    [Google Scholar]
  61. MeenuM. ChenP. MradulaM. ChangS.K.C. XuB. New insights into chemical compositions and health‐promoting effects of black beans (Phaseolus vulgaris L.).Food Front.2023431019103810.1002/fft2.246
    [Google Scholar]
  62. Guajardo-FloresD. Serna-SaldívarS.O. Gutiérrez-UribeJ.A. Evaluation of the antioxidant and antiproliferative activities of extracted saponins and flavonols from germinated black beans (Phaseolus vulgaris L.).Food Chem.201314121497150310.1016/j.foodchem.2013.04.010
    [Google Scholar]
  63. IngleK.P. Al-KhayriJ.M. ChakrabortyP. NarkhedeG.W. SuprasannaP. Bioactive compounds of horse gram (Macrotyloma uniflorum lam. tableVerdc.).Bioactive Compounds in Underutilized Vegetables and Legumes. MurthyH.N. PaekK.Y. Springer International Publishing202158362110.1007/978‑3‑030‑57415‑4_36
    [Google Scholar]
  64. SreeramaY.N. SashikalaV.B. PratapeV.M. Variability in the distribution of phenolic compounds in milled fractions of chickpea and horse gram: Evaluation of their antioxidant properties.J. Agric. Food Chem.201058148322833010.1021/jf101335r
    [Google Scholar]
  65. SahaS. VermaR.J. Antinephrolithiatic and antioxidative efficacy of Dolichos biflorus seeds in a lithiasic rat model.Pharm. Biol.2015531163010.3109/13880209.2014.909501
    [Google Scholar]
  66. MenakaC. HelithaA.M. Role of methanolic extract of Dolichosbiflorus seeds in hyperlipidaemic models of wister albino rats.Int. J. Modern Res. and Reviews2013113543
    [Google Scholar]
  67. PoirouxG. BarreA. Van DammeE. BenoistH. RougéP. Plant lectins targeting o-glycans at the cell surface as tools for cancer diagnosis, prognosis and therapy.Int. J. Mol. Sci.2017186123210.3390/ijms18061232
    [Google Scholar]
  68. NewmanD.J. CraggG.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010.J. Nat. Prod.201275331133510.1021/np200906s
    [Google Scholar]
  69. Le MarchandL. MurphyS.P. HankinJ.H. WilkensL.R. KolonelL.N. Intake of flavonoids and lung cancer.J. Natl. Cancer Inst.200092215416010.1093/jnci/92.2.154
    [Google Scholar]
  70. NakachiK. SuemasuK. SugaK. TakeoT. ImaiK. HigashiY. Influence of drinking green tea on breast cancer malignancy among japanese patients.Jpn. J. Cancer Res.199889325426110.1111/j.1349‑7006.1998.tb00556.x
    [Google Scholar]
  71. KeyT.J. SharpG.B. ApplebyP.N. BeralV. GoodmanM.T. SodaM. MabuchiK. Soya foods and breast cancer risk: A prospective study in Hiroshima and Nagasaki, Japan.Br. J. Cancer19998171248125610.1038/sj.bjc.6690837
    [Google Scholar]
  72. ArtsI.C.W. JacobsD.R. GrossM. HarnackL.J. FolsomA.R. Dietary catechins and cancer incidence among postmenopausal women: The Iowa Women’s Health Study (United States).Cancer Causes Control200213437338210.1023/A:1015290131096
    [Google Scholar]
  73. YangG. XingJ. AikemuB. SunJ. ZhengM. Kaempferol exhibits a synergistic effect with doxorubicin to inhibit proliferation, migration, and invasion of liver cancer.Oncol. Rep.20214543210.3892/or.2021.7983
    [Google Scholar]
  74. Salman JasimH. Al-kubaisiZ.A. Al-ShmganiH.S. Cytotoxic potential activity of quercetin derivatives on MCF-7 breast cancer cell line.Bionatura2023811510.21931/RB/2023.08.01.92
    [Google Scholar]
  75. StaedlerD. IdriziE. KenzaouiB.H. Juillerat-JeanneretL. Drug combinations with quercetin: Doxorubicin plus quercetin in human breast cancer cells.Cancer Chemother. Pharmacol.20116851161117210.1007/s00280‑011‑1596‑x
    [Google Scholar]
  76. GengY. ChenS. YangY. MiaoH. LiX. LiG. MaJ. ZhangT. RenT. LiY. LiL. LiuL. YangJ. WangZ. ZouL. LiuK. LiY. YanS. CuiX. SunX. YangB. ZhangL. HanX. WangC. ChenB. YueX. LiangW. RenJ. JiaJ. GuJ. LiZ. ZhaoT. WangP. WeiD. QiuS. XiangD. XuX. ChenW. HeM. YangL. WangH. ChenT. HuaR. WangX. WuX. GongW. WangG. LiM. ZhangW. ShaoR. WuW. LiuY. Long-term exposure to genistein inhibits the proliferation of gallbladder cancer by downregulating the MCM complex.Sci. Bull.202267881382410.1016/j.scib.2022.01.011
    [Google Scholar]
  77. XiangL. HeB. LiuQ. HuD. LiaoW. LiR. PengX. WangQ. ZhaoG. Antitumor effects of curcumin on the proliferation, migration and apoptosis of human colorectal carcinoma HCT 116 cells.Oncol. Rep.20204451997200810.3892/or.2020.7765
    [Google Scholar]
  78. LiuY. ShenZ. ZhuT. LuW. FuY. Curcumin enhances the anti-cancer efficacy of paclitaxel in ovarian cancer by regulating the miR-9-5p/BRCA1 axis.Front. Pharmacol.202313101493310.3389/fphar.2022.1014933
    [Google Scholar]
  79. AltayliE. KoruÖ. ÖngörüÖ. İdeT. AçikelC. SarperM. Elçi̇M.P. Ilikçi SağkanR. AstarciE. TokD. ÖzençS. UralA.U. AvcuF. AvcuF. An in vitro and in vivo investigation of the cytotoxic effects of caffeic acid (3,4-dihydroxycinnamic acid) phenethyl ester and bortezomib in multiple myeloma cells.Turk. J. Med. Sci.201545384610.3906/sag‑1401‑127
    [Google Scholar]
  80. MaityS. KinraM. NampoothiriM. AroraD. PaiK.S.R. MudgalJ. Caffeic acid, a dietary polyphenol, as a promising candidate for combination therapy.Chem. Zvesti20227631271128310.1007/s11696‑021‑01947‑7
    [Google Scholar]
  81. WangT. GongX. JiangR. LiH. DuW. KuangG. Ferulic acid inhibits proliferation and promotes apoptosis via blockage of PI3K/Akt pathway in osteosarcoma cell.Am. J. Transl. Res.201682968980
    [Google Scholar]
  82. FahrioğluU. DodurgaY. ElmasL. SeçmeM. Ferulic acid decreases cell viability and colony formation while inhibiting migration of MIA PaCa-2 human pancreatic cancer cells in vitro.Gene2016576147648210.1016/j.gene.2015.10.061
    [Google Scholar]
  83. Singh TuliH. KumarA. RamniwasS. CoudharyR. AggarwalD. KumarM. SharmaU. Chaturvedi ParasharN. HaqueS. SakK. Ferulic acid: A natural phenol that inhibits neoplastic events through modulation of oncogenic signaling.Molecules20222721765310.3390/molecules27217653
    [Google Scholar]
  84. Al-Thamiree MezbanS. FoxS.W. Genistein and coumestrol reduce MCF-7 breast cancer cell viability and inhibit markers of preferential metastasis, bone matrix attachment and tumor-induced osteoclastogenesis.Arch. Biochem. Biophys.202374010958310.1016/j.abb.2023.109583
    [Google Scholar]
  85. KimS.H. ChoiK.C. Anti-cancer effect and underlying mechanism(s) of Kaempferol, a phytoestrogen, on the regulation of apoptosis in diverse cancer cell models.Toxicol. Res.201329422923410.5487/TR.2013.29.4.229
    [Google Scholar]
  86. FouzderC. MukhutyA. KunduR. Kaempferol inhibits Nrf2 signalling pathway via downregulation of Nrf2 mRNA and induces apoptosis in NSCLC cells.Arch. Biochem. Biophys.202169710870010.1016/j.abb.2020.108700
    [Google Scholar]
  87. Tyszka-CzocharaM. KoniecznyP. MajkaM. Caffeic acid expands anti-tumor effect of metformin in human metastatic cervical carcinoma htb-34 cells: Implications of ampk activation and impairment of fatty acids de novo biosynthesis.Int. J. Mol. Sci.201718246210.3390/ijms18020462
    [Google Scholar]
  88. SawataY. MatsukawaT. DoiS. TsunodaT. ArikawaN. MatsunagaN. OhnukiK. ShirasawaS. KotakeY. A novel compound, ferulic acid-bound resveratrol, induces the tumor suppressor gene p15 and inhibits the three-dimensional proliferation of colorectal cancer cells.Mol. Cell. Biochem.20194621-2253110.1007/s11010‑019‑03606‑8
    [Google Scholar]
  89. LiuH. LeeG. LeeJ.I. AhnT.G. KimS.A. Effects of genistein on anti-tumor activity of cisplatin in human cervical cancer cell lines.Obstet. Gynecol. Sci.201962532210.5468/ogs.2019.62.5.322
    [Google Scholar]
  90. Alorda-ClaraM. Torrens-MasM. Morla-BarceloP.M. RocaP. Sastre-SerraJ. PonsD.G. OliverJ. High concentrations of genistein decrease cell viability depending on oxidative stress and inflammation in colon cancer cell lines.Int. J. Mol. Sci.20222314752610.3390/ijms23147526
    [Google Scholar]
  91. ImranM. SalehiB. Sharifi-RadJ. Aslam GondalT. SaeedF. ImranA. ShahbazM. Tsouh FokouP.V. Umair ArshadM. KhanH. GuerreiroS.G. MartinsN. EstevinhoL.M. Kaempferol: A key emphasis to its anticancer potential.Molecules20192412227710.3390/molecules24122277
    [Google Scholar]
  92. ShahbazM. ImranM. AlsagabyS.A. NaeemH. Al AbdulmonemW. HussainM. AbdelgawadM.A. El-GhorabA.H. GhoneimM.M. El-SherbinyM. AtokiA.V. AwuchiC.G. Anticancer, antioxidant, ameliorative and therapeutic properties of kaempferol.Int. J. Food Prop.20232611140116610.1080/10942912.2023.2205040
    [Google Scholar]
  93. QattanM.Y. KhanM.I. AlharbiS.H. VermaA.K. Al-SaeedF.A. AbduallahA.M. Al AreefyA.A. Therapeutic importance of kaempferol in the treatment of cancer through the modulation of cell signalling pathways.Molecules20222724886410.3390/molecules27248864
    [Google Scholar]
  94. GaoS.S. ChoiB.M. ChenX.Y. ZhuR.Z. KimY. SoH. ParkR. SungM. KimB.R. Kaempferol suppresses cisplatin-induced apoptosis via inductions of heme oxygenase-1 and glutamate-cysteine ligase catalytic subunit in hei-oc1 cells.Pharm. Res.201027223524510.1007/s11095‑009‑0003‑3
    [Google Scholar]
  95. ArulN. ChoY.Y. A rising cancer prevention target of rsk2 in human skin cancer.Front. Oncol.2013310.3389/fonc.2013.00201
    [Google Scholar]
  96. ChoY.Y. YaoK. PuglieseA. MalakhovaM.L. BodeA.M. DongZ. A regulatory mechanism for rsk2 nh2-terminal kinase activity.Cancer Res.200969104398440610.1158/0008‑5472.CAN‑08‑4959
    [Google Scholar]
  97. ChoiE.J. AhnW.S. Kaempferol induced the apoptosis via cell cycle arrest in human breast cancer MDA-MB-453 cells.Nutr. Res. Pract.20082432210.4162/nrp.2008.2.4.322
    [Google Scholar]
  98. ImranM. RaufA. ShahZ.A. SaeedF. ImranA. ArshadM.U. AhmadB. BawazeerS. AtifM. PetersD.G. MubarakM.S. Chemo‐preventive and therapeutic effect of the dietary flavonoid kaempferol: A comprehensive review.Phytother. Res.201933226327510.1002/ptr.6227
    [Google Scholar]
  99. LuoH. DaddysmanM.K. RankinG.O. JiangB.H. ChenY.C. Kaempferol enhances cisplatin’s effect on ovarian cancer cells through promoting apoptosis caused by down regulation of cMyc.Cancer Cell Int.20101011610.1186/1475‑2867‑10‑16
    [Google Scholar]
  100. FeliceM.R. MaugeriA. De SarroG. NavarraM. BarrecaD. Molecular pathways involved in the anti-cancer activity of flavonols: A focus on myricetin and kaempferol.Int. J. Mol. Sci.2022238441110.3390/ijms23084411
    [Google Scholar]
  101. KashafiE. MoradzadehM. MohamadkhaniA. ErfanianS. Kaempferol increases apoptosis in human cervical cancer HeLa cells via PI3K/AKT and telomerase pathways.Biomed. Pharmacother.20178957357710.1016/j.biopha.2017.02.061
    [Google Scholar]
  102. HuangW.W. TsaiS.C. PengS.F. LinM.W. ChiangJ.H. ChiuY.J. FushiyaS. TsengM.T. YangJ-S. Kaempferol induces autophagy through AMPK and AKT signaling molecules and causes G2/M arrest via downregulation of CDK1/cyclin B in SK-HEP-1 human hepatic cancer cells.Int. J. Oncol.20134262069207710.3892/ijo.2013.1909
    [Google Scholar]
  103. KangJ.W. KimJ.H. SongK. KimS.H. YoonJ.H. KimK.S. Kaempferol and quercetin, components of Ginkgo biloba extract (EGb 761), induce caspase‐3‐dependent apoptosis in oral cavity cancer cells.Phytother. Res.201024S121321710.1002/ptr.2913
    [Google Scholar]
  104. LuL. WangY. OuR. FengQ. JiL. ZhengH. GuoY. QiX. KongA.N.T. LiuZ. DACT2 epigenetic stimulator exerts dual efficacy for colorectal cancer prevention and treatment.Pharmacol. Res.201812931832810.1016/j.phrs.2017.11.032
    [Google Scholar]
  105. SferrazzaG. CortiM. BrusottiG. PierimarchiP. TemporiniC. SerafinoA. CalleriE. Nature-derived compounds modulating Wnt/-catenin pathway: A preventive and therapeutic opportunity in neoplastic diseases.Acta Pharm. Sin. B202010101814183410.1016/j.apsb.2019.12.019
    [Google Scholar]
  106. SharmaA.R. NamJ.S. Kaempferol stimulates WNT/β-catenin signaling pathway to induce differentiation of osteoblasts.J. Nutr. Biochem.20197410822810.1016/j.jnutbio.2019.108228
    [Google Scholar]
  107. NiuY.X. ZhangY. WeiL.Q. XuY. The inducing effects of ferulic acid on the apoptosis of gastric cancer SGC-7901 cells and its influence on COX-2, surviving, XIAP and p53.Western J. Traditional Chin Med.2019321923
    [Google Scholar]
  108. FuJ. WangH. Inhibitory effect of ferulic acid mediated by miR 34a on transplanted tumor of human cervical cancer in nude mice.Zhongguo Laonianxue Zazhi202141132833283510.3969/j.issn.1005‑9202.2021.13.041
    [Google Scholar]
  109. BaoX. LiW. JiaR. MengD. ZhangH. XiaL. Molecular mechanism of ferulic acid and its derivatives in tumor progression.Pharmacol. Rep.202375489190610.1007/s43440‑023‑00494‑0
    [Google Scholar]
  110. WuJ. WangY.X. WeiN. WuX.S. LiuX. Ferulic acid inhibits lung cancer growth and its mechanism.Zhejiang Med. J.20184013031306
    [Google Scholar]
  111. LiD. RuiY. GuoS. LuanF. LiuR. ZengN. Ferulic acid: A review of its pharmacology, pharmacokinetics and derivatives.Life Sci.202128411992110.1016/j.lfs.2021.119921
    [Google Scholar]
  112. LuoL. ZhuS. TongY. PengS. Ferulic acid induces apoptosis of hela and caski cervical carcinoma cells by down-regulating the Phosphatidylinositol 3-Kinase (PI3K)/Akt signaling pathway.Med. Sci. Monit.20202692009510.12659/MSM.920095
    [Google Scholar]
  113. OwenK.L. BrockwellN.K. ParkerB.S. Jak-stat signalling: A double-edged sword of immune regulation and cancer progression.Cancers20191112200210.3390/cancers11122002
    [Google Scholar]
  114. GuoF. ZhaoR.M. LiJ.L. LiuY.X. YangS.J. Ferulic acid inhibits lung cancer cell proliferation and metastasis by regulating JAK2/STAT6 immune signalling pathway.Chin. J. Immunol.2021370445910.3969/j.issn.1000‑484X
    [Google Scholar]
  115. JungJ.E. KimH.S. LeeC.S. ParkD.H. KimY.N. LeeM.J. LeeJ.W. ParkJ.W. KimM.S. YeS.K. ChungM.H. Caffeic acid and its synthetic derivative CADPE suppress tumor angiogenesis by blocking STAT3-mediated VEGF expression in human renal carcinoma cells.Carcinogenesis20072881780178710.1093/carcin/bgm130
    [Google Scholar]
  116. KangN.J. LeeK.W. KimB.H. BodeA.M. LeeH.J. HeoY.S. BoardmanL. LimburgP. LeeH.J. DongZ. Coffee phenolic phytochemicals suppress colon cancer metastasis by targeting MEK and TOPK.Carcinogenesis201132692192810.1093/carcin/bgr022
    [Google Scholar]
  117. ChungL.C. ChiangK.C. FengT.H. ChangK.S. ChuangS.T. ChenY.J. TsuiK.H. LeeJ.C. JuangH.H. Caffeic acid phenethyl ester upregulates N-myc downstream regulated gene 1 via ERK pathway to inhibit human oral cancer cell growth in vitro and in vivo.Mol. Nutr. Food Res.2017619160084210.1002/mnfr.201600842
    [Google Scholar]
  118. HassanN.A. El-BassossyH.M. MahmoudM.F. FahmyA. Caffeic acid phenethyl ester, a 5-lipoxygenase enzyme inhibitor, alleviates diabetic atherosclerotic manifestations: Effect on vascular reactivity and stiffness.Chem. Biol. Interact.2014213283610.1016/j.cbi.2014.01.019
    [Google Scholar]
  119. SamecM. LiskovaA. KoklesovaL. MersakovaS. StrnadelJ. KajoK. PecM. ZhaiK. SmejkalK. MirzaeiS. HushmandiK. AshrafizadehM. SasoL. BrockmuellerA. ShakibaeiM. BüsselbergD. KubatkaP. Flavonoids targeting hif-1: Implications on cancer metabolism.Cancers202113113010.3390/cancers13010130
    [Google Scholar]
  120. GuW. YangY. ZhangC. ZhangY. ChenL. ShenJ. LiG. LiZ. LiL. LiY. DongH. Caffeic acid attenuates the angiogenic function of hepatocellular carcinoma cells via reduction in JNK-1-mediated HIF-1α stabilization in hypoxia.RSC Advances2016686827748278210.1039/C6RA07703J
    [Google Scholar]
  121. PelinsonL.P. AssmannC.E. PalmaT.V. da CruzI.B.M. PillatM.M. MânicaA. StefanelloN. WeisG.C.C. de Oliveira AlvesA. de AndradeC.M. UlrichH. MorschV.M.M. SchetingerM.R.C. BagatiniM.D. Antiproliferative and apoptotic effects of caffeic acid on SK-Mel-28 human melanoma cancer cells.Mol. Biol. Rep.20194622085209210.1007/s11033‑019‑04658‑1
    [Google Scholar]
  122. AlamM. AhmedS. ElasbaliA.M. AdnanM. AlamS. HassanM.I. PasupuletiV.R. Therapeutic implications of caffeic acid in cancer and neurological diseases.Front. Oncol.20221286050810.3389/fonc.2022.860508
    [Google Scholar]
  123. AlamM. AshrafG.M. SheikhK. KhanA. AliS. AnsariM.M. AdnanM. PasupuletiV.R. HassanM.I. Potential therapeutic implications of caffeic acid in cancer signaling: Past, present, and future.Front. Pharmacol.20221384587110.3389/fphar.2022.845871
    [Google Scholar]
  124. HsuT.H. ChuC.C. HungM.W. LeeH.J. HsuH.J. ChangT.C. Caffeic acid phenethyl ester induces E2F‐1‐mediated growth inhibition and cell‐cycle arrest in human cervical cancer cells.FEBS J.2013280112581259310.1111/febs.12242
    [Google Scholar]
  125. ChaeH.S. XuR. WonJ.Y. ChinY.W. YimH. Molecular targets of genistein and its related flavonoids to exert anticancer effects.Int. J. Mol. Sci.20192010242010.3390/ijms20102420
    [Google Scholar]
  126. AkiyamaT. IshidaJ. NakagawaS. OgawaraH. WatanabeS. ItohN. ShibuyaM. FukamiY. Genistein, a specific inhibitor of tyrosine-specific protein kinases.J. Biol. Chem.1987262125592559510.1016/S0021‑9258(18)45614‑1
    [Google Scholar]
  127. ZaczekA. BrandtB. BielawskiK.P. The diverse signalling network of EGFR, HER2, HER3 and HER4 tyrosine kinase receptors and the consequences for therapeutic approaches.Histol. Histopathol.20052031005101510.14670/HH‑20.1005
    [Google Scholar]
  128. GaoJ. LiH.R. JinC. JiangJ-H. DingJ-Y. Strategies to overcome acquired resistance to EGFR TKI in the treatment of non-small cell lung cancer.Clin. Transl. Oncol.201921101287130110.1007/s12094‑019‑02075‑1
    [Google Scholar]
  129. CapdevilaJ. ElezE. MacarullaT. RamosF.J. Ruiz-EcharriM. TaberneroJ. Anti-epidermal growth factor receptor monoclonal antibodies in cancer treatment.Cancer Treat. Rev.200935435436310.1016/j.ctrv.2009.02.001
    [Google Scholar]
  130. ChoiY.H. ZhangL. LeeW.H. ParkK.Y. Genistein-induced G2/M arrest is associated with the inhibition of cyclin B1 and the induction of p21 in human breast carcinoma cells.Int. J. Oncol.19981339139610.3892/ijo.13.2.391
    [Google Scholar]
  131. IsmailI.A. KangK.S. LeeH.A. KimJ.W. SohnY.K. Genistein-induced neuronal apoptosis and G2/M cell cycle arrest is associated with MDC1 up-regulation and PLK1 down-regulation.Eur. J. Pharmacol.20075751-3122010.1016/j.ejphar.2007.07.039
    [Google Scholar]
  132. YanG.R. ZouF.Y. DangB.L. ZhangY. YuG. LiuX. HeQ.Y. Genistein‐induced mitotic arrest of gastric cancer cells by downregulating KIF 20 A, a proteomics study.Proteomics201212142391239910.1002/pmic.201100652
    [Google Scholar]
  133. MatsukawaY. MaruiN. SakaiT. SatomiY. YoshidaM. MatsumotoK. Genistein arrests cell cycle progression at G2-M.Cancer Res.199353613281331
    [Google Scholar]
  134. ShinS.B. WooS.U. ChinY.W. JangY.J. YimH. Sensitivity of tp53 ‐mutated cancer cells to the phytoestrogen genistein is associated with direct inhibition of plk1 activity.J. Cell. Physiol.2017232102818282810.1002/jcp.25680
    [Google Scholar]
  135. ShinS.B. WooS.U. YimH. Cotargeting Plk1 and androgen receptor enhances the therapeutic sensitivity of paclitaxel-resistant prostate cancer.Ther. Adv. Med. Oncol.201911175883591984637510.1177/1758835919846375
    [Google Scholar]
  136. MontgomeryJ.S. PriceD.K. FiggW.D. The androgen receptor gene and its influence on the development and progression of prostate cancer.J. Pathol.2001195213814610.1002/1096‑9896(200109)195:2<138:AID‑PATH961>3.0.CO;2‑Y
    [Google Scholar]
  137. BasakS. PookotD. NoonanE.J. DahiyaR. Genistein down-regulates androgen receptor by modulating HDAC6-Hsp90 chaperone function.Mol. Cancer Ther.20087103195320210.1158/1535‑7163.MCT‑08‑0617
    [Google Scholar]
  138. DavisJ.N. MuqimN. BhuiyanM. KucukO. PientaK.J. SarkarF.H. Inhibition of prostate specific antigen expression by genistein in prostate cancer cells.Int. J. Oncol.200010.3892/ijo.16.6.1091
    [Google Scholar]
  139. PihlajamaaP. ZhangF.P. SaarinenL. MikkonenL. HautaniemiS. JänneO.A. The phytoestrogen genistein is a tissue-specific androgen receptor modulator.Endocrinology2011152114395440510.1210/en.2011‑0221
    [Google Scholar]
  140. LaiW.W. HsuS.C. ChuehF.S. ChenY.Y. YangJ.S. LinJ.P. LienJ.C. TsaiC.H. ChungJ.G. Quercetin inhibits migration and invasion of SAS human oral cancer cells through inhibition of NF-κB and matrix metalloproteinase-2/-9 signalling pathways.Anticancer Res.201333519411950
    [Google Scholar]
  141. MiaoZ. FengJ. DingJ. Newly discovered angiogenesis inhibitors and their mechanisms of action.Acta Pharmacol. Sin.20123391103111110.1038/aps.2012.97
    [Google Scholar]
  142. AggarwalB.B. ShishodiaS. Molecular targets of dietary agents for prevention and therapy of cancer.Biochem. Pharmacol.200671101397142110.1016/j.bcp.2006.02.009
    [Google Scholar]
  143. LeeK.W. KangN.J. HeoY.S. RogozinE.A. PuglieseA. HwangM.K. BowdenG.T. BodeA.M. LeeH.J. DongZ. Raf and MEK protein kinases are direct molecular targets for the chemopreventive effect of quercetin, a major flavonol in red wine.Cancer Res.200868394695510.1158/0008‑5472.CAN‑07‑3140
    [Google Scholar]
  144. ChenX. DongX.S. GaoH.Y. JiangY.F. JinY.L. ChangY.Y. ChenL.Y. WangJ.H. Suppression of HSP27 increases the anti-tumor effects of quercetin in human leukemia U937 cells.Mol. Med. Rep.201613168969610.3892/mmr.2015.4600
    [Google Scholar]
  145. KashyapD. MittalS. SakK. SinghalP. TuliH.S. Molecular mechanisms of action of quercetin in cancer: Recent advances.Tumour Biol.20163710129271293910.1007/s13277‑016‑5184‑x
    [Google Scholar]
  146. CaoH.H. TseA.K.W. KwanH.Y. YuH. ChengC.Y. SuT. FongW.F. YuZ.L. Quercetin exerts anti-melanoma activities and inhibits STAT3 signaling.Biochem. Pharmacol.201487342443410.1016/j.bcp.2013.11.008
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002377364250906070612
Loading
/content/journals/cdm/10.2174/0113892002377364250906070612
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): anticancer; bioactive compounds; caffeic acid; kaempferol; Legumes; polyphenols
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test