Skip to content
2000
Volume 26, Issue 3
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

Mycophenolic acid (MPA) is an approved drug widely used as an immunosuppressant agent for the prevention of rejection in organ transplant patients and for managing various autoimmune disorders. Pharmacological studies have shown that the plasma exposure of MPA is critical to maintaining its efficacy, leading to a significant focus on MPA therapeutic drug monitoring (TDM) in clinical practice. Additionally, many papers have been published regarding MPA's absorption, distribution, metabolism, and elimination (ADME) characteristics, which are the key disposition factors affecting the plasma exposure of MPA. In this paper, we review the current data and information in the literature on the ADME properties of MPA and discuss their implications for MPA’s TDM. We also analyze the disposition of MPA major metabolites mycophenolic acid-glucuronide (MPAG), and acyl-glucuronide (AcMPAG), highlighting the key factors that affect MPA plasma exposure, including the influence of transporters, namely Multidrug Resistance-Associated Protein 2 (MRP2), Breast Cancer Resistance Protein (BCRP), Organic Anion-Transporting Polypeptides (OATPs), metabolic enzymes (., UDP-Glucuronosyltransferases (UGTs)), enterohepatic recycling (EHR), and protein binding. We expect to provide researchers with a comprehensive understanding of factors that could affect MPA’s TDM to ensure its efficacy.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002377209250815023105
2025-08-25
2026-02-02
Loading full text...

Full text loading...

References

  1. MydlarskiP.R. Mycophenolate mofetil: A dermatologic perspective.Skin Therapy Lett.20051031615986076
    [Google Scholar]
  2. JonesE.L. EpinetteW.W. HackneyV.C. MenendezL. FrostP. Treatment of psoriasis with oral mycophenolic acid.J. Invest. Dermatol.197565653754210.1111/1523‑1747.ep126103461194717
    [Google Scholar]
  3. MarinariR. FleischmajerR. SchraggerA.H. RosenthalA.L. Mycophenolic acid in the treatment of psoriasis: Long-term administration.Arch. Dermatol.1977113793093210.1001/archderm.1977.01640070064007879814
    [Google Scholar]
  4. ParkH. The emergence of mycophenolate mofetilin dermatology: From its roots in the world of organ transplantation to its versatile role in the dermatology treatment room.J. Clin. Aesthet. Dermatol.201141182721278895
    [Google Scholar]
  5. Mycophenolate mofetil, drug usage statistics.2019Available from: https://clincalc.com/DrugStats/Drugs/MycophenolateMofetil
  6. MooreR.A. DerryS. Systematic review and meta-analysis of randomised trials and cohort studies of mycophenolate mofetil in lupus nephritis.Arthritis Res. Ther.200686R18210.1186/ar209317163990
    [Google Scholar]
  7. BenjanuwattraJ. ChaiyawatP. PruksakornD. KoonrungsesomboonN. Therapeutic potential and molecular mechanisms of mycophenolic acid as an anticancer agent.Eur. J. Pharmacol.202088717358010.1016/j.ejphar.2020.17358032949604
    [Google Scholar]
  8. KatoF. MatsuyamaS. KawaseM. HishikiT. KatohH. TakedaM. Antiviral activities of mycophenolic acid and IMD‐0354 against SARS‐CoV‐2.Microbiol. Immunol.202064963563910.1111/1348‑0421.1282832579258
    [Google Scholar]
  9. YingC. ColonnoR. De ClercqE. NeytsJ. Ribavirin and mycophenolic acid markedly potentiate the anti-hepatitis B virus activity of entecavir.Antiviral Res.200773319219610.1016/j.antiviral.2006.10.00317098296
    [Google Scholar]
  10. DaviesN.M. GrinyóJ. HeadingR. MaesB. Meier-KriescheH.U. OellerichM. Gastrointestinal side effects of mycophenolic acid in renal transplant patients: A reappraisal.Nephrol. Dial. Transplant.20072292440244810.1093/ndt/gfm30817557774
    [Google Scholar]
  11. MouradM. MalaiseJ. Chaib EddourD. De MeyerM. KönigJ. SchepersR. SquiffletJ.P. WallemacqP. Correlation of mycophenolic acid pharmacokinetic parameters with side effects in kidney transplant patients treated with mycophenolate mofetil.Clin. Chem.2001471889410.1093/clinchem/47.1.8811148182
    [Google Scholar]
  12. JainA. KashyapR. DodsonF. KramerD. HamadI. KhanA. EghestadB. StarzlT.E. FungJ.J. A prospective randomized trial of tacrolimus and prednisone versus tacrolimus, prednisone and mycophenolate mofetil in primary adult liver transplantation: A single center report.Transplantation20017261091109710.1097/00007890‑200109270‑0001911579306
    [Google Scholar]
  13. JonesR.B. HiemstraT.F. BallarinJ. BlockmansD.E. BroganP. BruchfeldA. CidM.C. DahlsveenK. de ZoysaJ. Espigol-FrigoléG. LanyonP. PehC.A. TesarV. VaglioA. WalshM. WalshD. WaltersG. HarperL. JayneD. Mycophenolate mofetil versus cyclophosphamide for remission induction in ANCA-associated vasculitis: A randomised, non-inferiority trial.Ann. Rheum. Dis.201978339940510.1136/annrheumdis‑2018‑21424530612116
    [Google Scholar]
  14. KiangT.K.L. EnsomM.H.H. Exposure-toxicity relationships of mycophenolic acid in adult kidney transplant patients.Clin. Pharmacokinet.201958121533155210.1007/s40262‑019‑00802‑z31332670
    [Google Scholar]
  15. MiuraM. SatohS. InoueK. KagayaH. SaitoM. SuzukiT. HabuchiT. Influence of lansoprazole and rabeprazole on mycophenolic acid pharmacokinetics one year after renal transplantation.Ther. Drug Monit.2008301465110.1097/FTD.0b013e31816337b718223462
    [Google Scholar]
  16. DukaewN. ThongkumkoonP. SirikaewN. DissookS. SakuludomkanW. TongjaiS. ThiennimitrP. Na TakuathungM. BenjanuwattraJ. KongthaweelertP. KoonrungsesomboonN. Gut microbiota-mediated pharmacokinetic drug–drug interactions between mycophenolic acid and trimethoprim-sulfamethoxazole in humans.Pharmaceutics2023156173410.3390/pharmaceutics1506173437376182
    [Google Scholar]
  17. BullinghamR. ShahJ. GoldblumR. SchiffM. Effects of food and antacid on the pharmacokinetics of single doses of mycophenolate mofetil in rheumatoid arthritis patients.Br. J. Clin. Pharmacol.199641651351610.1046/j.1365‑2125.1996.03636.x8799515
    [Google Scholar]
  18. DasguptaA. Therapeutic drug monitoring of mycophenolic acid.Adv. Clin. Chem.20167616518410.1016/bs.acc.2016.04.00127645819
    [Google Scholar]
  19. ŁuszczyńskaP. PawińskiT. Therapeutic drug monitoring of mycophenolic acid in lupus nephritis.Ther. Drug Monit.201537671171710.1097/FTD.000000000000022326034895
    [Google Scholar]
  20. ShawL.M. PawinskiT. KoreckaM. NawrockiA. Monitoring of mycophenolic acid in clinical transplantation.Ther. Drug Monit.2002241687310.1097/00007691‑200202000‑0001211805725
    [Google Scholar]
  21. de WinterB.C.M. MathôtR.A.A. van HestR.M. van GelerT. Therapeutic drug monitoring of mycophenolic acid: Does it improve patient outcome?Expert Opin. Drug Metab. Toxicol.20073225126110.1517/17425255.3.2.25117428154
    [Google Scholar]
  22. TönshoffB. David-NetoE. EttengerR. FillerG. van GelderT. GoebelJ. KuypersD.R.J. TsaiE. VinksA.A. WeberL.T. ZimmerhacklL.B. Pediatric aspects of therapeutic drug monitoring of mycophenolic acid in renal transplantation.Transplant. Rev.2011252788910.1016/j.trre.2011.01.00121454065
    [Google Scholar]
  23. AndréF. Hee ParkY. KimS.B. TakanoT. Im, S.A.; Borges, G.; Lima, J.P.; Aksoy, S.; Gavila Gregori, J.; De Laurentiis, M.; Bianchini, G.; Roylance, R.; Miyoshi, Y.; Armstrong, A.; Sinha, R.; Ruiz Borrego, M.; Lim, E.; Ettl, J.; Yerushalmi, R.; Zagouri, F.; Duhoux, F.P.; Fehm, T.; Gambhire, D.; Cathcart, J.; Wu, C.; Chu, C.; Egorov, A.; Krop, I. Trastuzumab deruxtecan versus treatment of physician’s choice in patients with HER2-positive metastatic breast cancer (DESTINY-Breast02): A randomised, open-label, multicentre, phase 3 trial.Lancet2023401103901773178510.1016/S0140‑6736(23)00725‑037086745
    [Google Scholar]
  24. ZhangJ. LiX. JiS. ZhuoL.Y. LanP. HaoL. LiaoY. Solid–liquid phase equilibrium of mycophenolic acid in 14 mono-solvents: Measurements, correlation, solvent effect and molecular simulation.J. Mol. Liq.202236612024010.1016/j.molliq.2022.120240
    [Google Scholar]
  25. WangK. LiY. ChenB. ChenH. SmithD.E. SunD. FengM.R. AmidonG.L. In vitro predictive dissolution test should be developed and recommended as a bioequivalence standard for the immediate-release solid oral dosage forms of the highly variable mycophenolate mofetil.Mol. Pharm.20221972048206010.1021/acs.molpharmaceut.1c0079235603895
    [Google Scholar]
  26. LimsuwanT. AmnuaikitT. Development of ethosomes containing mycophenolic acid.Procedia Chem.2012432833510.1016/j.proche.2012.06.046
    [Google Scholar]
  27. SaitohH. KobayashiM. OdaM. NakasatoK. KobayashiM. TadanoK. Characterization of intestinal absorption and enterohepatic circulation of mycophenolic Acid and its 7-O-glucuronide in rats.Drug Metab. Pharmacokinet.200621540641310.2133/dmpk.21.40617072094
    [Google Scholar]
  28. El-SheikhA.A.K. KoenderinkJ.B. WouterseA.C. van den BroekP.H.H. VerweijV.G.M. MasereeuwR. RusselF.G.M. Renal glucuronidation and multidrug resistance protein 2-/multidrug resistance protein 4-mediated efflux of mycophenolic acid: Interaction with cyclosporine and tacrolimus.Transl. Res.20141641465610.1016/j.trsl.2014.01.00624486136
    [Google Scholar]
  29. GiacominiK.M. HuangS.M. TweedieD.J. BenetL.Z. BrouwerK.L.R. ChuX. DahlinA. EversR. FischerV. HillgrenK.M. HoffmasterK.A. IshikawaT. KepplerD. KimR.B. LeeC.A. NiemiM. PolliJ.W. SugiyamaY. SwaanP.W. WareJ.A. WrightS.H. Wah YeeS. Zamek-GliszczynskiM.J. ZhangL. Membrane transporters in drug development.Nat. Rev. Drug Discov.20109321523610.1038/nrd302820190787
    [Google Scholar]
  30. WangJ. FigurskiM. ShawL.M. BurckartG.J. The impact of P-glycoprotein and Mrp2 on mycophenolic acid levels in mice.Transpl. Immunol.2008193-419219610.1016/j.trim.2008.05.00918586494
    [Google Scholar]
  31. PicardN. YeeS.W. WoillardJ-B. LebranchuY. Le MeurY. GiacominiK.M. MarquetP. The role of organic anion-transporting polypeptides and their common genetic variants in mycophenolic acid pharmacokinetics.Clin. Pharmacol. Ther.201087110010810.1038/clpt.2009.20519890249
    [Google Scholar]
  32. ZhangW.X. ChenB. JinZ. YuZ. WangX. ChenH. MaoA. CaiW. Influence of uridine diphosphate (UDP)-glucuronosyltransferases and ABCC2 genetic polymorphisms on the pharmacokinetics of mycophenolic acid and its metabolites in Chinese renal transplant recipients.Xenobiotica200838111422143610.1080/0049825080248858518946804
    [Google Scholar]
  33. PatelC.G. OgasawaraK. AkhlaghiF. Mycophenolic acid glucuronide is transported by multidrug resistance-associated protein 2 and this transport is not inhibited by cyclosporine, tacrolimus or sirolimus.Xenobiotica201343322923510.3109/00498254.2012.71353122934787
    [Google Scholar]
  34. LundM. PetersenT.S. DalhoffK.P. Clinical implications of p-glycoprotein modulation in drug–drug interactions.Drugs201777885988310.1007/s40265‑017‑0729‑x28382570
    [Google Scholar]
  35. ZhangW. HanY. LimS.L. LimL.Y. Dietary regulation of P-gp function and expression.Expert Opin. Drug Metab. Toxicol.20095778980110.1517/1742525090299796719545213
    [Google Scholar]
  36. EllisL.C.J. HawksworthG.M. WeaverR.J. ATP-dependent transport of statins by human and rat MRP2/Mrp2.Toxicol. Appl. Pharmacol.2013269218719410.1016/j.taap.2013.03.01923562342
    [Google Scholar]
  37. HongoM. KimparaT. MoriyamaS. OharaS. SoneS. TamuraT. AsakiS. ToyotaT. Effect of rabeprazole (E3810), a novel proton pump inhibitor, on intragastric pH in healthy volunteers.Tohoku J. Exp. Med.19981861435010.1620/tjem.186.439915106
    [Google Scholar]
  38. MoriiM. UenoK. OgawaA. KatoR. YoshimuraH. WadaK. HashimotoH. TakadaM. TanakaK. NakataniT. ShibakawaM. Impairment of mycophenolate mofetil absorption by iron ion.Clin. Pharmacol. Ther.200068661361610.1067/mcp.2000.11148011180021
    [Google Scholar]
  39. LorenzM. WolztM. WeigelG. PuttingerH. HörlW.H. FödingerM. SpeiserW. Sunder-PlassmannG. Ferrous sulfate does not affect mycophenolic acid pharmacokinetics in kidney transplant patients.Am. J. Kidney Dis.20044361098110310.1053/j.ajkd.2004.03.02115168391
    [Google Scholar]
  40. GeloneD.K. ParkJ.M. LakeK.D. Lack of an effect of oral iron administration on mycophenolic acid pharmacokinetics in stable renal transplant recipients.Pharmacotherapy20072791272127810.1592/phco.27.9.127217723081
    [Google Scholar]
  41. This label may not be the latest approved by FDA.2021Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2013/050791s019lbl.pdf
  42. KatoR. OoiK. Ikura-MoriiM. TsuchishitaY. HashimotoH. YoshimuraH. UenishiK. KawaiM. TanakaK. UenoK. Impairment of mycophenolate mofetil absorption by calcium polycarbophil.J. Clin. Pharmacol.200242111275128010.1177/00912700276249138912412828
    [Google Scholar]
  43. BenjanuwattraJ. PruksakornD. KoonrungsesomboonN. Mycophenolic acid and its pharmacokinetic drug‐drug interactions in humans: Review of the evidence and clinical implications.J. Clin. Pharmacol.202060329531110.1002/jcph.156531814154
    [Google Scholar]
  44. KhanN. BinderL. PantakaniD.V.K. AsifA.R. MPA modulates tight junctions’ permeability via Midkine/PI3K pathway in caco-2 cells: A possible mechanism of leak-flux diarrhea in organ transplanted patients.Front. Physiol.2017843810.3389/fphys.2017.0043828694783
    [Google Scholar]
  45. QasimM. RahmanH. AhmedR. OellerichM. AsifA.R. Mycophenolic acid mediated disruption of the intestinal epithelial tight junctions.Exp. Cell Res.2014322227728910.1016/j.yexcr.2014.01.02124509232
    [Google Scholar]
  46. LambaV. SangkuhlK. SanghaviK. FishA. AltmanR.B. KleinT.E. PharmGKB summary.Pharmacogenet. Genomics2014241737910.1097/FPC.000000000000001024220207
    [Google Scholar]
  47. MackenzieP.I. Identification of uridine diphosphate glucuronosyltransferases involved in the metabolism and clearance of mycophenolic acid.Ther. Drug Monit.2000221101310.1097/00007691‑200002000‑0000210688250
    [Google Scholar]
  48. ShipkovaM. ArmstrongV.W. WielandE. NiedmannP.D. SchützE. Brenner-WeißG. VoihselM. BraunF. OellerichM. Identification of glucoside and carboxyl‐linked glucuronide conjugates of mycophenolic acid in plasma of transplant recipients treated with mycophenolate mofetil.Br. J. Pharmacol.199912651075108210.1038/sj.bjp.070239910204993
    [Google Scholar]
  49. PicardN. CresteilT. PrémaudA. MarquetP. Characterization of a phase 1 metabolite of mycophenolic acid produced by CYP3A4/5.Ther. Drug Monit.200426660060810.1097/00007691‑200412000‑0000415570183
    [Google Scholar]
  50. DiL. The impact of carboxylesterases in drug metabolism and pharmacokinetics.Curr. Drug Metab.20192029110210.2174/138920021966618082109450230129408
    [Google Scholar]
  51. FujiyamaN. MiuraM. KatoS. SoneT. IsobeM. SatohS. Involvement of carboxylesterase 1 and 2 in the hydrolysis of mycophenolate mofetil.Drug Metab. Dispos.201038122210221710.1124/dmd.110.03424920823294
    [Google Scholar]
  52. PicardN. RatanasavanhD. PrémaudA. Le MeurY. MarquetP. Identification of the UDP-glucuronosyltransferase isoforms involved in mycophenolic acid phase II metabolism.Drug Metab. Dispos.200533113914610.1124/dmd.104.00165115470161
    [Google Scholar]
  53. BernardO. GuillemetteC. The main role of UGT1A9 in the hepatic metabolism of mycophenolic acid and the effects of naturally occurring variants.Drug Metab. Dispos.200432877577810.1124/dmd.32.8.77515258099
    [Google Scholar]
  54. ShipkovaM. StrassburgC.P. BraunF. StreitF. GröneH-J. ArmstrongV.W. TukeyR.H. OellerichM. WielandE. Glucuronide and glucoside conjugation of mycophenolic acid by human liver, kidney and intestinal microsomes.Br. J. Pharmacol.200113251027103410.1038/sj.bjp.070389811226133
    [Google Scholar]
  55. MeraliZ. RossS. ParéG. The pharmacogenetics of carboxylesterases: CES1 and CES2 genetic variants and their clinical effect.Drug Metabol. Drug Interact.201429314315110.1515/dmdi‑2014‑000924988246
    [Google Scholar]
  56. ChenF. ZhangB. ParkerR.B. LaizureS.C. Clinical implications of genetic variation in carboxylesterase drug metabolism.Expert Opin. Drug Metab. Toxicol.201814213114210.1080/17425255.2018.142016429264996
    [Google Scholar]
  57. YerrakulaG. Major implications of single nucleotide polymorphisms in human carboxylesterase 1 on substrate bioavailability.Biotechnol. Genet. Eng. Rev.2022•••11935946821
    [Google Scholar]
  58. FujiyamaN. MiuraM. SatohS. InoueK. KagayaH. SaitoM. HabuchiT. SuzukiT. Influence of carboxylesterase 2 genetic polymorphisms on mycophenolic acid pharmacokinetics in Japanese renal transplant recipients.Xenobiotica200939540741410.1080/0049825090280733819274604
    [Google Scholar]
  59. GuoD. PangL.F. HanY. YangH. WangG. TanZ. ZhangW. ZhouH.H. Polymorphisms of UGT1A9 and UGT2B7 influence the pharmacokinetics of mycophenolic acid after a single oral dose in healthy Chinese volunteers.Eur. J. Clin. Pharmacol.201369484384910.1007/s00228‑012‑1409‑023052409
    [Google Scholar]
  60. StinglJ.C. BartelsH. VivianiR. LehmannM.L. BrockmöllerJ. Relevance of UDP-glucuronosyltransferase polymorphisms for drug dosing: A quantitative systematic review.Pharmacol. Ther.201414119211610.1016/j.pharmthera.2013.09.00224076267
    [Google Scholar]
  61. BuckleyD.B. KlaassenC.D. Tissue- and gender-specific mRNA expression of UDP-glucuronosyltransferases (UGTs) in mice.Drug Metab. Dispos.200735112112710.1124/dmd.106.01207017050650
    [Google Scholar]
  62. LiuW. KulkarniK. HuM. Gender-dependent differences in uridine 5′-diphospho-glucuronosyltransferase have implications in metabolism and clearance of xenobiotics.Expert Opin. Drug Metab. Toxicol.20139121555156910.1517/17425255.2013.82904024011176
    [Google Scholar]
  63. DaiP. LuoF. WangY. JiangH. WangL. ZhangG. ZhuL. HuM. WangX. LuL. LiuZ. Species‐ and gender‐dependent differences in the glucuronidation of a flavonoid glucoside and its aglycone determined using expressed UGT enzymes and microsomes.Biopharm. Drug Dispos.201536962263510.1002/bdd.198926317684
    [Google Scholar]
  64. MorissetteP. AlbertC. BusqueS. St-LouisG. VinetB. In vivo higher glucuronidation of mycophenolic acid in male than in female recipients of a cadaveric kidney allograft and under immunosuppressive therapy with mycophenolate mofetil.Ther. Drug Monit.200123552052510.1097/00007691‑200110000‑0000411591897
    [Google Scholar]
  65. ZhangD. RenbargerJ.L. ChowD.S.L. Pharmacokinetic variability of mycophenolic acid in pediatric and adult patients with hematopoietic stem cell transplantation.J. Clin. Pharmacol.201656111378138610.1002/jcph.74527060685
    [Google Scholar]
  66. TornatoreK.M. MeaneyC.J. WildingG.E. ChangS.S. GundrooA. CooperL.M. GrayV. ShinK. FetterlyG.J. PreyJ. ClarkK. VenutoR.C. Influence of sex and race on mycophenolic acid pharmacokinetics in stable African American and Caucasian renal transplant recipients.Clin. Pharmacokinet.201554442343410.1007/s40262‑014‑0213‑725511793
    [Google Scholar]
  67. SpasićA. Catić-ĐorđevićA. Veličković-RadovanovićR. StefanovićN. DžodićP. CvetkovićT. Adverse effects of mycophenolic acid in renal transplant recipients: Gender differences.Int. J. Clin. Pharm.201941377678410.1007/s11096‑019‑00837‑z31028595
    [Google Scholar]
  68. IshizakiJ. TsudaT. SugaY. ItoS. AraiK. SaiY. MiyamotoK. Change in pharmacokinetics of mycophenolic acid as a function of age in rats and effect of coadministered amoxicillin/clavulanate.Biol. Pharm. Bull.20123571009101310.1248/bpb.b11063922791145
    [Google Scholar]
  69. TornatoreK.M. AttwoodK. VenutoR.C. MurrayB. Age associations with tacrolimus and mycophenolic acid pharmacokinetics in stable Black and White kidney transplant recipients: Implications for health inequities.Clin. Transl. Sci.202316586187110.1111/cts.1349536840340
    [Google Scholar]
  70. NeumannE. MehboobH. RamírezJ. MirkovS. ZhangM. LiuW. Age-dependent hepatic UDP-glucuronosyltransferase gene expression and activity in children.Front. Pharmacol.2016743710.3389/fphar.2016.0043727899892
    [Google Scholar]
  71. BollingB.W. CourtM.H. BlumbergJ.B. ChenC.Y.O. Microsomal quercetin glucuronidation in rat small intestine depends on age and segment.Drug Metab. Dispos.20113981406141410.1124/dmd.111.03840621543555
    [Google Scholar]
  72. CourtM.H. Interindividual variability in hepatic drug glucuronidation: Studies into the role of age, sex, enzyme inducers, and genetic polymorphism using the human liver bank as a model system.Drug Metab. Rev.201042120922410.3109/0360253090320928819821798
    [Google Scholar]
  73. DuT. SunR. EtimI. ZhengZ. LiangD. HuM. GaoS. Age-and region-dependent disposition of raloxifene in rats.Pharm. Res.20213881357136710.1007/s11095‑021‑03084‑y34322833
    [Google Scholar]
  74. IshiiY. NurrochmadA. YamadaH. Modulation of UDP-glucuronosyltransferase activity by endogenous compounds.Drug Metab. Pharmacokinet.201025213414810.2133/dmpk.25.13420460819
    [Google Scholar]
  75. StaudingerJ.L. XuC. CuiY.J. KlaassenC.D. Nuclear receptor-mediated regulation of carboxylesterase expression and activity.Expert Opin. Drug Metab. Toxicol.20106326127110.1517/1742525090348321520163318
    [Google Scholar]
  76. SatohT. HosokawaM. Structure, function and regulation of carboxylesterases.Chem. Biol. Interact.2006162319521110.1016/j.cbi.2006.07.00116919614
    [Google Scholar]
  77. HosokawaM. FurihataT. YaginumaY. YamamotoN. KoyanoN. FujiiA. NagaharaY. SatohT. ChibaK. Genomic structure and transcriptional regulation of the rat, mouse, and human carboxylesterase genes.Drug Metab. Rev.200739111510.1080/0360253060095216417364878
    [Google Scholar]
  78. WangH. CaoG. WangG. HaoH. Regulation of mammalian UDP-glucuronosyltransferases.Curr. Drug Metab.201819649050110.2174/138920021966618030712294529521218
    [Google Scholar]
  79. IqbalM.N. KhanT.A. Association between Vitamin D receptor (Cdx2, Fok1, Bsm1, Apa1, Bgl1, Taq1, and Poly (A)) gene polymorphism and breast cancer: A systematic review and meta-analysis.Tumour Biol.2017391010.1177/101042831773128029072133
    [Google Scholar]
  80. WangX. WangH. ShenB. OverholserB.R. CooperB.R. LuY. TangH. ZhouC. SunX. ZhongL. FavusM.J. DeckerB.S. LiuW. PengZ. 1-Alpha, 25-dihydroxyvitamin D3 alters the pharmacokinetics of mycophenolic acid in renal transplant recipients by regulating two extrahepatic UDP-glucuronosyltransferases 1A8 and 1A10.Transl. Res.20161785462.e610.1016/j.trsl.2016.07.00627496319
    [Google Scholar]
  81. SongY.Q. JinQ. WangD.D. HouJ. ZouL.W. GeG.B. Carboxylesterase inhibitors from clinically available medicines and their impact on drug metabolism.Chem. Biol. Interact.202134510956610.1016/j.cbi.2021.10956634174250
    [Google Scholar]
  82. CuñettiL. OricchioF. VázquezM. PeyraubeR. ManzoL. NalerioC. CuriL. MaldonadoC. Drug-drug interaction between cannabidiol, cyclosporine, and mycophenolate mofetil: A case report.Transplant. Proc.202456125225610.1016/j.transproceed.2023.11.01338212169
    [Google Scholar]
  83. ZhangC. XuY. ZhongQ. LiX. GaoP. FengC. ChuQ. ChenY. LiuD. In vitro evaluation of the inhibitory potential of pharmaceutical excipients on human carboxylesterase 1A and 2.PLoS One2014949381910.1371/journal.pone.009381924699684
    [Google Scholar]
  84. DongD. QuanE. YuanX. XieQ. LiZ. WuB. Sodium oleate-based nanoemulsion enhances oral absorption of chrysin through inhibition of ugt-mediated metabolism.Mol. Pharm.20171492864287410.1021/acs.molpharmaceut.6b0085127983856
    [Google Scholar]
  85. EtimI. AbasifrekeB. SunR. KuddabujjaD. LiangD. DuT. GaoS. Development of a novel UPLC-MS/MS method for the simultaneous quantification of mycophenolic mofetil, mycophenolic acid, and its major metabolites: Application to pharmacokinetic and tissue distribution study in rats.J. Pharm. Biomed. Anal.202323411550410.1016/j.jpba.2023.11550437478553
    [Google Scholar]
  86. TornatoreK.M. SudchadaP. DoleK. DiFrancescoR. LecaN. GundrooA.C. DanisonR.T. AttwoodK. WildingG.E. ZackJ. ForrestA. VenutoR.C. Mycophenolic acid pharmacokinetics during maintenance immunosuppression in African American and Caucasian renal transplant recipients.J. Clin. Pharmacol.20115181213122210.1177/009127001038290921209244
    [Google Scholar]
  87. XuL. JiaoZ. LiuF. QiuX. JiL. ZhangM. Pharmacokinetics evaluation of mycophenolic acid and its glucuronide metabolite in chinese renal transplant recipients receiving enteric-coated mycophenolate sodium and tacrolimus.Ther. Drug Monit.201840557258010.1097/FTD.000000000000053329847459
    [Google Scholar]
  88. LingJ. ShiJ. JiangQ. JiaoZ. Population pharmacokinetics of mycophenolic acid and its main glucuronide metabolite: A comparison between healthy Chinese and Caucasian subjects receiving mycophenolate mofetil.Eur. J. Clin. Pharmacol.20157119510610.1007/s00228‑014‑1771‑125327506
    [Google Scholar]
  89. AsifA.R. ArmstrongV.W. VolandA. WielandE. OellerichM. ShipkovaM. Proteins identified as targets of the acyl glucuronide metabolite of mycophenolic acid in kidney tissue from mycophenolate mofetil treated rats.Biochimie200789339340210.1016/j.biochi.2006.09.01617069946
    [Google Scholar]
  90. BullinghamR.E.S. NichollsA.J. KammB.R. Clinical pharmacokinetics of mycophenolate mofetil.Clin. Pharmacokinet.199834642945510.2165/00003088‑199834060‑000029646007
    [Google Scholar]
  91. LévesqueE. Benoit-BiancamanoM.O. DelageR. CoutureF. GuillemetteC. Pharmacokinetics of mycophenolate mofetil and its glucuronide metabolites in healthy volunteers.Pharmacogenomics20089786987910.2217/14622416.9.7.86918597651
    [Google Scholar]
  92. BurroughsD.L. LorchG. GuoY. HillK. SchroederE.L. ColeL.K. PhelpsM.A. Noncompartmental pharmacokinetics of three intravenous mycophenolate mofetil concentrations in healthy Standardbred mares.Vet. Dermatol.202334322223410.1111/vde.1310935929548
    [Google Scholar]
  93. WuttiputhanunT NaiyaraksereeN UdomkarnjananunS KittanamongkolchaiW LeelahavanichkulA ChariyavilaskulP TownamchaiN AvihingsanonY Therapeutic drug monitoring of mycophenolic acid and clinical outcomes of lupus nephritis: a systematic review and meta-analysis.Lupus Sci. Med.2024111e001093.Jan 17;10.1136/lupus‑2023‑00109338233072
    [Google Scholar]
  94. González-RonceroF.M. GovantesM.A.G. ChavesV.C. PalomoP.P. SerraM.B. Influence of renal insufficiency on pharmacokinetics of ACYL-glucuronide metabolite of mycophenolic acid in renal transplant patients.Transplant. Proc.20073972176217810.1016/j.transproceed.2007.06.06317889129
    [Google Scholar]
  95. ShipkovaM. ArmstrongV.W. WeberL.T. NiedmannP.D. WielandE. HaleyJ.E. TönshoffB. OellerichM. German Study Group on Mycophenolate Mofetil Therapy in Pediatric Renal Transplant Recipients, Pharmacokinetics and protein adduct formation of the pharmacologically active acyl glucuronide metabolite of mycophenolic acid in pediatric renal transplant recipients.Ther. Drug Monit.2002243390399[Jun;]10.1097/00007691‑200206000‑0001112021631
    [Google Scholar]
  96. NaesensM. KuypersD. StreitF. ArmstrongV. OellerichM. VerbekeK. VanrenterghemY. Rifampin induces alterations in mycophenolic acid glucuronidation and elimination: Implications for drug exposure in renal allograft recipients.Clin. Pharmacol. Ther.200680550952110.1016/j.clpt.2006.08.00217112807
    [Google Scholar]
  97. AndersonM.S. CoteJ. LiuY. StypinskiD. AugerP. HohnsteinA. RasmussenS. Johnson-LevonasA.O. GutsteinD.E. Effects of Rifampin, a potent inducer of drug-metabolizing enzymes and an inhibitor of OATP1B1/3 transport, on the single dose pharmacokinetics of anacetrapib.J. Clin. Pharmacol.201353774675210.1002/jcph.9723670789
    [Google Scholar]
  98. GaoX. WuL. TsaiR.Y.L. MaJ. LiuX. ChowD.S.L. LiangD. XieH. Pharmacokinetic model analysis of supralingual, oral and intravenous deliveries of mycophenolic acid.Pharmaceutics202113457410.3390/pharmaceutics1304057433920640
    [Google Scholar]
  99. de WinterB.C.M. van GelderT. SombogaardF. ShawL.M. van HestR.M. MathotR.A.A. Pharmacokinetic role of protein binding of mycophenolic acid and its glucuronide metabolite in renal transplant recipients.J. Pharmacokinet. Pharmacodyn.200936654156410.1007/s10928‑009‑9136‑619904584
    [Google Scholar]
  100. ShengC. ZhaoQ. NiuW. QiuX. ZhangM. JiaoZ. Effect of protein binding on exposure of unbound and total mycophenolic acid: A population pharmacokinetic analysis in chinese adult kidney transplant recipients.Front. Pharmacol.20201134010.3389/fphar.2020.0034032265712
    [Google Scholar]
  101. Reséndiz-GalvánJ.E. Romano-AguilarM. Medellín-GaribayS.E. Milán-SegoviaR.C. Niño-MorenoP.C. Jung-CookH. Chevaile-RamosJ.A. Romano-MorenoS. Population pharmacokinetics of mycophenolic acid in adult kidney transplant patients under prednisone and tacrolimus regimen.Eur. J. Pharm. Sci.202015010537010.1016/j.ejps.2020.10537032387086
    [Google Scholar]
  102. RongY. PatelV. KiangT.K.L. Recent lessons learned from population pharmacokinetic studies of mycophenolic acid: Physiological, genomic, and drug interactions leading to the prediction of drug effects.Expert Opin. Drug Metab. Toxicol.202117121369140610.1080/17425255.2021.202790635000505
    [Google Scholar]
  103. CelestinM.N. MusteataF.M. Impact of changes in free concentrations and drug-protein binding on drug dosing regimens in special populations and disease states.J. Pharm. Sci.2021110103331334410.1016/j.xphs.2021.05.01834089711
    [Google Scholar]
  104. BerganS. BrunetM. HesselinkD.A. Johnson-DavisK.L. KunickiP.K. LemaitreF. MarquetP. MolinaroM. NocetiO. PattanaikS. PawinskiT. SegerC. ShipkovaM. SwenJ.J. van GelderT. VenkataramananR. WielandE. WoillardJ.B. ZwartT.C. BartenM.J. BuddeK. DieterlenM.T. ElensL. HaufroidV. MasudaS. MillanO. MizunoT. MoesD.J.A.R. OellerichM. PicardN. SalzmannL. TönshoffB. van SchaikR.H.N. VetheN.T. VinksA.A. WallemacqP. ÅsbergA. LangmanL.J. Personalized therapy for mycophenolate: Consensus report by the international association of therapeutic drug monitoring and clinical toxicology.Ther. Drug Monit.202143215020010.1097/FTD.000000000000087133711005
    [Google Scholar]
  105. GargU. MunarA. FrazeeC. Quantitation of mycophenolic acid and mycophenolic acid glucuronide in serum or plasma by LC‐MS/MS.Curr. Protoc.20233473010.1002/cpz1.73037039714
    [Google Scholar]
  106. LiuY. LiuL. LiJ. FuQ. ZhangH. WuC. LiJ. ZhongG. ZhengY. ChenX. WangC. ChenP. Validated LC–MS/MS method for quantitation of total and free mycophenolic acid concentration and its application to a pharmacokinetic study in pediatric renal transplant recipients.Biomed. Chromatogr.2021352498910.1002/bmc.498932959916
    [Google Scholar]
  107. Md DomZ.I. NollB.D. CollerJ.K. SomogyiA.A. RussG.R. HesselinkD.A. van GelderT. SallustioB.C. Validation of an LC–MS/MS method for the quantification of mycophenolic acid in human kidney transplant biopsies.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2014945-94617117710.1016/j.jchromb.2013.11.05624342510
    [Google Scholar]
  108. JiaoZ. DingJ. ShenJ. LiangH. ZhongL. WangY. ZhongM. LuW. Population pharmacokinetic modelling for enterohepatic circulation of mycophenolic acid in healthy Chinese and the influence of polymorphisms in UGT1A9.Br. J. Clin. Pharmacol.200865689390710.1111/j.1365‑2125.2008.03109.x18279479
    [Google Scholar]
  109. SherwinC.M.T. Sagcal-GironellaA.C.P. FukudaT. BrunnerH.I. VinksA.A. Development of population PK model with enterohepatic circulation for mycophenolic acid in patients with childhood‐onset systemic lupus erythematosus.Br. J. Clin. Pharmacol.201273572774010.1111/j.1365‑2125.2011.04140.x22053944
    [Google Scholar]
  110. SherwinC.M.T. FukudaT. BrunnerH.I. GoebelJ. VinksA.A. The evolution of population pharmacokinetic models to describe the enterohepatic recycling of mycophenolic acid in solid organ transplantation and autoimmune disease.Clin. Pharmacokinet.201150112410.2165/11536640‑000000000‑0000021142265
    [Google Scholar]
  111. SaqrA. Mapping trends and hotspots of research on COVID-19 vaccine effectiveness: A comprehensive bibliometric analysis of global research.J. Infect. Public Health202518110259710.1016/j.jiph.2024.102597
    [Google Scholar]
  112. TanakaR. MatsumotoA. TatsutaR. AndoT. ShinT. MimataH. ItohH. Sustained suppression of enterohepatic circulation of mycophenolic acid by antimicrobial‐associated diarrhea in a kidney transplant recipient with Crohn’s disease: A case report.Clin. Case Rep.20221060591410.1002/ccr3.591435677857
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002377209250815023105
Loading
/content/journals/cdm/10.2174/0113892002377209250815023105
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): AcMPAG; ADME; biopharmaceutical; MPAG; Mycophenolic acid; plasma exposure
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test