Skip to content
2000
image of Biopharmaceutical Factors Involved in the Disposition of Mycophenolic Acid: A Comprehensive Review of ADME Properties and Their Potential Impact on Mycophenolic Acid Plasma Exposure

Abstract

Mycophenolic acid (MPA) is an approved drug widely used as an immunosuppressant agent for the prevention of rejection in organ transplant patients and for managing various autoimmune disorders. Pharmacological studies have shown that the plasma exposure of MPA is critical to maintaining its efficacy, leading to a significant focus on MPA therapeutic drug monitoring (TDM) in clinical practice. Additionally, many papers have been published regarding MPA's absorption, distribution, metabolism, and elimination (ADME) characteristics, which are the key disposition factors affecting the plasma exposure of MPA. In this paper, we review the current data and information in the literature on the ADME properties of MPA and discuss their implications for MPA’s TDM. We also analyze the disposition of MPA major metabolites mycophenolic acid-glucuronide (MPAG), and acyl-glucuronide (AcMPAG), highlighting the key factors that affect MPA plasma exposure, including the influence of transporters, namely Multidrug Resistance-Associated Protein 2 (MRP2), Breast Cancer Resistance Protein (BCRP), Organic Anion-Transporting Polypeptides (OATPs), metabolic enzymes (., UDP-Glucuronosyltransferases (UGTs)), enterohepatic recycling (EHR), and protein binding. We expect to provide researchers with a comprehensive understanding of factors that could affect MPA’s TDM to ensure its efficacy.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002377209250815023105
2025-08-25
2025-11-05
Loading full text...

Full text loading...

References

  1. Mydlarski P.R. Mycophenolate mofetil: A dermatologic perspective. Skin Therapy Lett. 2005 10 3 1 6 15986076
    [Google Scholar]
  2. Jones E.L. Epinette W.W. Hackney V.C. Menendez L. Frost P. Treatment of psoriasis with oral mycophenolic acid. J. Invest. Dermatol. 1975 65 6 537 542 10.1111/1523‑1747.ep12610346 1194717
    [Google Scholar]
  3. Marinari R. Fleischmajer R. Schragger A.H. Rosenthal A.L. Mycophenolic acid in the treatment of psoriasis: Long-term administration. Arch. Dermatol. 1977 113 7 930 932 10.1001/archderm.1977.01640070064007 879814
    [Google Scholar]
  4. Park H. The emergence of mycophenolate mofetilin dermatology: From its roots in the world of organ transplantation to its versatile role in the dermatology treatment room. J. Clin. Aesthet. Dermatol. 2011 4 1 18 27 21278895
    [Google Scholar]
  5. Mycophenolate mofetil, drug usage statistics. 2019 Available from: https://clincalc.com/DrugStats/Drugs/MycophenolateMofetil
  6. Moore R.A. Derry S. Systematic review and meta-analysis of randomised trials and cohort studies of mycophenolate mofetil in lupus nephritis. Arthritis Res. Ther. 2006 8 6 R182 10.1186/ar2093 17163990
    [Google Scholar]
  7. Benjanuwattra J. Chaiyawat P. Pruksakorn D. Koonrungsesomboon N. Therapeutic potential and molecular mechanisms of mycophenolic acid as an anticancer agent. Eur. J. Pharmacol. 2020 887 173580 10.1016/j.ejphar.2020.173580 32949604
    [Google Scholar]
  8. Kato F. Matsuyama S. Kawase M. Hishiki T. Katoh H. Takeda M. Antiviral activities of mycophenolic acid and IMD‐0354 against SARS‐CoV‐2. Microbiol. Immunol. 2020 64 9 635 639 10.1111/1348‑0421.12828 32579258
    [Google Scholar]
  9. Ying C. Colonno R. De Clercq E. Neyts J. Ribavirin and mycophenolic acid markedly potentiate the anti-hepatitis B virus activity of entecavir. Antiviral Res. 2007 73 3 192 196 10.1016/j.antiviral.2006.10.003 17098296
    [Google Scholar]
  10. Davies N.M. Grinyó J. Heading R. Maes B. Meier-Kriesche H.U. Oellerich M. Gastrointestinal side effects of mycophenolic acid in renal transplant patients: A reappraisal. Nephrol. Dial. Transplant. 2007 22 9 2440 2448 10.1093/ndt/gfm308 17557774
    [Google Scholar]
  11. Mourad M. Malaise J. Chaib Eddour D. De Meyer M. König J. Schepers R. Squifflet J.P. Wallemacq P. Correlation of mycophenolic acid pharmacokinetic parameters with side effects in kidney transplant patients treated with mycophenolate mofetil. Clin. Chem. 2001 47 1 88 94 10.1093/clinchem/47.1.88 11148182
    [Google Scholar]
  12. Jain A. Kashyap R. Dodson F. Kramer D. Hamad I. Khan A. Eghestad B. Starzl T.E. Fung J.J. A prospective randomized trial of tacrolimus and prednisone versus tacrolimus, prednisone and mycophenolate mofetil in primary adult liver transplantation: A single center report. Transplantation 2001 72 6 1091 1097 10.1097/00007890‑200109270‑00019 11579306
    [Google Scholar]
  13. Jones R.B. Hiemstra T.F. Ballarin J. Blockmans D.E. Brogan P. Bruchfeld A. Cid M.C. Dahlsveen K. de Zoysa J. Espigol-Frigolé G. Lanyon P. Peh C.A. Tesar V. Vaglio A. Walsh M. Walsh D. Walters G. Harper L. Jayne D. Mycophenolate mofetil versus cyclophosphamide for remission induction in ANCA-associated vasculitis: A randomised, non-inferiority trial. Ann. Rheum. Dis. 2019 78 3 399 405 10.1136/annrheumdis‑2018‑214245 30612116
    [Google Scholar]
  14. Kiang T.K.L. Ensom M.H.H. Exposure-toxicity relationships of mycophenolic acid in adult kidney transplant patients. Clin. Pharmacokinet. 2019 58 12 1533 1552 10.1007/s40262‑019‑00802‑z 31332670
    [Google Scholar]
  15. Miura M. Satoh S. Inoue K. Kagaya H. Saito M. Suzuki T. Habuchi T. Influence of lansoprazole and rabeprazole on mycophenolic acid pharmacokinetics one year after renal transplantation. Ther. Drug Monit. 2008 30 1 46 51 10.1097/FTD.0b013e31816337b7 18223462
    [Google Scholar]
  16. Dukaew N. Thongkumkoon P. Sirikaew N. Dissook S. Sakuludomkan W. Tongjai S. Thiennimitr P. Na Takuathung M. Benjanuwattra J. Kongthaweelert P. Koonrungsesomboon N. Gut microbiota-mediated pharmacokinetic drug–drug interactions between mycophenolic acid and trimethoprim-sulfamethoxazole in humans. Pharmaceutics 2023 15 6 1734 10.3390/pharmaceutics15061734 37376182
    [Google Scholar]
  17. Bullingham R. Shah J. Goldblum R. Schiff M. Effects of food and antacid on the pharmacokinetics of single doses of mycophenolate mofetil in rheumatoid arthritis patients. Br. J. Clin. Pharmacol. 1996 41 6 513 516 10.1046/j.1365‑2125.1996.03636.x 8799515
    [Google Scholar]
  18. Dasgupta A. Therapeutic drug monitoring of mycophenolic acid. Adv. Clin. Chem. 2016 76 165 184 10.1016/bs.acc.2016.04.001 27645819
    [Google Scholar]
  19. Łuszczyńska P. Pawiński T. Therapeutic drug monitoring of mycophenolic acid in lupus nephritis. Ther. Drug Monit. 2015 37 6 711 717 10.1097/FTD.0000000000000223 26034895
    [Google Scholar]
  20. Shaw L.M. Pawinski T. Korecka M. Nawrocki A. Monitoring of mycophenolic acid in clinical transplantation. Ther. Drug Monit. 2002 24 1 68 73 10.1097/00007691‑200202000‑00012 11805725
    [Google Scholar]
  21. de Winter B.C.M. Mathôt R.A.A. van Hest R.M. van Geler T. Therapeutic drug monitoring of mycophenolic acid: Does it improve patient outcome? Expert Opin. Drug Metab. Toxicol. 2007 3 2 251 261 10.1517/17425255.3.2.251 17428154
    [Google Scholar]
  22. Tönshoff B. David-Neto E. Ettenger R. Filler G. van Gelder T. Goebel J. Kuypers D.R.J. Tsai E. Vinks A.A. Weber L.T. Zimmerhackl L.B. Pediatric aspects of therapeutic drug monitoring of mycophenolic acid in renal transplantation. Transplant. Rev. 2011 25 2 78 89 10.1016/j.trre.2011.01.001 21454065
    [Google Scholar]
  23. André F. Hee Park Y. Kim S.B. Takano T. Im, S.A.; Borges, G.; Lima, J.P.; Aksoy, S.; Gavila Gregori, J.; De Laurentiis, M.; Bianchini, G.; Roylance, R.; Miyoshi, Y.; Armstrong, A.; Sinha, R.; Ruiz Borrego, M.; Lim, E.; Ettl, J.; Yerushalmi, R.; Zagouri, F.; Duhoux, F.P.; Fehm, T.; Gambhire, D.; Cathcart, J.; Wu, C.; Chu, C.; Egorov, A.; Krop, I. Trastuzumab deruxtecan versus treatment of physician’s choice in patients with HER2-positive metastatic breast cancer (DESTINY-Breast02): A randomised, open-label, multicentre, phase 3 trial. Lancet 2023 401 10390 1773 1785 10.1016/S0140‑6736(23)00725‑0 37086745
    [Google Scholar]
  24. Zhang J. Li X. Ji S. Zhuo L.Y. Lan P. Hao L. Liao Y. Solid–liquid phase equilibrium of mycophenolic acid in 14 mono-solvents: Measurements, correlation, solvent effect and molecular simulation. J. Mol. Liq. 2022 366 120240 10.1016/j.molliq.2022.120240
    [Google Scholar]
  25. Wang K. Li Y. Chen B. Chen H. Smith D.E. Sun D. Feng M.R. Amidon G.L. In vitro predictive dissolution test should be developed and recommended as a bioequivalence standard for the immediate-release solid oral dosage forms of the highly variable mycophenolate mofetil. Mol. Pharm. 2022 19 7 2048 2060 10.1021/acs.molpharmaceut.1c00792 35603895
    [Google Scholar]
  26. Limsuwan T. Amnuaikit T. Development of ethosomes containing mycophenolic acid. Procedia Chem. 2012 4 328 335 10.1016/j.proche.2012.06.046
    [Google Scholar]
  27. Saitoh H. Kobayashi M. Oda M. Nakasato K. Kobayashi M. Tadano K. Characterization of intestinal absorption and enterohepatic circulation of mycophenolic Acid and its 7-O-glucuronide in rats. Drug Metab. Pharmacokinet. 2006 21 5 406 413 10.2133/dmpk.21.406 17072094
    [Google Scholar]
  28. El-Sheikh A.A.K. Koenderink J.B. Wouterse A.C. van den Broek P.H.H. Verweij V.G.M. Masereeuw R. Russel F.G.M. Renal glucuronidation and multidrug resistance protein 2-/multidrug resistance protein 4-mediated efflux of mycophenolic acid: Interaction with cyclosporine and tacrolimus. Transl. Res. 2014 164 1 46 56 10.1016/j.trsl.2014.01.006 24486136
    [Google Scholar]
  29. Giacomini K.M. Huang S.M. Tweedie D.J. Benet L.Z. Brouwer K.L.R. Chu X. Dahlin A. Evers R. Fischer V. Hillgren K.M. Hoffmaster K.A. Ishikawa T. Keppler D. Kim R.B. Lee C.A. Niemi M. Polli J.W. Sugiyama Y. Swaan P.W. Ware J.A. Wright S.H. Wah Yee S. Zamek-Gliszczynski M.J. Zhang L. Membrane transporters in drug development. Nat. Rev. Drug Discov. 2010 9 3 215 236 10.1038/nrd3028 20190787
    [Google Scholar]
  30. Wang J. Figurski M. Shaw L.M. Burckart G.J. The impact of P-glycoprotein and Mrp2 on mycophenolic acid levels in mice. Transpl. Immunol. 2008 19 3-4 192 196 10.1016/j.trim.2008.05.009 18586494
    [Google Scholar]
  31. Picard N. Yee S.W. Woillard J-B. Lebranchu Y. Le Meur Y. Giacomini K.M. Marquet P. The role of organic anion-transporting polypeptides and their common genetic variants in mycophenolic acid pharmacokinetics. Clin. Pharmacol. Ther. 2010 87 1 100 108 10.1038/clpt.2009.205 19890249
    [Google Scholar]
  32. Zhang W.X. Chen B. Jin Z. Yu Z. Wang X. Chen H. Mao A. Cai W. Influence of uridine diphosphate (UDP)-glucuronosyltransferases and ABCC2 genetic polymorphisms on the pharmacokinetics of mycophenolic acid and its metabolites in Chinese renal transplant recipients. Xenobiotica 2008 38 11 1422 1436 10.1080/00498250802488585 18946804
    [Google Scholar]
  33. Patel C.G. Ogasawara K. Akhlaghi F. Mycophenolic acid glucuronide is transported by multidrug resistance-associated protein 2 and this transport is not inhibited by cyclosporine, tacrolimus or sirolimus. Xenobiotica 2013 43 3 229 235 10.3109/00498254.2012.713531 22934787
    [Google Scholar]
  34. Lund M. Petersen T.S. Dalhoff K.P. Clinical implications of p-glycoprotein modulation in drug–drug interactions. Drugs 2017 77 8 859 883 10.1007/s40265‑017‑0729‑x 28382570
    [Google Scholar]
  35. Zhang W. Han Y. Lim S.L. Lim L.Y. Dietary regulation of P-gp function and expression. Expert Opin. Drug Metab. Toxicol. 2009 5 7 789 801 10.1517/17425250902997967 19545213
    [Google Scholar]
  36. Ellis L.C.J. Hawksworth G.M. Weaver R.J. ATP-dependent transport of statins by human and rat MRP2/Mrp2. Toxicol. Appl. Pharmacol. 2013 269 2 187 194 10.1016/j.taap.2013.03.019 23562342
    [Google Scholar]
  37. Hongo M. Kimpara T. Moriyama S. Ohara S. Sone S. Tamura T. Asaki S. Toyota T. Effect of rabeprazole (E3810), a novel proton pump inhibitor, on intragastric pH in healthy volunteers. Tohoku J. Exp. Med. 1998 186 1 43 50 10.1620/tjem.186.43 9915106
    [Google Scholar]
  38. Morii M. Ueno K. Ogawa A. Kato R. Yoshimura H. Wada K. Hashimoto H. Takada M. Tanaka K. Nakatani T. Shibakawa M. Impairment of mycophenolate mofetil absorption by iron ion. Clin. Pharmacol. Ther. 2000 68 6 613 616 10.1067/mcp.2000.111480 11180021
    [Google Scholar]
  39. Lorenz M. Wolzt M. Weigel G. Puttinger H. Hörl W.H. Födinger M. Speiser W. Sunder-Plassmann G. Ferrous sulfate does not affect mycophenolic acid pharmacokinetics in kidney transplant patients. Am. J. Kidney Dis. 2004 43 6 1098 1103 10.1053/j.ajkd.2004.03.021 15168391
    [Google Scholar]
  40. Gelone D.K. Park J.M. Lake K.D. Lack of an effect of oral iron administration on mycophenolic acid pharmacokinetics in stable renal transplant recipients. Pharmacotherapy 2007 27 9 1272 1278 10.1592/phco.27.9.1272 17723081
    [Google Scholar]
  41. This label may not be the latest approved by FDA. 2021 Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2013/050791s019lbl.pdf
  42. Kato R. Ooi K. Ikura-Morii M. Tsuchishita Y. Hashimoto H. Yoshimura H. Uenishi K. Kawai M. Tanaka K. Ueno K. Impairment of mycophenolate mofetil absorption by calcium polycarbophil. J. Clin. Pharmacol. 2002 42 11 1275 1280 10.1177/009127002762491389 12412828
    [Google Scholar]
  43. Benjanuwattra J. Pruksakorn D. Koonrungsesomboon N. Mycophenolic acid and its pharmacokinetic drug‐drug interactions in humans: Review of the evidence and clinical implications. J. Clin. Pharmacol. 2020 60 3 295 311 10.1002/jcph.1565 31814154
    [Google Scholar]
  44. Khan N. Binder L. Pantakani D.V.K. Asif A.R. MPA modulates tight junctions’ permeability via Midkine/PI3K pathway in caco-2 cells: A possible mechanism of leak-flux diarrhea in organ transplanted patients. Front. Physiol. 2017 8 438 10.3389/fphys.2017.00438 28694783
    [Google Scholar]
  45. Qasim M. Rahman H. Ahmed R. Oellerich M. Asif A.R. Mycophenolic acid mediated disruption of the intestinal epithelial tight junctions. Exp. Cell Res. 2014 322 2 277 289 10.1016/j.yexcr.2014.01.021 24509232
    [Google Scholar]
  46. Lamba V. Sangkuhl K. Sanghavi K. Fish A. Altman R.B. Klein T.E. PharmGKB summary. Pharmacogenet. Genomics 2014 24 1 73 79 10.1097/FPC.0000000000000010 24220207
    [Google Scholar]
  47. Mackenzie P.I. Identification of uridine diphosphate glucuronosyltransferases involved in the metabolism and clearance of mycophenolic acid. Ther. Drug Monit. 2000 22 1 10 13 10.1097/00007691‑200002000‑00002 10688250
    [Google Scholar]
  48. Shipkova M. Armstrong V.W. Wieland E. Niedmann P.D. Schütz E. Brenner-Weiß G. Voihsel M. Braun F. Oellerich M. Identification of glucoside and carboxyl‐linked glucuronide conjugates of mycophenolic acid in plasma of transplant recipients treated with mycophenolate mofetil. Br. J. Pharmacol. 1999 126 5 1075 1082 10.1038/sj.bjp.0702399 10204993
    [Google Scholar]
  49. Picard N. Cresteil T. Prémaud A. Marquet P. Characterization of a phase 1 metabolite of mycophenolic acid produced by CYP3A4/5. Ther. Drug Monit. 2004 26 6 600 608 10.1097/00007691‑200412000‑00004 15570183
    [Google Scholar]
  50. Di L. The impact of carboxylesterases in drug metabolism and pharmacokinetics. Curr. Drug Metab. 2019 20 2 91 102 10.2174/1389200219666180821094502 30129408
    [Google Scholar]
  51. Fujiyama N. Miura M. Kato S. Sone T. Isobe M. Satoh S. Involvement of carboxylesterase 1 and 2 in the hydrolysis of mycophenolate mofetil. Drug Metab. Dispos. 2010 38 12 2210 2217 10.1124/dmd.110.034249 20823294
    [Google Scholar]
  52. Picard N. Ratanasavanh D. Prémaud A. Le Meur Y. Marquet P. Identification of the UDP-glucuronosyltransferase isoforms involved in mycophenolic acid phase II metabolism. Drug Metab. Dispos. 2005 33 1 139 146 10.1124/dmd.104.001651 15470161
    [Google Scholar]
  53. Bernard O. Guillemette C. The main role of UGT1A9 in the hepatic metabolism of mycophenolic acid and the effects of naturally occurring variants. Drug Metab. Dispos. 2004 32 8 775 778 10.1124/dmd.32.8.775 15258099
    [Google Scholar]
  54. Shipkova M. Strassburg C.P. Braun F. Streit F. Gröne H-J. Armstrong V.W. Tukey R.H. Oellerich M. Wieland E. Glucuronide and glucoside conjugation of mycophenolic acid by human liver, kidney and intestinal microsomes. Br. J. Pharmacol. 2001 132 5 1027 1034 10.1038/sj.bjp.0703898 11226133
    [Google Scholar]
  55. Merali Z. Ross S. Paré G. The pharmacogenetics of carboxylesterases: CES1 and CES2 genetic variants and their clinical effect. Drug Metabol. Drug Interact. 2014 29 3 143 151 10.1515/dmdi‑2014‑0009 24988246
    [Google Scholar]
  56. Chen F. Zhang B. Parker R.B. Laizure S.C. Clinical implications of genetic variation in carboxylesterase drug metabolism. Expert Opin. Drug Metab. Toxicol. 2018 14 2 131 142 10.1080/17425255.2018.1420164 29264996
    [Google Scholar]
  57. Yerrakula G. Major implications of single nucleotide polymorphisms in human carboxylesterase 1 on substrate bioavailability. Biotechnol. Genet. Eng. Rev. 2022 1 19 35946821
    [Google Scholar]
  58. Fujiyama N. Miura M. Satoh S. Inoue K. Kagaya H. Saito M. Habuchi T. Suzuki T. Influence of carboxylesterase 2 genetic polymorphisms on mycophenolic acid pharmacokinetics in Japanese renal transplant recipients. Xenobiotica 2009 39 5 407 414 10.1080/00498250902807338 19274604
    [Google Scholar]
  59. Guo D. Pang L.F. Han Y. Yang H. Wang G. Tan Z. Zhang W. Zhou H.H. Polymorphisms of UGT1A9 and UGT2B7 influence the pharmacokinetics of mycophenolic acid after a single oral dose in healthy Chinese volunteers. Eur. J. Clin. Pharmacol. 2013 69 4 843 849 10.1007/s00228‑012‑1409‑0 23052409
    [Google Scholar]
  60. Stingl J.C. Bartels H. Viviani R. Lehmann M.L. Brockmöller J. Relevance of UDP-glucuronosyltransferase polymorphisms for drug dosing: A quantitative systematic review. Pharmacol. Ther. 2014 141 1 92 116 10.1016/j.pharmthera.2013.09.002 24076267
    [Google Scholar]
  61. Buckley D.B. Klaassen C.D. Tissue- and gender-specific mRNA expression of UDP-glucuronosyltransferases (UGTs) in mice. Drug Metab. Dispos. 2007 35 1 121 127 10.1124/dmd.106.012070 17050650
    [Google Scholar]
  62. Liu W. Kulkarni K. Hu M. Gender-dependent differences in uridine 5′-diphospho-glucuronosyltransferase have implications in metabolism and clearance of xenobiotics. Expert Opin. Drug Metab. Toxicol. 2013 9 12 1555 1569 10.1517/17425255.2013.829040 24011176
    [Google Scholar]
  63. Dai P. Luo F. Wang Y. Jiang H. Wang L. Zhang G. Zhu L. Hu M. Wang X. Lu L. Liu Z. Species‐ and gender‐dependent differences in the glucuronidation of a flavonoid glucoside and its aglycone determined using expressed UGT enzymes and microsomes. Biopharm. Drug Dispos. 2015 36 9 622 635 10.1002/bdd.1989 26317684
    [Google Scholar]
  64. Morissette P. Albert C. Busque S. St-Louis G. Vinet B. In vivo higher glucuronidation of mycophenolic acid in male than in female recipients of a cadaveric kidney allograft and under immunosuppressive therapy with mycophenolate mofetil. Ther. Drug Monit. 2001 23 5 520 525 10.1097/00007691‑200110000‑00004 11591897
    [Google Scholar]
  65. Zhang D. Renbarger J.L. Chow D.S.L. Pharmacokinetic variability of mycophenolic acid in pediatric and adult patients with hematopoietic stem cell transplantation. J. Clin. Pharmacol. 2016 56 11 1378 1386 10.1002/jcph.745 27060685
    [Google Scholar]
  66. Tornatore K.M. Meaney C.J. Wilding G.E. Chang S.S. Gundroo A. Cooper L.M. Gray V. Shin K. Fetterly G.J. Prey J. Clark K. Venuto R.C. Influence of sex and race on mycophenolic acid pharmacokinetics in stable African American and Caucasian renal transplant recipients. Clin. Pharmacokinet. 2015 54 4 423 434 10.1007/s40262‑014‑0213‑7 25511793
    [Google Scholar]
  67. Spasić A. Catić-Đorđević A. Veličković-Radovanović R. Stefanović N. Džodić P. Cvetković T. Adverse effects of mycophenolic acid in renal transplant recipients: Gender differences. Int. J. Clin. Pharm. 2019 41 3 776 784 10.1007/s11096‑019‑00837‑z 31028595
    [Google Scholar]
  68. Ishizaki J. Tsuda T. Suga Y. Ito S. Arai K. Sai Y. Miyamoto K. Change in pharmacokinetics of mycophenolic acid as a function of age in rats and effect of coadministered amoxicillin/clavulanate. Biol. Pharm. Bull. 2012 35 7 1009 1013 10.1248/bpb.b110639 22791145
    [Google Scholar]
  69. Tornatore K.M. Attwood K. Venuto R.C. Murray B. Age associations with tacrolimus and mycophenolic acid pharmacokinetics in stable Black and White kidney transplant recipients: Implications for health inequities. Clin. Transl. Sci. 2023 16 5 861 871 10.1111/cts.13495 36840340
    [Google Scholar]
  70. Neumann E. Mehboob H. Ramírez J. Mirkov S. Zhang M. Liu W. Age-dependent hepatic UDP-glucuronosyltransferase gene expression and activity in children. Front. Pharmacol. 2016 7 437 10.3389/fphar.2016.00437 27899892
    [Google Scholar]
  71. Bolling B.W. Court M.H. Blumberg J.B. Chen C.Y.O. Microsomal quercetin glucuronidation in rat small intestine depends on age and segment. Drug Metab. Dispos. 2011 39 8 1406 1414 10.1124/dmd.111.038406 21543555
    [Google Scholar]
  72. Court M.H. Interindividual variability in hepatic drug glucuronidation: Studies into the role of age, sex, enzyme inducers, and genetic polymorphism using the human liver bank as a model system. Drug Metab. Rev. 2010 42 1 209 224 10.3109/03602530903209288 19821798
    [Google Scholar]
  73. Du T. Sun R. Etim I. Zheng Z. Liang D. Hu M. Gao S. Age-and region-dependent disposition of raloxifene in rats. Pharm. Res. 2021 38 8 1357 1367 10.1007/s11095‑021‑03084‑y 34322833
    [Google Scholar]
  74. Ishii Y. Nurrochmad A. Yamada H. Modulation of UDP-glucuronosyltransferase activity by endogenous compounds. Drug Metab. Pharmacokinet. 2010 25 2 134 148 10.2133/dmpk.25.134 20460819
    [Google Scholar]
  75. Staudinger J.L. Xu C. Cui Y.J. Klaassen C.D. Nuclear receptor-mediated regulation of carboxylesterase expression and activity. Expert Opin. Drug Metab. Toxicol. 2010 6 3 261 271 10.1517/17425250903483215 20163318
    [Google Scholar]
  76. Satoh T. Hosokawa M. Structure, function and regulation of carboxylesterases. Chem. Biol. Interact. 2006 162 3 195 211 10.1016/j.cbi.2006.07.001 16919614
    [Google Scholar]
  77. Hosokawa M. Furihata T. Yaginuma Y. Yamamoto N. Koyano N. Fujii A. Nagahara Y. Satoh T. Chiba K. Genomic structure and transcriptional regulation of the rat, mouse, and human carboxylesterase genes. Drug Metab. Rev. 2007 39 1 1 15 10.1080/03602530600952164 17364878
    [Google Scholar]
  78. Wang H. Cao G. Wang G. Hao H. Regulation of mammalian UDP-glucuronosyltransferases. Curr. Drug Metab. 2018 19 6 490 501 10.2174/1389200219666180307122945 29521218
    [Google Scholar]
  79. Iqbal M.N. Khan T.A. Association between Vitamin D receptor (Cdx2, Fok1, Bsm1, Apa1, Bgl1, Taq1, and Poly (A)) gene polymorphism and breast cancer: A systematic review and meta-analysis. Tumour Biol. 2017 39 10 10.1177/1010428317731280 29072133
    [Google Scholar]
  80. Wang X. Wang H. Shen B. Overholser B.R. Cooper B.R. Lu Y. Tang H. Zhou C. Sun X. Zhong L. Favus M.J. Decker B.S. Liu W. Peng Z. 1-Alpha, 25-dihydroxyvitamin D3 alters the pharmacokinetics of mycophenolic acid in renal transplant recipients by regulating two extrahepatic UDP-glucuronosyltransferases 1A8 and 1A10. Transl. Res. 2016 178 54 62.e6 10.1016/j.trsl.2016.07.006 27496319
    [Google Scholar]
  81. Song Y.Q. Jin Q. Wang D.D. Hou J. Zou L.W. Ge G.B. Carboxylesterase inhibitors from clinically available medicines and their impact on drug metabolism. Chem. Biol. Interact. 2021 345 109566 10.1016/j.cbi.2021.109566 34174250
    [Google Scholar]
  82. Cuñetti L. Oricchio F. Vázquez M. Peyraube R. Manzo L. Nalerio C. Curi L. Maldonado C. Drug-drug interaction between cannabidiol, cyclosporine, and mycophenolate mofetil: A case report. Transplant. Proc. 2024 56 1 252 256 10.1016/j.transproceed.2023.11.013 38212169
    [Google Scholar]
  83. Zhang C. Xu Y. Zhong Q. Li X. Gao P. Feng C. Chu Q. Chen Y. Liu D. In vitro evaluation of the inhibitory potential of pharmaceutical excipients on human carboxylesterase 1A and 2. PLoS One 2014 9 4 93819 10.1371/journal.pone.0093819 24699684
    [Google Scholar]
  84. Dong D. Quan E. Yuan X. Xie Q. Li Z. Wu B. Sodium oleate-based nanoemulsion enhances oral absorption of chrysin through inhibition of ugt-mediated metabolism. Mol. Pharm. 2017 14 9 2864 2874 10.1021/acs.molpharmaceut.6b00851 27983856
    [Google Scholar]
  85. Etim I. Abasifreke B. Sun R. Kuddabujja D. Liang D. Du T. Gao S. Development of a novel UPLC-MS/MS method for the simultaneous quantification of mycophenolic mofetil, mycophenolic acid, and its major metabolites: Application to pharmacokinetic and tissue distribution study in rats. J. Pharm. Biomed. Anal. 2023 234 115504 10.1016/j.jpba.2023.115504 37478553
    [Google Scholar]
  86. Tornatore K.M. Sudchada P. Dole K. DiFrancesco R. Leca N. Gundroo A.C. Danison R.T. Attwood K. Wilding G.E. Zack J. Forrest A. Venuto R.C. Mycophenolic acid pharmacokinetics during maintenance immunosuppression in African American and Caucasian renal transplant recipients. J. Clin. Pharmacol. 2011 51 8 1213 1222 10.1177/0091270010382909 21209244
    [Google Scholar]
  87. Xu L. Jiao Z. Liu F. Qiu X. Ji L. Zhang M. Pharmacokinetics evaluation of mycophenolic acid and its glucuronide metabolite in chinese renal transplant recipients receiving enteric-coated mycophenolate sodium and tacrolimus. Ther. Drug Monit. 2018 40 5 572 580 10.1097/FTD.0000000000000533 29847459
    [Google Scholar]
  88. Ling J. Shi J. Jiang Q. Jiao Z. Population pharmacokinetics of mycophenolic acid and its main glucuronide metabolite: A comparison between healthy Chinese and Caucasian subjects receiving mycophenolate mofetil. Eur. J. Clin. Pharmacol. 2015 71 1 95 106 10.1007/s00228‑014‑1771‑1 25327506
    [Google Scholar]
  89. Asif A.R. Armstrong V.W. Voland A. Wieland E. Oellerich M. Shipkova M. Proteins identified as targets of the acyl glucuronide metabolite of mycophenolic acid in kidney tissue from mycophenolate mofetil treated rats. Biochimie 2007 89 3 393 402 10.1016/j.biochi.2006.09.016 17069946
    [Google Scholar]
  90. Bullingham R.E.S. Nicholls A.J. Kamm B.R. Clinical pharmacokinetics of mycophenolate mofetil. Clin. Pharmacokinet. 1998 34 6 429 455 10.2165/00003088‑199834060‑00002 9646007
    [Google Scholar]
  91. Lévesque E. Benoit-Biancamano M.O. Delage R. Couture F. Guillemette C. Pharmacokinetics of mycophenolate mofetil and its glucuronide metabolites in healthy volunteers. Pharmacogenomics 2008 9 7 869 879 10.2217/14622416.9.7.869 18597651
    [Google Scholar]
  92. Burroughs D.L. Lorch G. Guo Y. Hill K. Schroeder E.L. Cole L.K. Phelps M.A. Noncompartmental pharmacokinetics of three intravenous mycophenolate mofetil concentrations in healthy Standardbred mares. Vet. Dermatol. 2023 34 3 222 234 10.1111/vde.13109 35929548
    [Google Scholar]
  93. Wuttiputhanun T Naiyarakseree N Udomkarnjananun S Kittanamongkolchai W Leelahavanichkul A Chariyavilaskul P Townamchai N Avihingsanon Y Therapeutic drug monitoring of mycophenolic acid and clinical outcomes of lupus nephritis: a systematic review and meta-analysis. Lupus Sci. Med. 2024 11 1 e001093.Jan 17 10.1136/lupus‑2023‑001093 38233072
    [Google Scholar]
  94. González-Roncero F.M. Govantes M.A.G. Chaves V.C. Palomo P.P. Serra M.B. Influence of renal insufficiency on pharmacokinetics of ACYL-glucuronide metabolite of mycophenolic acid in renal transplant patients. Transplant. Proc. 2007 39 7 2176 2178 10.1016/j.transproceed.2007.06.063 17889129
    [Google Scholar]
  95. Shipkova M Armstrong VW Weber LT Niedmann PD Wieland E Haley JE Tönshoff B Oellerich M German Study Group on Mycophenolate Mofetil Therapy in Pediatric Renal Transplant Recipients, Pharmacokinetics and protein adduct formation of the pharmacologically active acyl glucuronide metabolite of mycophenolic acid in pediatric renal transplant recipients. Ther. Drug Monit. 2002 24 3 390 399 Jun 10.1097/00007691‑200206000‑00011 12021631
    [Google Scholar]
  96. Naesens M. Kuypers D. Streit F. Armstrong V. Oellerich M. Verbeke K. Vanrenterghem Y. Rifampin induces alterations in mycophenolic acid glucuronidation and elimination: Implications for drug exposure in renal allograft recipients. Clin. Pharmacol. Ther. 2006 80 5 509 521 10.1016/j.clpt.2006.08.002 17112807
    [Google Scholar]
  97. Anderson M.S. Cote J. Liu Y. Stypinski D. Auger P. Hohnstein A. Rasmussen S. Johnson-Levonas A.O. Gutstein D.E. Effects of Rifampin, a potent inducer of drug-metabolizing enzymes and an inhibitor of OATP1B1/3 transport, on the single dose pharmacokinetics of anacetrapib. J. Clin. Pharmacol. 2013 53 7 746 752 10.1002/jcph.97 23670789
    [Google Scholar]
  98. Gao X. Wu L. Tsai R.Y.L. Ma J. Liu X. Chow D.S.L. Liang D. Xie H. Pharmacokinetic model analysis of supralingual, oral and intravenous deliveries of mycophenolic acid. Pharmaceutics 2021 13 4 574 10.3390/pharmaceutics13040574 33920640
    [Google Scholar]
  99. de Winter B.C.M. van Gelder T. Sombogaard F. Shaw L.M. van Hest R.M. Mathot R.A.A. Pharmacokinetic role of protein binding of mycophenolic acid and its glucuronide metabolite in renal transplant recipients. J. Pharmacokinet. Pharmacodyn. 2009 36 6 541 564 10.1007/s10928‑009‑9136‑6 19904584
    [Google Scholar]
  100. Sheng C. Zhao Q. Niu W. Qiu X. Zhang M. Jiao Z. Effect of protein binding on exposure of unbound and total mycophenolic acid: A population pharmacokinetic analysis in chinese adult kidney transplant recipients. Front. Pharmacol. 2020 11 340 10.3389/fphar.2020.00340 32265712
    [Google Scholar]
  101. Reséndiz-Galván J.E. Romano-Aguilar M. Medellín-Garibay S.E. Milán-Segovia R.C. Niño-Moreno P.C. Jung-Cook H. Chevaile-Ramos J.A. Romano-Moreno S. Population pharmacokinetics of mycophenolic acid in adult kidney transplant patients under prednisone and tacrolimus regimen. Eur. J. Pharm. Sci. 2020 150 105370 10.1016/j.ejps.2020.105370 32387086
    [Google Scholar]
  102. Rong Y. Patel V. Kiang T.K.L. Recent lessons learned from population pharmacokinetic studies of mycophenolic acid: Physiological, genomic, and drug interactions leading to the prediction of drug effects. Expert Opin. Drug Metab. Toxicol. 2021 17 12 1369 1406 10.1080/17425255.2021.2027906 35000505
    [Google Scholar]
  103. Celestin M.N. Musteata F.M. Impact of changes in free concentrations and drug-protein binding on drug dosing regimens in special populations and disease states. J. Pharm. Sci. 2021 110 10 3331 3344 10.1016/j.xphs.2021.05.018 34089711
    [Google Scholar]
  104. Bergan S. Brunet M. Hesselink D.A. Johnson-Davis K.L. Kunicki P.K. Lemaitre F. Marquet P. Molinaro M. Noceti O. Pattanaik S. Pawinski T. Seger C. Shipkova M. Swen J.J. van Gelder T. Venkataramanan R. Wieland E. Woillard J.B. Zwart T.C. Barten M.J. Budde K. Dieterlen M.T. Elens L. Haufroid V. Masuda S. Millan O. Mizuno T. Moes D.J.A.R. Oellerich M. Picard N. Salzmann L. Tönshoff B. van Schaik R.H.N. Vethe N.T. Vinks A.A. Wallemacq P. Åsberg A. Langman L.J. Personalized therapy for mycophenolate: Consensus report by the international association of therapeutic drug monitoring and clinical toxicology. Ther. Drug Monit. 2021 43 2 150 200 10.1097/FTD.0000000000000871 33711005
    [Google Scholar]
  105. Garg U. Munar A. Frazee C. Quantitation of mycophenolic acid and mycophenolic acid glucuronide in serum or plasma by LC‐MS/MS. Curr. Protoc. 2023 3 4 730 10.1002/cpz1.730 37039714
    [Google Scholar]
  106. Liu Y. Liu L. Li J. Fu Q. Zhang H. Wu C. Li J. Zhong G. Zheng Y. Chen X. Wang C. Chen P. Validated LC–MS/MS method for quantitation of total and free mycophenolic acid concentration and its application to a pharmacokinetic study in pediatric renal transplant recipients. Biomed. Chromatogr. 2021 35 2 4989 10.1002/bmc.4989 32959916
    [Google Scholar]
  107. Md Dom Z.I. Noll B.D. Coller J.K. Somogyi A.A. Russ G.R. Hesselink D.A. van Gelder T. Sallustio B.C. Validation of an LC–MS/MS method for the quantification of mycophenolic acid in human kidney transplant biopsies. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2014 945-946 171 177 10.1016/j.jchromb.2013.11.056 24342510
    [Google Scholar]
  108. Jiao Z. Ding J. Shen J. Liang H. Zhong L. Wang Y. Zhong M. Lu W. Population pharmacokinetic modelling for enterohepatic circulation of mycophenolic acid in healthy Chinese and the influence of polymorphisms in UGT1A9. Br. J. Clin. Pharmacol. 2008 65 6 893 907 10.1111/j.1365‑2125.2008.03109.x 18279479
    [Google Scholar]
  109. Sherwin C.M.T. Sagcal-Gironella A.C.P. Fukuda T. Brunner H.I. Vinks A.A. Development of population PK model with enterohepatic circulation for mycophenolic acid in patients with childhood‐onset systemic lupus erythematosus. Br. J. Clin. Pharmacol. 2012 73 5 727 740 10.1111/j.1365‑2125.2011.04140.x 22053944
    [Google Scholar]
  110. Sherwin C.M.T. Fukuda T. Brunner H.I. Goebel J. Vinks A.A. The evolution of population pharmacokinetic models to describe the enterohepatic recycling of mycophenolic acid in solid organ transplantation and autoimmune disease. Clin. Pharmacokinet. 2011 50 1 1 24 10.2165/11536640‑000000000‑00000 21142265
    [Google Scholar]
  111. Saqr A. Mapping trends and hotspots of research on COVID-19 vaccine effectiveness: A comprehensive bibliometric analysis of global research. J. Infect. Public Health 2025 18 1 102597 10.1016/j.jiph.2024.102597
    [Google Scholar]
  112. Tanaka R. Matsumoto A. Tatsuta R. Ando T. Shin T. Mimata H. Itoh H. Sustained suppression of enterohepatic circulation of mycophenolic acid by antimicrobial‐associated diarrhea in a kidney transplant recipient with Crohn’s disease: A case report. Clin. Case Rep. 2022 10 6 05914 10.1002/ccr3.5914 35677857
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002377209250815023105
Loading
/content/journals/cdm/10.2174/0113892002377209250815023105
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Mycophenolic acid ; ADME ; plasma exposure ; biopharmaceutical
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test