Skip to content
2000
Volume 26, Issue 6
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

Introduction

Remimazolam is a short-acting sedative/anesthetic. For safe breastfeeding, information on the extent and possible risks of remimazolam being passed over to the infant through mother´s milk is needed. The objective of this work was to study the transfer of remimazolam from maternal to infant circulation by mother´s milk in an animal model.

Methods

Three lactating British milk sheep received intravenous remimazolam (0.4 mg/kg bolus plus 4-hr-infusion at 1 or 2 mg/kg/hour). Drug profiles were recorded in plasma and milk. Six suckling lambs were administered remimazolam by intravenous and oral gavage administration for a comparison of plasma concentration profiles of remimazolam and its primary metabolite, CNS7054.

Results

Treatment of lactating sheep induced dose-dependent sedation and loss of consciousness. At the end of infusion, the concentration of remimazolam was higher in milk than in plasma. The subsequent elimination of remimazolam from milk was rapid, although somewhat slower than from plasma.

Discussion

In lambs, intravenous, but not oral, remimazolam (2 mg) caused different grades of sedation/anesthesia (fully reversible within 8 to 15 min). Mean plasma C was 278.3 ng/mL after intravenous and 1.3 ng/mL after oral administration. Oral gavage resulted in a sizable plasma concentration of CNS7054 (C around 100 ng/mL), indicating efficient intestinal absorption of the parent drug, followed by extensive first-pass metabolic elimination, leading to negligible bioavailability of oral remimazolam.

Conclusion

In mother´s milk, remimazolam reaches higher concentrations than in plasma and is cleared by redistribution to the central compartment for final hepatic elimination. In lambs, oral remimazolam results in minimal plasma concentrations, suggesting that safety concerns regarding breast-fed infants would be minor and could be completely alleviated by a short nursing interruption.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002372645250910083616
2025-09-17
2026-02-02
Loading full text...

Full text loading...

References

  1. SchmalixW. PetersenK.U. PesicM. StöhrT. The metabolism of the new benzodiazepine remimazolam.Curr. Drug Metab.202425216417310.2174/011389200230102624031806030738523539
    [Google Scholar]
  2. KilpatrickG.J. Remimazolam: Non-clinical and clinical profile of a new sedative/anesthetic agent.Front. Pharmacol.20211269087510.3389/fphar.2021.69087534354587
    [Google Scholar]
  3. HeT.Y. ZhongR.P. ZhongW.B. HuangG.M. LiuX.C. Effect of remimazolam on intra-operative hypotension.Eur. J. Anaesthesiol.2024411289890910.1097/EJA.000000000000205739262323
    [Google Scholar]
  4. WangM. LiuJ. LiuW. ZhangX. ZhangG. SunL. BiY. WangH. DongR. Effectiveness of perioperative remimazolam in preventing postoperative delirium: A systematic review and meta-analysis.Eur. J. Med. Res.202530112210.1186/s40001‑025‑02383‑z39985104
    [Google Scholar]
  5. PetersenK.U. SchmalixW. PesicM. StohrT. Carboxylesterase 1-based drug-drug interaction potential of remimazolam: In-vitro studies and literature review.Curr. Drug Metab.202425643144510.2174/011389200230823324080110491039108117
    [Google Scholar]
  6. PetersenK.U. SchmalixW. PesicM. StöhrT. Drug-drug interaction potential of remimazolam: CYP 450, Transporters, and protein binding.Curr. Drug Metab.202425426627510.2174/011389200230065724052109473238818914
    [Google Scholar]
  7. OkaS. SatomiH. SekinoR. TaguchiK. KajiwaraM. OiY. KobayashiR. Sedation outcomes for remimazolam, a new benzodiazepine.J. Oral Sci.202163320921110.2334/josnusd.21‑005134092775
    [Google Scholar]
  8. OszB.E. Tero-VescanA. DogaruM. VanceaS. ImreS. BosaP. VariC.E. Olanzapine transfer into sheep’s milk. An animal model.Farmacia201765677682
    [Google Scholar]
  9. UptonR.N. MartinezA.M. GrantC. A dose escalation study in sheep of the effects of the benzodiazepine CNS 7056 on sedation, the EEG and the respiratory and cardiovascular systems.Br. J. Pharmacol.20081551526110.1038/bjp.2008.22818552878
    [Google Scholar]
  10. KelseyJ.J. Drug principles in lactation.Women’s and Men’s Health. MurphyJ.E. LeeM.W.L. CheangK.I. Kansas City, MOAmerican College of Clinical Pharmacy2016
    [Google Scholar]
  11. AndersonP.O. Drugs in Lactation.Pharm. Res.20183534510.1007/s11095‑017‑2287‑z29411152
    [Google Scholar]
  12. GantnerV. MijicP. BabanM. SkrticZ. TuralijaA. The overall and fat composition of milk of various species.Mljekarstvo20156522323110.15567/mljekarstvo.2015.0401
    [Google Scholar]
  13. ClaeysW.L. VerraesC. CardoenS. De BlockJ. HuyghebaertA. RaesK. DewettinckK. HermanL. Consumption of raw or heated milk from different species: An evaluation of the nutritional and potential health benefits.Food Control20144218820110.1016/j.foodcont.2014.01.045
    [Google Scholar]
  14. Pietrzak-FiećkoR. Kamelska-SadowskaA.M. The comparison of nutritional value of human milk with other mammals’ milk.Nutrients2020125140410.3390/nu1205140432422857
    [Google Scholar]
  15. García-LinoA.M. Álvarez-FernándezI. Blanco-PaniaguaE. MerinoG. ÁlvarezA.I. Transporters in the mammary gland – Contribution to presence of nutrients and drugs into milk.Nutrients20191110237210.3390/nu1110237231590349
    [Google Scholar]
  16. MaertensL. LebasF. SzendröZ. Rabbit milk: A review of quantity, quality and non-dietary affecting factors.World Rabbit Sci.200614205230
    [Google Scholar]
  17. PesicM. StöhrT. OssigJ. BorkettK. DonsbachM. DaoV.A. WebsterL. SchippersF. Remimazolam has low oral bioavailability and no potential for misuse in drug-facilitated sexual assaults, with or without alcohol: Results from two randomised clinical trials.Drugs R D.202020326727710.1007/s40268‑020‑00317‑032757149
    [Google Scholar]
  18. ZhuH.J. AppelD.I. JiangY. MarkowitzJ.S. Age- and sex-related expression and activity of carboxylesterase 1 and 2 in mouse and human liver.Drug Metab. Dispos.20093791819182510.1124/dmd.109.02820919487248
    [Google Scholar]
  19. van GroenB.D. NicolaïJ. KuikA.C. Van CruchtenS. van PeerE. SmitsA. SchmidtS. de WildtS.N. AllegaertK. De SchaepdrijverL. AnnaertP. BadéeJ. Ontogeny of hepatic transporters and drug-metabolising enzymes in humans and in nonclinical species.Pharmacol. Rev.202173259767810.1124/pharmrev.120.00007133608409
    [Google Scholar]
  20. BobergM. VranaM. MehrotraA. PearceR.E. GaedigkA. BhattD.K. LeederJ.S. PrasadB. Age-dependent absolute abundance of hepatic carboxylesterases (CES1 and CES2) by LC-MS/MS proteomics: Application to PBPK modeling of oseltamivir in vivo pharmacokinetics in infants.Drug Metab. Dispos.201745221622310.1124/dmd.116.07265227895113
    [Google Scholar]
  21. HinesR.N. SimpsonP.M. McCarverD.G. Age-dependent human hepatic carboxylesterase 1 (CES1) and carboxylesterase 2 (CES2) postnatal ontogeny.Drug Metab. Dispos.201644795996610.1124/dmd.115.06895726825642
    [Google Scholar]
  22. MaltezouH.C. DrakoulisN. SiahanidouT. KaralisV. ZervakiE. DotsikasY. LoukasY.L. TheodoridouM. Safety and pharmacokinetics of oseltamivir for prophylaxis of neonates exposed to influenza H1N1.Pediatr. Infect. Dis. J.201231552752910.1097/INF.0b013e3182472f2822209917
    [Google Scholar]
  23. YangD. PearceR.E. WangX. GaedigkR. WanY.J.Y. YanB. YanB. Human carboxylesterases HCE1 and HCE2: Ontogenic expression, inter-individual variability and differential hydrolysis of oseltamivir, aspirin, deltamethrin and permethrin.Biochem. Pharmacol.200977223824710.1016/j.bcp.2008.10.00518983829
    [Google Scholar]
  24. McPhersonC. WarnerB. HunstadD.A. ElwardA. AcostaE.P. Oseltamivir dosing in premature infants.J. Infect. Dis.2012206684785010.1093/infdis/jis47122807525
    [Google Scholar]
  25. ShiD. YangD. PrinssenE.P. DaviesB.E. YanB. Surge in expression of carboxylesterase 1 during the post-neonatal stage enables a rapid gain of the capacity to activate the anti-influenza prodrug oseltamivir.J. Infect. Dis.2011203793794210.1093/infdis/jiq14521402544
    [Google Scholar]
  26. HughesM.A. GlassP.S.A. JacobsJ.R. Context-sensitive half-time in multicompartment pharmacokinetic models for intravenous anesthetic drugs.Anesthesiology199276333434110.1097/00000542‑199203000‑000031539843
    [Google Scholar]
  27. SchüttlerJ. EisenriedA. LerchM. FechnerJ. JeleazcovC. IhmsenH. Pharmacokinetics and pharmacodynamics of remimazolam (CNS7056) after continuous infusion in healthy male volunteers.Anesthesiology2020132463665110.1097/ALN.000000000000310331972655
    [Google Scholar]
  28. Nutrition During Lactation.Washington, DCThe National Academies Press19918310.17226/1577
    [Google Scholar]
  29. Harnessing the golden hour: breastfeeding recommended within first hour of life.2023Available from: https://www.figo.org/resources/figo-statements/harnessing-golden-hour-breastfeeding-recommended-within-first-hour-life
  30. MitchellJ. JonesW. WinkleyE. KinsellaS.M. Guideline on anaesthesia and sedation in breastfeeding women 2020.Anaesthesia202075111482149310.1111/anae.1517932737881
    [Google Scholar]
  31. MekonnenA. ShewangizawZ. Timely initiation of breastfeeding and associated factors among mothers with vaginal and cesarean deliveries in public hospitals of Addis Ababa, Ethiopia.Clin. J. Obstet. Gynecol.20225445010.29328/journal.cjog.1001106
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002372645250910083616
Loading
/content/journals/cdm/10.2174/0113892002372645250910083616
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): accumulation; first pass; Milk transfer; newborns; oral bioavailability; remimazolam; sheep
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test