Skip to content
2000
Volume 26, Issue 1
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

Human breast cancer resistance protein (BCRP, gene symbol ABCG2) is an ATP-binding cassette (ABC) efflux transporter that is highly expressed on the apical membranes of intestinal epithelium and contributes to the absorption, distribution, and elimination of xenobiotics and the efflux of endogenous molecules. Also, the intestinal epithelial monolayer is the largest interface and the most important functional barrier between the internal environment and the systemic circulation. Extensive studies have demonstrated that intestinal ABCG2 of humans and rodents plays a crucial role in limiting absorption of xenobiotics, which are ABCG2 transport substrates, in the small intestine by mediating distribution in the intestinal epithelial barrier. Therefore, changes in the expression, function and activity of ABCG2 in the intestinal epithelial barrier play important roles in drug response and side effects. In this review, we specifically summarize the current research progress of ABCG2 in intestinal drug transport, intestinal urate excretion and intestinal barrier dysfunction, and its role in altering the intestinal epithelial barrier permeability in human intestinal disorder.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002368449250331144821
2025-04-11
2025-12-23
Loading full text...

Full text loading...

References

  1. RobeyR.W. ToK.K.K. PolgarO. DohseM. FetschP. DeanM. BatesS.E. ABCG2: A perspective.Adv. Drug Deliv. Rev.200961131310.1016/j.addr.2008.11.00319135109
    [Google Scholar]
  2. ZhouS. SchuetzJ.D. BuntingK.D. ColapietroA.M. SampathJ. MorrisJ.J. LagutinaI. GrosveldG.C. OsawaM. NakauchiH. SorrentinoB.P. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype.Nat. Med.2001791028103410.1038/nm0901‑102811533706
    [Google Scholar]
  3. HiraD. TeradaT. BCRP/ABCG2 and high-alert medications: Biochemical, pharmacokinetic, pharmacogenetic, and clinical implications.Biochem. Pharmacol.201814720121010.1016/j.bcp.2017.10.00429031817
    [Google Scholar]
  4. SafarZ. KisE. ErdoF. ZolnerciksJ.K. KrajcsiP. ABCG2/BCRP: Variants, transporter interaction profile of substrates and inhibitors.Expert Opin. Drug Metab. Toxicol.201915431332810.1080/17425255.2019.159137330856014
    [Google Scholar]
  5. BakhsheshianJ. HallM.D. RobeyR.W. HerrmannM.A. ChenJ.Q. BatesS.E. GottesmanM.M. Overlapping substrate and inhibitor specificity of human and murine ABCG2.Drug Metab. Dispos.201341101805181210.1124/dmd.113.05314023868912
    [Google Scholar]
  6. Álvarez-FernándezL. Gomez-GomezA. HaroN. García-LinoA.M. ÁlvarezA.I. PozoO.J. MerinoG. ABCG2 transporter plays a key role in the biodistribution of melatonin and its main metabolites.J. Pineal Res.2023742e1284910.1111/jpi.1284936562106
    [Google Scholar]
  7. SuzukiM. SuzukiH. SugimotoY. SugiyamaY. ABCG2 transports sulfated conjugates of steroids and xenobiotics.J. Biol. Chem.200327825226442264910.1074/jbc.M21239920012682043
    [Google Scholar]
  8. HosomiA. NakanishiT. FujitaT. TamaiI. Extra-renal elimination of uric acid via intestinal efflux transporter BCRP/ABCG2.PLoS One201272e3045610.1371/journal.pone.003045622348008
    [Google Scholar]
  9. BrechbuhlH.M. GouldN. KachadourianR. RiekhofW.R. VoelkerD.R. DayB.J. Glutathione transport is a unique function of the ATP-binding cassette protein ABCG2.J. Biol. Chem.201028522165821658710.1074/jbc.M109.09050620332504
    [Google Scholar]
  10. HerwaardenV.A.E. WagenaarE. MerinoG. JonkerJ.W. RosingH. BeijnenJ.H. SchinkelA.H. Multidrug transporter ABCG2/breast cancer resistance protein secretes riboflavin (vitamin B2) into milk.Mol. Cell. Biol.20072741247125310.1128/MCB.01621‑0617145775
    [Google Scholar]
  11. Desuzinges-MandonE. ArnaudO. MartinezL. HuchéF. PietroD.A. FalsonP. ABCG2 transports and transfers heme to albumin through its large extracellular loop.J. Biol. Chem.201028543331233313310.1074/jbc.M110.13917020705604
    [Google Scholar]
  12. HerwaardenA.E. WagenaarE. KarnekampB. MerinoG. JonkerJ.W. SchinkelA.H. Breast cancer resistance protein (Bcrp1/Abcg2) reduces systemic exposure of the dietary carcinogens aflatoxin B1, IQ and Trp-P-1 but also mediates their secretion into breast milk.Carcinogenesis200527112313010.1093/carcin/bgi17616000399
    [Google Scholar]
  13. MyllynenP. KummuM. KangasT. IlvesM. ImmonenE. RysäJ. PiriläR. LastumäkiA. VähäkangasK.H. ABCG2/BCRP decreases the transfer of a food-born chemical carcinogen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in perfused term human placenta.Toxicol. Appl. Pharmacol.2008232221021710.1016/j.taap.2008.07.00618680760
    [Google Scholar]
  14. EnokizonoJ. KusuharaH. OseA. SchinkelA.H. SugiyamaY. Quantitative investigation of the role of breast cancer resistance protein (Bcrp/Abcg2) in limiting brain and testis penetration of xenobiotic compounds.Drug Metab. Dispos.2008366995100210.1124/dmd.107.01925718322075
    [Google Scholar]
  15. PanG. GiriN. ElmquistW.F. Abcg2/Bcrp1 mediates the polarized transport of antiretroviral nucleosides abacavir and zidovudine.Drug Metab. Dispos.20073571165117310.1124/dmd.106.01427417437964
    [Google Scholar]
  16. KimH.S. SunwooY.E. RyuJ.Y. KangH.J. JungH.E. SongI.S. KimE.Y. ShimJ.C. ShonJ.H. ShinJ.G. The effect of ABCG2 V12M, Q141K and Q126X, known functional variants in vitro, on the disposition of lamivudine.Br. J. Clin. Pharmacol.200764564565410.1111/j.1365‑2125.2007.02944.x17509035
    [Google Scholar]
  17. GonçalvesJ. SilvaS. GouveiaF. BickerJ. FalcãoA. AlvesG. FortunaA. A combo-strategy to improve brain delivery of antiepileptic drugs: Focus on BCRP and intranasal administration.Int. J. Pharm.202159312016110.1016/j.ijpharm.2020.12016133307160
    [Google Scholar]
  18. MilaneA. VautierS. ChacunH. MeiningerV. BensimonG. FarinottiR. FernandezC. Interactions between riluzole and ABCG2/BCRP transporter.Neurosci. Lett.20094521121610.1016/j.neulet.2008.12.06119146924
    [Google Scholar]
  19. RömermannK. HelmerR. LöscherW. The antiepileptic drug lamotrigine is a substrate of mouse and human breast cancer resistance protein (ABCG2).Neuropharmacology20159371410.1016/j.neuropharm.2015.01.01525645391
    [Google Scholar]
  20. KeskitaloJ.E. ZolkO. FrommM.F. KurkinenK.J. NeuvonenP.J. NiemiM. ABCG2 polymorphism markedly affects the pharmacokinetics of atorvastatin and rosuvastatin.Clin. Pharmacol. Ther.200986219720310.1038/clpt.2009.7919474787
    [Google Scholar]
  21. HiranoM. MaedaK. MatsushimaS. NozakiY. KusuharaH. SugiyamaY. Involvement of BCRP (ABCG2) in the biliary excretion of pitavastatin.Mol. Pharmacol.200568380080710.1124/mol.105.01401915955871
    [Google Scholar]
  22. Causevic-RamosevacA. SemizS. Drug interactions with statins.Acta Pharm.201363327729310.2478/acph‑2013‑002224152892
    [Google Scholar]
  23. HaslamI.S. WrightJ.A. O’ReillyD.A. SherlockD.J. ColemanT. SimmonsN.L. Intestinal ciprofloxacin efflux: The role of breast cancer resistance protein (ABCG2).Drug Metab. Dispos.201139122321232810.1124/dmd.111.03832321930826
    [Google Scholar]
  24. PulidoM.M. MolinaA.J. MerinoG. MendozaG. PrietoJ.G. AlvarezA. Interaction of enrofloxacin with breast cancer resistance protein (BCRP/ABCG2): Influence of flavonoids and role in milk secretion in sheep.J. Vet. Pharmacol. Ther.200629427928710.1111/j.1365‑2885.2006.00744.x16846465
    [Google Scholar]
  25. MerinoG. ÁlvarezA.I. PulidoM.M. MolinaA.J. SchinkelA.H. PrietoJ.G. Breast cancer resistance protein (BCRP/ABCG2) transports fluoroquinolone antibiotics and affects their oral availability, pharmacokinetics, and milk secretion.Drug Metab. Dispos.200634469069510.1124/dmd.105.00821916434544
    [Google Scholar]
  26. MendesC. MeirellesG.C. SilvaM.A.S. PonchelG. Intestinal permeability determinants of norfloxacin in ussing chamber model.Eur. J. Pharm. Sci.201812123624210.1016/j.ejps.2018.05.03029860116
    [Google Scholar]
  27. MerinoG. JonkerJ.W. WagenaarE. HerwaardenV.A.E. SchinkelA.H. The breast cancer resistance protein (BCRP/ABCG2) affects pharmacokinetics, hepatobiliary excretion, and milk secretion of the antibiotic nitrofurantoin.Mol. Pharmacol.20056751758176410.1124/mol.104.01043915709111
    [Google Scholar]
  28. VolkE.L. SchneiderE. Wild-type breast cancer resistance protein (BCRP/ABCG2) is a methotrexate polyglutamate transporter.Cancer Res.200363175538554314500392
    [Google Scholar]
  29. GooijerD.M.C. VriesD.N.A. BuckleT. BuilL.C.M. BeijnenJ.H. BoogerdW. TellingenV.O. Improved brain penetration and antitumor efficacy of temozolomide by inhibition of ABCB1 and ABCG2.Neoplasia201820771072010.1016/j.neo.2018.05.00129852323
    [Google Scholar]
  30. HomolyaL. OrbánT.I. CsanádyL. SarkadiB. Mitoxantrone is expelled by the ABCG2 multidrug transporter directly from the plasma membrane.Biochim. Biophys. Acta Biomembr.20111808115416310.1016/j.bbamem.2010.07.03120691148
    [Google Scholar]
  31. MichaelisM. SeltF. RothweilerF. WieseM. CinatlJ.Jr ABCG2 impairs the activity of the aurora kinase inhibitor tozasertib but not of alisertib.BMC Res. Notes20158148410.1186/s13104‑015‑1405‑426415506
    [Google Scholar]
  32. SparreboomA. LoosW.J. BurgerH. SissungT.M. VerweijJ. FiggW.II NooterK. GelderblomH. Effect of ABCG2 genotype on the oral vioavailability of topotecan.Cancer Biol. Ther.20054665065310.4161/cbt.4.6.173115908806
    [Google Scholar]
  33. YuanJ. LvH. PengB. WangC. YuY. HeZ. Role of BCRP as a biomarker for predicting resistance to 5-fluorouracil in breast cancer.Cancer Chemother. Pharmacol.20096361103111010.1007/s00280‑008‑0838‑z18820913
    [Google Scholar]
  34. ZhouQ. YeM. LuY. ZhangH. ChenQ. HuangS. SuS. Curcumin improves the tumoricidal effect of mitomycin c by suppressing abcg2 expression in stem cell-like breast cancer cells.PLoS One2015108e013669410.1371/journal.pone.013669426305906
    [Google Scholar]
  35. ZaherH. KhanA.A. PalandraJ. BraymanT.G. YuL. WareJ.A. Breast cancer resistance protein (Bcrp/abcg2) is a major determinant of sulfasalazine absorption and elimination in the mouse.Mol. Pharm.200631556110.1021/mp050113v16686369
    [Google Scholar]
  36. PavekP. MerinoG. WagenaarE. BolscherE. NovotnaM. JonkerJ.W. SchinkelA.H. Human breast cancer resistance protein: Interactions with steroid drugs, hormones, the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine, and transport of cimetidine.J. Pharmacol. Exp. Ther.2005312114415210.1124/jpet.104.07391615365089
    [Google Scholar]
  37. ShuklaS. WuC.P. NandigamaK. AmbudkarS.V. The naphthoquinones, vitamin K3 and its structural analogue plumbagin, are substrates of the multidrug resistance–linked ATP binding cassette drug transporter ABCG2.Mol. Cancer Ther.20076123279328610.1158/1535‑7163.MCT‑07‑056418065489
    [Google Scholar]
  38. ZhouL. NaraharisettiS.B. WangH. UnadkatJ.D. HebertM.F. MaoQ. The breast cancer resistance protein (Bcrp1/Abcg2) limits fetal distribution of glyburide in the pregnant mouse: An Obstetric-Fetal Pharmacology Research Unit Network and University of Washington Specialized Center of Research Study.Mol. Pharmacol.200873394995910.1124/mol.107.04161618079276
    [Google Scholar]
  39. ZhangY. BresslerJ.P. NealJ. LalB. BhangH.E.C. LaterraJ. PomperM.G. ABCG2/BCRP expression modulates D-Luciferin based bioluminescence imaging.Cancer Res.200767199389939710.1158/0008‑5472.CAN‑07‑094417909048
    [Google Scholar]
  40. NeumanovaZ. CervenyL. CeckovaM. StaudF. Interactions of tenofovir and tenofovir disoproxil fumarate with drug efflux transporters ABCB1, ABCG2, and ABCC2; role in transport across the placenta.AIDS201428191710.1097/QAD.000000000000011224413260
    [Google Scholar]
  41. DeziM. FribourgP.F. CiccoD.A. ArnaudO. MarcoS. FalsonP. PietroD.A. LévyD. The multidrug resistance half-transporter ABCG2 is purified as a tetramer upon selective extraction from membranes.Biochim. Biophys. Acta Biomembr.20101798112094210110.1016/j.bbamem.2010.07.03420691149
    [Google Scholar]
  42. LitmanT. BrangiM. HudsonE. FetschP. AbatiA. RossD.D. MiyakeK. ResauJ.H. BatesS.E. The multidrug-resistant phenotype associated with overexpression of the new ABC half-transporter, MXR (ABCG2).J. Cell Sci.2000113112011202110.1242/jcs.113.11.201110806112
    [Google Scholar]
  43. TaylorN.M.I. ManolaridisI. JacksonS.M. KowalJ. StahlbergH. LocherK.P. Structure of the human multidrug transporter ABCG2.Nature2017546765950450910.1038/nature2234528554189
    [Google Scholar]
  44. KowalJ. NiD. JacksonS.M. ManolaridisI. StahlbergH. LocherK.P. Structural basis of drug recognition by the multidrug transporter ABCG2.J. Mol. Biol.20214331316698010.1016/j.jmb.2021.16698033838147
    [Google Scholar]
  45. JacksonS.M. ManolaridisI. KowalJ. ZechnerM. TaylorN.M.I. BauseM. BauerS. BartholomaeusR. BernhardtG. KoenigB. BuschauerA. StahlbergH. AltmannK.H. LocherK.P. Structural basis of small-molecule inhibition of human multidrug transporter ABCG2.Nat. Struct. Mol. Biol.201825433334010.1038/s41594‑018‑0049‑129610494
    [Google Scholar]
  46. ManolaridisI. JacksonS.M. TaylorN.M.I. KowalJ. StahlbergH. LocherK.P. Cryo-EM structures of a human ABCG2 mutant trapped in ATP-bound and substrate-bound states.Nature2018563773142643010.1038/s41586‑018‑0680‑330405239
    [Google Scholar]
  47. ShenS. CallaghanD. JuzwikC. XiongH. HuangP. ZhangW. ABCG2 reduces ROS-mediated toxicity and inflammation: A potential role in Alzheimer’s disease.J. Neurochem.201011461590160410.1111/j.1471‑4159.2010.06887.x20626554
    [Google Scholar]
  48. FrancoisL.N. GorczycaL. DuJ. BircsakK.M. YenE. WenX. TuM.J. YuA.M. IllsleyN.P. ZamudioS. AleksunesL.M. Down-regulation of the placental BCRP/ABCG2 transporter in response to hypoxia signaling.Placenta201751576310.1016/j.placenta.2017.01.12528292469
    [Google Scholar]
  49. GorczycaL. AleksunesL.M. Transcription factor-mediated regulation of the BCRP/ ABCG2 efflux transporter: A review across tissues and species.Expert Opin. Drug Metab. Toxicol.202016323925310.1080/17425255.2020.173234832077332
    [Google Scholar]
  50. LiuL. ZhaoT. ShanL. CaoL. ZhuX. XueY. Estradiol regulates intestinal ABCG2 to promote urate excretion via the PI3K/Akt pathway.Nutr. Metab. (Lond.)20211816310.1186/s12986‑021‑00583‑y34144706
    [Google Scholar]
  51. Goler-BaronV. SladkevichI. AssarafY.G. Inhibition of the PI3K-Akt signaling pathway disrupts ABCG2-rich extracellular vesicles and overcomes multidrug resistance in breast cancer cells.Biochem. Pharmacol.201283101340134810.1016/j.bcp.2012.01.03322342288
    [Google Scholar]
  52. XieJ. JinB. LiD.W. ShenB. CongN. ZhangT.Z. DongP. ABCG2 regulated by MAPK pathways is associated with cancer progression in laryngeal squamous cell carcinoma.Am. J. Cancer Res.20144669870925520861
    [Google Scholar]
  53. BalbuenaJ. PachonG. Lopez-TorrentsG. AranJ.M. CastresanaJ.S. PetrizJ. ABCG2 is required to control the sonic hedgehog pathway in side population cells with stem-like properties.Cytometry A201179A967268310.1002/cyto.a.2110321774076
    [Google Scholar]
  54. HasanabadyM.H. KalaliniaF. ABCG2 inhibition as a therapeutic approach for overcoming multidrug resistance in cancer.J. Biosci.201641231332410.1007/s12038‑016‑9601‑527240991
    [Google Scholar]
  55. BhuniaA.K. Al-SadiR. Editorial: Intestinal epithelial barrier disruption by enteric pathogens.Front. Cell. Infect. Microbiol.202313113475310.3389/fcimb.2023.113475336714092
    [Google Scholar]
  56. LaukoetterM.G. BruewerM. NusratA. Regulation of the intestinal epithelial barrier by the apical junctional complex.Curr. Opin. Gastroenterol.2006222858910.1097/01.mog.0000203864.48255.4f16462161
    [Google Scholar]
  57. SchulzkeJ.D. GünzelD. JohnL.J. FrommM. Perspectives on tight junction research.Ann. N. Y. Acad. Sci.20121257111910.1111/j.1749‑6632.2012.06485.x22671584
    [Google Scholar]
  58. WangJ.Y. Polyamines regulate expression of E-cadherin and play an important role in control of intestinal epithelial barrier function.Inflammopharmacology2005131-39110110.1163/15685600577442389016259731
    [Google Scholar]
  59. GroschwitzK.R. HoganS.P. Intestinal barrier function: Molecular regulation and disease pathogenesis.J. Allergy Clin. Immunol.2009124132010.1016/j.jaci.2009.05.03819560575
    [Google Scholar]
  60. CataliotoR.M. MaggiC.A. GiulianiS. Intestinal epithelial barrier dysfunction in disease and possible therapeutical interventions.Curr. Med. Chem.201118339842610.2174/09298671179483917921143118
    [Google Scholar]
  61. GuttmanJ.A. FinlayB.B. Tight junctions as targets of infectious agents.Biochim. Biophys. Acta Biomembr.20091788483284110.1016/j.bbamem.2008.10.02819059200
    [Google Scholar]
  62. WangW. UzzauS. GoldblumS.E. FasanoA. Human zonulin, a potential modulator of intestinal tight junctions.J. Cell Sci.2000113244435444010.1242/jcs.113.24.443511082037
    [Google Scholar]
  63. SchmitzH. BarmeyerC. GitterA.H. WullsteinF. BentzelC.J. FrommM. RieckenE.O. SchulzkeJ.D. Epithelial barrier and transport function of the colon in ulcerative colitis.Ann. N. Y. Acad. Sci.2000915131232610.1111/j.1749‑6632.2000.tb05259.x11193594
    [Google Scholar]
  64. ParikhK. AntanaviciuteA. Fawkner-CorbettD. JagielowiczM. AulicinoA. LagerholmC. DavisS. KinchenJ. ChenH.H. AlhamN.K. AshleyN. JohnsonE. HublitzP. BaoL. LukomskaJ. AndevR.S. BjörklundE. KesslerB.M. FischerR. GoldinR. KoohyH. SimmonsA. Colonic epithelial cell diversity in health and inflammatory bowel disease.Nature20195677746495510.1038/s41586‑019‑0992‑y30814735
    [Google Scholar]
  65. GutmannH. HruzP. ZimmermannC. BeglingerC. DreweJ. Distribution of breast cancer resistance protein (BCRP/ABCG2) mRNA expression along the human GI tract.Biochem. Pharmacol.200570569569910.1016/j.bcp.2005.05.03115998509
    [Google Scholar]
  66. HorseyA.J. CoxM.H. SarwatS. KerrI.D. The multidrug transporter ABCG2: Still more questions than answers.Biochem. Soc. Trans.201644382483010.1042/BST2016001427284047
    [Google Scholar]
  67. KruijtzerC.M.F. BeijnenJ.H. RosingH. ten Bokkel HuininkW.W. SchotM. JewellR.C. PaulE.M. SchellensJ.H.M. Increased oral bioavailability of topotecan in combination with the breast cancer resistance protein and P-glycoprotein inhibitor GF120918.J. Clin. Oncol.200220132943295010.1200/JCO.2002.12.11612089223
    [Google Scholar]
  68. HoughtonP.J. GermainG.S. HarwoodF.C. SchuetzJ.D. StewartC.F. BuchdungerE. TraxlerP. Imatinib mesylate is a potent inhibitor of the ABCG2 (BCRP) transporter and reverses resistance to topotecan and SN-38 in vitro.Cancer Res.20046472333233710.1158/0008‑5472.CAN‑03‑334415059881
    [Google Scholar]
  69. BurgerH. TolV.H. BrokM. WiemerE.A.C. BruijnD.E.A. GuetensG. BoeckD.G. SparreboomA. VerweijJ. NooterK. Chronic imatinib mesylate exposure leads to reduced intracellular drug accumulation by induction of the ABCG2 (BCRP) and ABCB1 (MDR1) drug transport pumps.Cancer Biol. Ther.20054774775210.4161/cbt.4.7.182615970668
    [Google Scholar]
  70. MaoQ. UnadkatJ.D. Role of the breast cancer resistance protein (BCRP/ABCG2) in drug transport-an update.AAPS J.2015171658210.1208/s12248‑014‑9668‑625236865
    [Google Scholar]
  71. IeiriI. Functional significance of genetic polymorphisms in P-glycoprotein (MDR1, ABCB1) and breast cancer resistance protein (BCRP, ABCG2).Drug Metab. Pharmacokinet.20122718510510.2133/dmpk.DMPK‑11‑RV‑09822123128
    [Google Scholar]
  72. YuQ. NiD. KowalJ. ManolaridisI. JacksonS.M. StahlbergH. LocherK.P. Structures of ABCG2 under turnover conditions reveal a key step in the drug transport mechanism.Nat. Commun.2021121437610.1038/s41467‑021‑24651‑234282134
    [Google Scholar]
  73. SáfárZ. KecskemétiG. MolnárJ. KuruncziA. SzabóZ. JanákyT. KisE. KrajcsiP. Inhibition of ABCG2/BCRP-mediated transport–correlation analysis of various expression systems and probe substrates.Eur. J. Pharm. Sci.202115610559310.1016/j.ejps.2020.10559333059043
    [Google Scholar]
  74. WangF. LiangY. WuX. ChenL. ToK.K.W. DaiC. YanY. WangY. TongX. FuL. Prognostic value of the multidrug resistance transporter ABCG2 gene polymorphisms in Chinese patients with de novo acute leukaemia.Eur. J. Cancer201147131990199910.1016/j.ejca.2011.03.03221531129
    [Google Scholar]
  75. FratteD.C. PoleselJ. GagnoS. PosoccoB. MattiaD.E. RoncatoR. OrleniM. PuglisiF. GuardascioneM. BuonadonnaA. ToffoliG. CecchinE. Impact of ABCG2 and ABCB1 polymorphisms on imatinib plasmatic exposure: An original work and meta-analysis.Int. J. Mol. Sci.2023244330310.3390/ijms2404330336834713
    [Google Scholar]
  76. MizunoT. FukudoM. TeradaT. KambaT. NakamuraE. OgawaO. InuiK. KatsuraT. Impact of genetic variation in breast cancer resistance protein (BCRP/ABCG2) on sunitinib pharmacokinetics.Drug Metab. Pharmacokinet.201227663163910.2133/dmpk.DMPK‑12‑RG‑02622673043
    [Google Scholar]
  77. ShuklaS. RobeyR.W. BatesS.E. AmbudkarS.V. Sunitinib (Sutent, SU11248), a small-molecule receptor tyrosine kinase inhibitor, blocks function of the ATP-binding cassette (ABC) transporters P-glycoprotein (ABCB1) and ABCG2.Drug Metab. Dispos.200937235936510.1124/dmd.108.02461218971320
    [Google Scholar]
  78. LeeJ. KangJ. KwonN.Y. SivaramanA. NaikR. JinS.Y. OhA.R. ShinJ.H. NaY. LeeK. LeeH.J. Dual inhibition of P-gp and BCRP improves oral topotecan bioavailability in rodents.Pharmaceutics202113455910.3390/pharmaceutics1304055933921129
    [Google Scholar]
  79. BihorelS. CamenischG. LemaireM. ScherrmannJ.M. Influence of breast cancer resistance protein (Abcg2) and p-glycoprotein (Abcb1a) on the transport of imatinib mesylate (Gleevec ® ) across the mouse blood–brain barrier.J. Neurochem.200710261749175710.1111/j.1471‑4159.2007.04808.x17696988
    [Google Scholar]
  80. KuhnsH.V.L. WoodwardO.M. Urate transport in health and disease.Best Pract. Res. Clin. Rheumatol.202135410171710.1016/j.berh.2021.10171734690083
    [Google Scholar]
  81. EckenstalerR. BenndorfR.A. The role of ABCG2 in the pathogenesis of primary hyperuricemia and gout—an update.Int. J. Mol. Sci.20212213667810.3390/ijms2213667834206432
    [Google Scholar]
  82. WoodwardO.M. KöttgenA. CoreshJ. BoerwinkleE. GugginoW.B. KöttgenM. Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout.Proc. Natl. Acad. Sci. USA200910625103381034210.1073/pnas.090124910619506252
    [Google Scholar]
  83. NakayamaA. MatsuoH. TakadaT. IchidaK. NakamuraT. IkebuchiY. ItoK. HosoyaT. KanaiY. SuzukiH. ShinomiyaN. ABCG2 is a high-capacity urate transporter and its genetic impairment increases serum uric acid levels in humans.Nucl. Nucleot. Nucl. Acids201130121091109710.1080/15257770.2011.63395322132962
    [Google Scholar]
  84. WoodwardO.M. ABCG2: The molecular mechanisms of urate secretion and gout.Am. J. Physiol. Renal Physiol.20153096F485F48810.1152/ajprenal.00242.201526136557
    [Google Scholar]
  85. DongZ. GuoS. YangY. WuJ. GuanM. ZouH. JinL. WangJ. Association between ABCG 2 Q141K polymorphism and gout risk affected by ethnicity and gender: A systematic review and meta-analysis.Int. J. Rheum. Dis.201518438239110.1111/1756‑185X.1251925639607
    [Google Scholar]
  86. RippergerA. BenndorfR.A. The C421A (Q141K) polymorphism enhances the 3′-untranslated region (3′-UTR)-dependent regulation of ATP-binding cassette transporter ABCG2.Biochem. Pharmacol.201610413914710.1016/j.bcp.2016.02.01126903388
    [Google Scholar]
  87. DeppeS. RippergerA. WeissJ. ErgünS. BenndorfR.A. Impact of genetic variability in the ABCG2 gene on ABCG2 expression, function, and interaction with AT1 receptor antagonist telmisartan.Biochem. Biophys. Res. Commun.201444341211121710.1016/j.bbrc.2013.12.11924388985
    [Google Scholar]
  88. FurukawaT. WakabayashiK. TamuraA. NakagawaH. MorishimaY. OsawaY. IshikawaT. Major SNP (Q141K) variant of human ABC transporter ABCG2 undergoes lysosomal and proteasomal degradations.Pharm. Res.200926246947910.1007/s11095‑008‑9752‑718958403
    [Google Scholar]
  89. BartosZ. HomolyaL. Identification of specific trafficking defects of naturally occurring variants of the human ABCG2 transporter.Front. Cell Dev. Biol.2021961572910.3389/fcell.2021.61572933634118
    [Google Scholar]
  90. TakadaT. IchidaK. MatsuoH. NakayamaA. MurakamiK. YamanashiY. KasugaH. ShinomiyaN. SuzukiH. ABCG2 dysfunction increases serum uric acid by decreased intestinal urate excretion.Nucl. Nucl. Nucl. Acids2014334-627528110.1080/15257770.2013.85490224940679
    [Google Scholar]
  91. WrigleyR. Phipps-GreenA.J. ToplessR.K. MajorT.J. CadzowM. RichesP. TauscheA.K. JanssenM. JoostenL.A.B. JansenT.L. SoA. HindmarshH.J. StampL.K. DalbethN. MerrimanT.R. Pleiotropic effect of the ABCG2 gene in gout: Involvement in serum urate levels and progression from hyperuricemia to gout.Arthritis Res. Ther.20202214510.1186/s13075‑020‑2136‑z32164793
    [Google Scholar]
  92. IchidaK. MatsuoH. TakadaT. NakayamaA. MurakamiK. ShimizuT. YamanashiY. KasugaH. NakashimaH. NakamuraT. TakadaY. KawamuraY. InoueH. OkadaC. UtsumiY. IkebuchiY. ItoK. NakamuraM. ShinoharaY. HosoyamadaM. SakuraiY. ShinomiyaN. HosoyaT. SuzukiH. Decreased extra-renal urate excretion is a common cause of hyperuricemia.Nat. Commun.20123176410.1038/ncomms175622473008
    [Google Scholar]
  93. PetersonL.W. ArtisD. Intestinal epithelial cells: Regulators of barrier function and immune homeostasis.Nat. Rev. Immunol.201414314115310.1038/nri360824566914
    [Google Scholar]
  94. LiQ. YuC. ChenY. LiuS. AzevedoP. GongJ. OK. YangC. Citral alleviates peptidoglycan-induced inflammation and disruption of barrier functions in porcine intestinal epithelial cells.J. Cell. Physiol.202223731768177910.1002/jcp.3064034791644
    [Google Scholar]
  95. YaoY. ShangW. BaoL. PengZ. WuC. Epithelial-immune cell crosstalk for intestinal barrier homeostasis.Eur. J. Immunol.2024546235063110.1002/eji.20235063138556632
    [Google Scholar]
  96. PengJ. SongX. ZhuF. ZhangC. XiaJ. ZouD. LiuJ. YinF. YinL. GuoH. LiuJ. ABCG2 plays a central role in the dysregulation of 25-hydrovitamin D in Crohn’s disease.J. Nutr. Biochem.202311810936010.1016/j.jnutbio.2023.10936037087072
    [Google Scholar]
  97. LiuJ. FuL. YinF. YinL. SongX. GuoH. LiuJ. Diosmetin maintains barrier integrity by reducing the expression of ABCG2 in colonic epithelial cells.J. Agric. Food Chem.202371238931894010.1021/acs.jafc.3c0091237269551
    [Google Scholar]
  98. DahanA. AmidonG.L. Small intestinal efflux mediated by MRP2 and BCRP shifts sulfasalazine intestinal permeability from high to low, enabling its colonic targeting.Am. J. Physiol. Gastrointest. Liver Physiol.20092972G371G37710.1152/ajpgi.00102.200919541926
    [Google Scholar]
  99. AlMarzooqiS.K. AlmarzooqiF. SadidaH.Q. JerobinJ. AhmedI. Abou-SamraA.B. FakhroK.A. DhawanP. BhatA.A. Al-Shabeeb AkilA.S. Deciphering the complex interplay of obesity, epithelial barrier dysfunction, and tight junction remodeling: Unraveling potential therapeutic avenues.Obes. Rev.2024258e1376610.1111/obr.1376638745386
    [Google Scholar]
  100. MishraJ. SimonsenR. KumarN. Intestinal breast cancer resistance protein (BCRP) requires Janus kinase 3 activity for drug efflux and barrier functions in obesity.J. Biol. Chem.201929448183371834810.1074/jbc.RA119.00775831653704
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002368449250331144821
Loading
/content/journals/cdm/10.2174/0113892002368449250331144821
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test