Skip to content
2000
image of Expression, Function, and Regulation of ABCG2 on the Intestinal Epithelial Barrier Permeability
  • Expression, Function, and Regulation of ABCG2 on the Intestinal Epithelial Barrier Permeability

  • Authors: Ping Shi, Lianhua Tang, Fei Yin, Hong Guo and Jianhui Liu
  • 1 1College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, People’s Republic of China ; 2Chongqing  Key  Laboratory  of  Target-Based  Drug  Discovery  and  Research,  Chongqing,  400054,  China ;  3Department  of  Gastroenterology,  Chongqing  General  Hospital, University  of  Chinese  Academy  of  Sciences,  Chongqing,  401147,  People’s Republic of China
  • Source: Current Drug Metabolism
    Available online: 11 April 2025
  • DOI: https://doi.org/10.2174/0113892002368449250331144821
    • Received: 22 Nov 2024
    • Accepted: 04 Feb 2025
    • Available online: 11 Apr 2025

Abstract

Human breast cancer resistance protein (BCRP, gene symbol ABCG2) is an ATP-binding cassette (ABC) efflux transporter that is highly expressed on the apical membranes of intestinal epithelium and contributes to the absorption, distribution, and elimination of xenobiotics and the efflux of endogenous molecules. Also, the intestinal epithelial monolayer is the largest interface and the most important functional barrier between the internal environment and the systemic circulation. Extensive studies have demonstrated that intestinal ABCG2 of humans and rodents plays a crucial role in limiting absorption of xenobiotics, which are ABCG2 transport substrates, in the small intestine by mediating distribution in the intestinal epithelial barrier. Therefore, changes in the expression, function and activity of ABCG2 in the intestinal epithelial barrier play important roles in drug response and side effects. In this review, we specifically summarize the current research progress of ABCG2 in intestinal drug transport, intestinal urate excretion and intestinal barrier dysfunction, and its role in altering the intestinal epithelial barrier permeability in human intestinal disorder.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002368449250331144821
2025-04-11
2025-09-15
Loading full text...

Full text loading...

References

  1. Robey R.W. To K.K.K. Polgar O. Dohse M. Fetsch P. Dean M. Bates S.E. ABCG2: A perspective. Adv. Drug Deliv. Rev. 2009 61 1 3 13 10.1016/j.addr.2008.11.003 19135109
    [Google Scholar]
  2. Zhou S. Schuetz J.D. Bunting K.D. Colapietro A.M. Sampath J. Morris J.J. Lagutina I. Grosveld G.C. Osawa M. Nakauchi H. Sorrentino B.P. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat. Med. 2001 7 9 1028 1034 10.1038/nm0901‑1028 11533706
    [Google Scholar]
  3. Hira D. Terada T. BCRP/ABCG2 and high-alert medications: Biochemical, pharmacokinetic, pharmacogenetic, and clinical implications. Biochem. Pharmacol. 2018 147 201 210 10.1016/j.bcp.2017.10.004 29031817
    [Google Scholar]
  4. Safar Z. Kis E. Erdo F. Zolnerciks J.K. Krajcsi P. ABCG2/BCRP: Variants, transporter interaction profile of substrates and inhibitors. Expert Opin. Drug Metab. Toxicol. 2019 15 4 313 328 10.1080/17425255.2019.1591373 30856014
    [Google Scholar]
  5. Bakhsheshian J. Hall M.D. Robey R.W. Herrmann M.A. Chen J.Q. Bates S.E. Gottesman M.M. Overlapping substrate and inhibitor specificity of human and murine ABCG2. Drug Metab. Dispos. 2013 41 10 1805 1812 10.1124/dmd.113.053140 23868912
    [Google Scholar]
  6. Álvarez-Fernández L. Gomez-Gomez A. Haro N. García-Lino A.M. Álvarez A.I. Pozo O.J. Merino G. ABCG2 transporter plays a key role in the biodistribution of melatonin and its main metabolites. J. Pineal Res. 2023 74 2 e12849 10.1111/jpi.12849 36562106
    [Google Scholar]
  7. Suzuki M. Suzuki H. Sugimoto Y. Sugiyama Y. ABCG2 transports sulfated conjugates of steroids and xenobiotics. J. Biol. Chem. 2003 278 25 22644 22649 10.1074/jbc.M212399200 12682043
    [Google Scholar]
  8. Hosomi A. Nakanishi T. Fujita T. Tamai I. Extra-renal elimination of uric acid via intestinal efflux transporter BCRP/ABCG2. PLoS One 2012 7 2 e30456 10.1371/journal.pone.0030456 22348008
    [Google Scholar]
  9. Brechbuhl H.M. Gould N. Kachadourian R. Riekhof W.R. Voelker D.R. Day B.J. Glutathione transport is a unique function of the ATP-binding cassette protein ABCG2. J. Biol. Chem. 2010 285 22 16582 16587 10.1074/jbc.M109.090506 20332504
    [Google Scholar]
  10. Herwaarden V.A.E. Wagenaar E. Merino G. Jonker J.W. Rosing H. Beijnen J.H. Schinkel A.H. Multidrug transporter ABCG2/breast cancer resistance protein secretes riboflavin (vitamin B2) into milk. Mol. Cell. Biol. 2007 27 4 1247 1253 10.1128/MCB.01621‑06 17145775
    [Google Scholar]
  11. Desuzinges-Mandon E. Arnaud O. Martinez L. Huché F. Pietro D.A. Falson P. ABCG2 transports and transfers heme to albumin through its large extracellular loop. J. Biol. Chem. 2010 285 43 33123 33133 10.1074/jbc.M110.139170 20705604
    [Google Scholar]
  12. Herwaarden A.E. Wagenaar E. Karnekamp B. Merino G. Jonker J.W. Schinkel A.H. Breast cancer resistance protein (Bcrp1/Abcg2) reduces systemic exposure of the dietary carcinogens aflatoxin B1, IQ and Trp-P-1 but also mediates their secretion into breast milk. Carcinogenesis 2005 27 1 123 130 10.1093/carcin/bgi176 16000399
    [Google Scholar]
  13. Myllynen P. Kummu M. Kangas T. Ilves M. Immonen E. Rysä J. Pirilä R. Lastumäki A. Vähäkangas K.H. ABCG2/BCRP decreases the transfer of a food-born chemical carcinogen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in perfused term human placenta. Toxicol. Appl. Pharmacol. 2008 232 2 210 217 10.1016/j.taap.2008.07.006 18680760
    [Google Scholar]
  14. Enokizono J. Kusuhara H. Ose A. Schinkel A.H. Sugiyama Y. Quantitative investigation of the role of breast cancer resistance protein (Bcrp/Abcg2) in limiting brain and testis penetration of xenobiotic compounds. Drug Metab. Dispos. 2008 36 6 995 1002 10.1124/dmd.107.019257 18322075
    [Google Scholar]
  15. Pan G. Giri N. Elmquist W.F. Abcg2/Bcrp1 mediates the polarized transport of antiretroviral nucleosides abacavir and zidovudine. Drug Metab. Dispos. 2007 35 7 1165 1173 10.1124/dmd.106.014274 17437964
    [Google Scholar]
  16. Kim H.S. Sunwoo Y.E. Ryu J.Y. Kang H.J. Jung H.E. Song I.S. Kim E.Y. Shim J.C. Shon J.H. Shin J.G. The effect of ABCG2 V12M, Q141K and Q126X, known functional variants in vitro, on the disposition of lamivudine. Br. J. Clin. Pharmacol. 2007 64 5 645 654 10.1111/j.1365‑2125.2007.02944.x 17509035
    [Google Scholar]
  17. Gonçalves J. Silva S. Gouveia F. Bicker J. Falcão A. Alves G. Fortuna A. A combo-strategy to improve brain delivery of antiepileptic drugs: Focus on BCRP and intranasal administration. Int. J. Pharm. 2021 593 120161 10.1016/j.ijpharm.2020.120161 33307160
    [Google Scholar]
  18. Milane A. Vautier S. Chacun H. Meininger V. Bensimon G. Farinotti R. Fernandez C. Interactions between riluzole and ABCG2/BCRP transporter. Neurosci. Lett. 2009 452 1 12 16 10.1016/j.neulet.2008.12.061 19146924
    [Google Scholar]
  19. Römermann K. Helmer R. Löscher W. The antiepileptic drug lamotrigine is a substrate of mouse and human breast cancer resistance protein (ABCG2). Neuropharmacology 2015 93 7 14 10.1016/j.neuropharm.2015.01.015 25645391
    [Google Scholar]
  20. Keskitalo J.E. Zolk O. Fromm M.F. Kurkinen K.J. Neuvonen P.J. Niemi M. ABCG2 polymorphism markedly affects the pharmacokinetics of atorvastatin and rosuvastatin. Clin. Pharmacol. Ther. 2009 86 2 197 203 10.1038/clpt.2009.79 19474787
    [Google Scholar]
  21. Hirano M. Maeda K. Matsushima S. Nozaki Y. Kusuhara H. Sugiyama Y. Involvement of BCRP (ABCG2) in the biliary excretion of pitavastatin. Mol. Pharmacol. 2005 68 3 800 807 10.1124/mol.105.014019 15955871
    [Google Scholar]
  22. Causevic-Ramosevac A. Semiz S. Drug interactions with statins. Acta Pharm. 2013 63 3 277 293 10.2478/acph‑2013‑0022 24152892
    [Google Scholar]
  23. Haslam I.S. Wright J.A. O’Reilly D.A. Sherlock D.J. Coleman T. Simmons N.L. Intestinal ciprofloxacin efflux: The role of breast cancer resistance protein (ABCG2). Drug Metab. Dispos. 2011 39 12 2321 2328 10.1124/dmd.111.038323 21930826
    [Google Scholar]
  24. Pulido M.M. Molina A.J. Merino G. Mendoza G. Prieto J.G. Alvarez A. Interaction of enrofloxacin with breast cancer resistance protein (BCRP/ABCG2): Influence of flavonoids and role in milk secretion in sheep. J. Vet. Pharmacol. Ther. 2006 29 4 279 287 10.1111/j.1365‑2885.2006.00744.x 16846465
    [Google Scholar]
  25. Merino G. Álvarez A.I. Pulido M.M. Molina A.J. Schinkel A.H. Prieto J.G. Breast cancer resistance protein (BCRP/ABCG2) transports fluoroquinolone antibiotics and affects their oral availability, pharmacokinetics, and milk secretion. Drug Metab. Dispos. 2006 34 4 690 695 10.1124/dmd.105.008219 16434544
    [Google Scholar]
  26. Mendes C. Meirelles G.C. Silva M.A.S. Ponchel G. Intestinal permeability determinants of norfloxacin in ussing chamber model. Eur. J. Pharm. Sci. 2018 121 236 242 10.1016/j.ejps.2018.05.030 29860116
    [Google Scholar]
  27. Merino G. Jonker J.W. Wagenaar E. Herwaarden V.A.E. Schinkel A.H. The breast cancer resistance protein (BCRP/ABCG2) affects pharmacokinetics, hepatobiliary excretion, and milk secretion of the antibiotic nitrofurantoin. Mol. Pharmacol. 2005 67 5 1758 1764 10.1124/mol.104.010439 15709111
    [Google Scholar]
  28. Volk E.L. Schneider E. Wild-type breast cancer resistance protein (BCRP/ABCG2) is a methotrexate polyglutamate transporter. Cancer Res. 2003 63 17 5538 5543 14500392
    [Google Scholar]
  29. Gooijer D.M.C. Vries D.N.A. Buckle T. Buil L.C.M. Beijnen J.H. Boogerd W. Tellingen V.O. Improved brain penetration and antitumor efficacy of temozolomide by inhibition of ABCB1 and ABCG2. Neoplasia 2018 20 7 710 720 10.1016/j.neo.2018.05.001 29852323
    [Google Scholar]
  30. Homolya L. Orbán T.I. Csanády L. Sarkadi B. Mitoxantrone is expelled by the ABCG2 multidrug transporter directly from the plasma membrane. Biochim. Biophys. Acta Biomembr. 2011 1808 1 154 163 10.1016/j.bbamem.2010.07.031 20691148
    [Google Scholar]
  31. Michaelis M. Selt F. Rothweiler F. Wiese M. Cinatl J. Jr ABCG2 impairs the activity of the aurora kinase inhibitor tozasertib but not of alisertib. BMC Res. Notes 2015 8 1 484 10.1186/s13104‑015‑1405‑4 26415506
    [Google Scholar]
  32. Sparreboom A. Loos W.J. Burger H. Sissung T.M. Verweij J. Figg W. II Nooter K. Gelderblom H. Effect of ABCG2 genotype on the oral vioavailability of topotecan. Cancer Biol. Ther. 2005 4 6 650 653 10.4161/cbt.4.6.1731 15908806
    [Google Scholar]
  33. Yuan J. Lv H. Peng B. Wang C. Yu Y. He Z. Role of BCRP as a biomarker for predicting resistance to 5-fluorouracil in breast cancer. Cancer Chemother. Pharmacol. 2009 63 6 1103 1110 10.1007/s00280‑008‑0838‑z 18820913
    [Google Scholar]
  34. Zhou Q. Ye M. Lu Y. Zhang H. Chen Q. Huang S. Su S. Curcumin improves the tumoricidal effect of mitomycin c by suppressing abcg2 expression in stem cell-like breast cancer cells. PLoS One 2015 10 8 e0136694 10.1371/journal.pone.0136694 26305906
    [Google Scholar]
  35. Zaher H. Khan A.A. Palandra J. Brayman T.G. Yu L. Ware J.A. Breast cancer resistance protein (Bcrp/abcg2) is a major determinant of sulfasalazine absorption and elimination in the mouse. Mol. Pharm. 2006 3 1 55 61 10.1021/mp050113v 16686369
    [Google Scholar]
  36. Pavek P. Merino G. Wagenaar E. Bolscher E. Novotna M. Jonker J.W. Schinkel A.H. Human breast cancer resistance protein: Interactions with steroid drugs, hormones, the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine, and transport of cimetidine. J. Pharmacol. Exp. Ther. 2005 312 1 144 152 10.1124/jpet.104.073916 15365089
    [Google Scholar]
  37. Shukla S. Wu C.P. Nandigama K. Ambudkar S.V. The naphthoquinones, vitamin K3 and its structural analogue plumbagin, are substrates of the multidrug resistance–linked ATP binding cassette drug transporter ABCG2. Mol. Cancer Ther. 2007 6 12 3279 3286 10.1158/1535‑7163.MCT‑07‑0564 18065489
    [Google Scholar]
  38. Zhou L. Naraharisetti S.B. Wang H. Unadkat J.D. Hebert M.F. Mao Q. The breast cancer resistance protein (Bcrp1/Abcg2) limits fetal distribution of glyburide in the pregnant mouse: An Obstetric-Fetal Pharmacology Research Unit Network and University of Washington Specialized Center of Research Study. Mol. Pharmacol. 2008 73 3 949 959 10.1124/mol.107.041616 18079276
    [Google Scholar]
  39. Zhang Y. Bressler J.P. Neal J. Lal B. Bhang H.E.C. Laterra J. Pomper M.G. ABCG2/BCRP expression modulates D-Luciferin based bioluminescence imaging. Cancer Res. 2007 67 19 9389 9397 10.1158/0008‑5472.CAN‑07‑0944 17909048
    [Google Scholar]
  40. Neumanova Z. Cerveny L. Ceckova M. Staud F. Interactions of tenofovir and tenofovir disoproxil fumarate with drug efflux transporters ABCB1, ABCG2, and ABCC2; role in transport across the placenta. AIDS 2014 28 1 9 17 10.1097/QAD.0000000000000112 24413260
    [Google Scholar]
  41. Dezi M. Fribourg P.F. Cicco D.A. Arnaud O. Marco S. Falson P. Pietro D.A. Lévy D. The multidrug resistance half-transporter ABCG2 is purified as a tetramer upon selective extraction from membranes. Biochim. Biophys. Acta Biomembr. 2010 1798 11 2094 2101 10.1016/j.bbamem.2010.07.034 20691149
    [Google Scholar]
  42. Litman T. Brangi M. Hudson E. Fetsch P. Abati A. Ross D.D. Miyake K. Resau J.H. Bates S.E. The multidrug-resistant phenotype associated with overexpression of the new ABC half-transporter, MXR (ABCG2). J. Cell Sci. 2000 113 11 2011 2021 10.1242/jcs.113.11.2011 10806112
    [Google Scholar]
  43. Taylor N.M.I. Manolaridis I. Jackson S.M. Kowal J. Stahlberg H. Locher K.P. Structure of the human multidrug transporter ABCG2. Nature 2017 546 7659 504 509 10.1038/nature22345 28554189
    [Google Scholar]
  44. Kowal J. Ni D. Jackson S.M. Manolaridis I. Stahlberg H. Locher K.P. Structural basis of drug recognition by the multidrug transporter ABCG2. J. Mol. Biol. 2021 433 13 166980 10.1016/j.jmb.2021.166980 33838147
    [Google Scholar]
  45. Jackson S.M. Manolaridis I. Kowal J. Zechner M. Taylor N.M.I. Bause M. Bauer S. Bartholomaeus R. Bernhardt G. Koenig B. Buschauer A. Stahlberg H. Altmann K.H. Locher K.P. Structural basis of small-molecule inhibition of human multidrug transporter ABCG2. Nat. Struct. Mol. Biol. 2018 25 4 333 340 10.1038/s41594‑018‑0049‑1 29610494
    [Google Scholar]
  46. Manolaridis I. Jackson S.M. Taylor N.M.I. Kowal J. Stahlberg H. Locher K.P. Cryo-EM structures of a human ABCG2 mutant trapped in ATP-bound and substrate-bound states. Nature 2018 563 7731 426 430 10.1038/s41586‑018‑0680‑3 30405239
    [Google Scholar]
  47. Shen S. Callaghan D. Juzwik C. Xiong H. Huang P. Zhang W. ABCG2 reduces ROS‐mediated toxicity and inflammation: A potential role in Alzheimer’s disease. J. Neurochem. 2010 114 6 1590 1604 10.1111/j.1471‑4159.2010.06887.x 20626554
    [Google Scholar]
  48. Francois L.N. Gorczyca L. Du J. Bircsak K.M. Yen E. Wen X. Tu M.J. Yu A.M. Illsley N.P. Zamudio S. Aleksunes L.M. Down-regulation of the placental BCRP/ABCG2 transporter in response to hypoxia signaling. Placenta 2017 51 57 63 10.1016/j.placenta.2017.01.125 28292469
    [Google Scholar]
  49. Gorczyca L. Aleksunes L.M. Transcription factor-mediated regulation of the BCRP/ ABCG2 efflux transporter: A review across tissues and species. Expert Opin. Drug Metab. Toxicol. 2020 16 3 239 253 10.1080/17425255.2020.1732348 32077332
    [Google Scholar]
  50. Liu L. Zhao T. Shan L. Cao L. Zhu X. Xue Y. Estradiol regulates intestinal ABCG2 to promote urate excretion via the PI3K/Akt pathway. Nutr. Metab. (Lond.) 2021 18 1 63 10.1186/s12986‑021‑00583‑y 34144706
    [Google Scholar]
  51. Goler-Baron V. Sladkevich I. Assaraf Y.G. Inhibition of the PI3K-Akt signaling pathway disrupts ABCG2-rich extracellular vesicles and overcomes multidrug resistance in breast cancer cells. Biochem. Pharmacol. 2012 83 10 1340 1348 10.1016/j.bcp.2012.01.033 22342288
    [Google Scholar]
  52. Xie J. Jin B. Li D.W. Shen B. Cong N. Zhang T.Z. Dong P. ABCG2 regulated by MAPK pathways is associated with cancer progression in laryngeal squamous cell carcinoma. Am. J. Cancer Res. 2014 4 6 698 709 25520861
    [Google Scholar]
  53. Balbuena J. Pachon G. Lopez-Torrents G. Aran J.M. Castresana J.S. Petriz J. ABCG2 is required to control the sonic hedgehog pathway in side population cells with stem‐like properties. Cytometry A 2011 79A 9 672 683 10.1002/cyto.a.21103 21774076
    [Google Scholar]
  54. Hasanabady M.H. Kalalinia F. ABCG2 inhibition as a therapeutic approach for overcoming multidrug resistance in cancer. J. Biosci. 2016 41 2 313 324 10.1007/s12038‑016‑9601‑5 27240991
    [Google Scholar]
  55. Bhunia A.K. Al-Sadi R. Editorial: Intestinal epithelial barrier disruption by enteric pathogens. Front. Cell. Infect. Microbiol. 2023 13 1134753 10.3389/fcimb.2023.1134753 36714092
    [Google Scholar]
  56. Laukoetter M.G. Bruewer M. Nusrat A. Regulation of the intestinal epithelial barrier by the apical junctional complex. Curr. Opin. Gastroenterol. 2006 22 2 85 89 10.1097/01.mog.0000203864.48255.4f 16462161
    [Google Scholar]
  57. Schulzke J.D. Günzel D. John L.J. Fromm M. Perspectives on tight junction research. Ann. N. Y. Acad. Sci. 2012 1257 1 1 19 10.1111/j.1749‑6632.2012.06485.x 22671584
    [Google Scholar]
  58. Wang J.Y. Polyamines regulate expression of E-cadherin and play an important role in control of intestinal epithelial barrier function. Inflammopharmacology 2005 13 1-3 91 101 10.1163/156856005774423890 16259731
    [Google Scholar]
  59. Groschwitz K.R. Hogan S.P. Intestinal barrier function: Molecular regulation and disease pathogenesis. J. Allergy Clin. Immunol. 2009 124 1 3 20 10.1016/j.jaci.2009.05.038 19560575
    [Google Scholar]
  60. Catalioto R.M. Maggi C.A. Giuliani S. Intestinal epithelial barrier dysfunction in disease and possible therapeutical interventions. Curr. Med. Chem. 2011 18 3 398 426 10.2174/092986711794839179 21143118
    [Google Scholar]
  61. Guttman J.A. Finlay B.B. Tight junctions as targets of infectious agents. Biochim. Biophys. Acta Biomembr. 2009 1788 4 832 841 10.1016/j.bbamem.2008.10.028 19059200
    [Google Scholar]
  62. Wang W. Uzzau S. Goldblum S.E. Fasano A. Human zonulin, a potential modulator of intestinal tight junctions. J. Cell Sci. 2000 113 24 4435 4440 10.1242/jcs.113.24.4435 11082037
    [Google Scholar]
  63. Schmitz H. Barmeyer C. Gitter A.H. Wullstein F. Bentzel C.J. Fromm M. Riecken E.O. Schulzke J.D. Epithelial barrier and transport function of the colon in ulcerative colitis. Ann. N. Y. Acad. Sci. 2000 915 1 312 326 10.1111/j.1749‑6632.2000.tb05259.x 11193594
    [Google Scholar]
  64. Parikh K. Antanaviciute A. Fawkner-Corbett D. Jagielowicz M. Aulicino A. Lagerholm C. Davis S. Kinchen J. Chen H.H. Alham N.K. Ashley N. Johnson E. Hublitz P. Bao L. Lukomska J. Andev R.S. Björklund E. Kessler B.M. Fischer R. Goldin R. Koohy H. Simmons A. Colonic epithelial cell diversity in health and inflammatory bowel disease. Nature 2019 567 7746 49 55 10.1038/s41586‑019‑0992‑y 30814735
    [Google Scholar]
  65. Gutmann H. Hruz P. Zimmermann C. Beglinger C. Drewe J. Distribution of breast cancer resistance protein (BCRP/ABCG2) mRNA expression along the human GI tract. Biochem. Pharmacol. 2005 70 5 695 699 10.1016/j.bcp.2005.05.031 15998509
    [Google Scholar]
  66. Horsey A.J. Cox M.H. Sarwat S. Kerr I.D. The multidrug transporter ABCG2: Still more questions than answers. Biochem. Soc. Trans. 2016 44 3 824 830 10.1042/BST20160014 27284047
    [Google Scholar]
  67. Kruijtzer C.M.F. Beijnen J.H. Rosing H. ten Bokkel Huinink W.W. Schot M. Jewell R.C. Paul E.M. Schellens J.H.M. Increased oral bioavailability of topotecan in combination with the breast cancer resistance protein and P-glycoprotein inhibitor GF120918. J. Clin. Oncol. 2002 20 13 2943 2950 10.1200/JCO.2002.12.116 12089223
    [Google Scholar]
  68. Houghton P.J. Germain G.S. Harwood F.C. Schuetz J.D. Stewart C.F. Buchdunger E. Traxler P. Imatinib mesylate is a potent inhibitor of the ABCG2 (BCRP) transporter and reverses resistance to topotecan and SN-38 in vitro. Cancer Res. 2004 64 7 2333 2337 10.1158/0008‑5472.CAN‑03‑3344 15059881
    [Google Scholar]
  69. Burger H. Tol V.H. Brok M. Wiemer E.A.C. Bruijn D.E.A. Guetens G. Boeck D.G. Sparreboom A. Verweij J. Nooter K. Chronic imatinib mesylate exposure leads to reduced intracellular drug accumulation by induction of the ABCG2 (BCRP) and ABCB1 (MDR1) drug transport pumps. Cancer Biol. Ther. 2005 4 7 747 752 10.4161/cbt.4.7.1826 15970668
    [Google Scholar]
  70. Mao Q. Unadkat J.D. Role of the breast cancer resistance protein (BCRP/ABCG2) in drug transport--an update. AAPS J. 2015 17 1 65 82 10.1208/s12248‑014‑9668‑6 25236865
    [Google Scholar]
  71. Ieiri I. Functional significance of genetic polymorphisms in P-glycoprotein (MDR1, ABCB1) and breast cancer resistance protein (BCRP, ABCG2). Drug Metab. Pharmacokinet. 2012 27 1 85 105 10.2133/dmpk.DMPK‑11‑RV‑098 22123128
    [Google Scholar]
  72. Yu Q. Ni D. Kowal J. Manolaridis I. Jackson S.M. Stahlberg H. Locher K.P. Structures of ABCG2 under turnover conditions reveal a key step in the drug transport mechanism. Nat. Commun. 2021 12 1 4376 10.1038/s41467‑021‑24651‑2 34282134
    [Google Scholar]
  73. Sáfár Z. Kecskeméti G. Molnár J. Kurunczi A. Szabó Z. Janáky T. Kis E. Krajcsi P. Inhibition of ABCG2/BCRP-mediated transport–correlation analysis of various expression systems and probe substrates. Eur. J. Pharm. Sci. 2021 156 105593 10.1016/j.ejps.2020.105593 33059043
    [Google Scholar]
  74. Wang F. Liang Y. Wu X. Chen L. To K.K.W. Dai C. Yan Y. Wang Y. Tong X. Fu L. Prognostic value of the multidrug resistance transporter ABCG2 gene polymorphisms in Chinese patients with de novo acute leukaemia. Eur. J. Cancer 2011 47 13 1990 1999 10.1016/j.ejca.2011.03.032 21531129
    [Google Scholar]
  75. Fratte D.C. Polesel J. Gagno S. Posocco B. Mattia D.E. Roncato R. Orleni M. Puglisi F. Guardascione M. Buonadonna A. Toffoli G. Cecchin E. Impact of ABCG2 and ABCB1 polymorphisms on imatinib plasmatic exposure: An original work and meta-analysis. Int. J. Mol. Sci. 2023 24 4 3303 10.3390/ijms24043303 36834713
    [Google Scholar]
  76. Mizuno T. Fukudo M. Terada T. Kamba T. Nakamura E. Ogawa O. Inui K. Katsura T. Impact of genetic variation in breast cancer resistance protein (BCRP/ABCG2) on sunitinib pharmacokinetics. Drug Metab. Pharmacokinet. 2012 27 6 631 639 10.2133/dmpk.DMPK‑12‑RG‑026 22673043
    [Google Scholar]
  77. Shukla S. Robey R.W. Bates S.E. Ambudkar S.V. Sunitinib (Sutent, SU11248), a small-molecule receptor tyrosine kinase inhibitor, blocks function of the ATP-binding cassette (ABC) transporters P-glycoprotein (ABCB1) and ABCG2. Drug Metab. Dispos. 2009 37 2 359 365 10.1124/dmd.108.024612 18971320
    [Google Scholar]
  78. Lee J. Kang J. Kwon N.Y. Sivaraman A. Naik R. Jin S.Y. Oh A.R. Shin J.H. Na Y. Lee K. Lee H.J. Dual inhibition of P-gp and BCRP improves oral topotecan bioavailability in rodents. Pharmaceutics 2021 13 4 559 10.3390/pharmaceutics13040559 33921129
    [Google Scholar]
  79. Bihorel S. Camenisch G. Lemaire M. Scherrmann J.M. Influence of breast cancer resistance protein (Abcg2) and p‐glycoprotein (Abcb1a) on the transport of imatinib mesylate (Gleevec ® ) across the mouse blood–brain barrier. J. Neurochem. 2007 102 6 1749 1757 10.1111/j.1471‑4159.2007.04808.x 17696988
    [Google Scholar]
  80. Kuhns H.V.L. Woodward O.M. Urate transport in health and disease. Best Pract. Res. Clin. Rheumatol. 2021 35 4 101717 10.1016/j.berh.2021.101717 34690083
    [Google Scholar]
  81. Eckenstaler R. Benndorf R.A. The role of ABCG2 in the pathogenesis of primary hyperuricemia and gout—an update. Int. J. Mol. Sci. 2021 22 13 6678 10.3390/ijms22136678 34206432
    [Google Scholar]
  82. Woodward O.M. Köttgen A. Coresh J. Boerwinkle E. Guggino W.B. Köttgen M. Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proc. Natl. Acad. Sci. USA 2009 106 25 10338 10342 10.1073/pnas.0901249106 19506252
    [Google Scholar]
  83. Nakayama A. Matsuo H. Takada T. Ichida K. Nakamura T. Ikebuchi Y. Ito K. Hosoya T. Kanai Y. Suzuki H. Shinomiya N. ABCG2 is a high-capacity urate transporter and its genetic impairment increases serum uric acid levels in humans. Nucl. Nucleot. Nucl. Acids 2011 30 12 1091 1097 10.1080/15257770.2011.633953 22132962
    [Google Scholar]
  84. Woodward O.M. ABCG2: The molecular mechanisms of urate secretion and gout. Am. J. Physiol. Renal Physiol. 2015 309 6 F485 F488 10.1152/ajprenal.00242.2015 26136557
    [Google Scholar]
  85. Dong Z. Guo S. Yang Y. Wu J. Guan M. Zou H. Jin L. Wang J. Association between ABCG 2 Q141K polymorphism and gout risk affected by ethnicity and gender: A systematic review and meta‐analysis. Int. J. Rheum. Dis. 2015 18 4 382 391 10.1111/1756‑185X.12519 25639607
    [Google Scholar]
  86. Ripperger A. Benndorf R.A. The C421A (Q141K) polymorphism enhances the 3′-untranslated region (3′-UTR)-dependent regulation of ATP-binding cassette transporter ABCG2. Biochem. Pharmacol. 2016 104 139 147 10.1016/j.bcp.2016.02.011 26903388
    [Google Scholar]
  87. Deppe S. Ripperger A. Weiss J. Ergün S. Benndorf R.A. Impact of genetic variability in the ABCG2 gene on ABCG2 expression, function, and interaction with AT1 receptor antagonist telmisartan. Biochem. Biophys. Res. Commun. 2014 443 4 1211 1217 10.1016/j.bbrc.2013.12.119 24388985
    [Google Scholar]
  88. Furukawa T. Wakabayashi K. Tamura A. Nakagawa H. Morishima Y. Osawa Y. Ishikawa T. Major SNP (Q141K) variant of human ABC transporter ABCG2 undergoes lysosomal and proteasomal degradations. Pharm. Res. 2009 26 2 469 479 10.1007/s11095‑008‑9752‑7 18958403
    [Google Scholar]
  89. Bartos Z. Homolya L. Identification of specific trafficking defects of naturally occurring variants of the human ABCG2 transporter. Front. Cell Dev. Biol. 2021 9 615729 10.3389/fcell.2021.615729 33634118
    [Google Scholar]
  90. Takada T. Ichida K. Matsuo H. Nakayama A. Murakami K. Yamanashi Y. Kasuga H. Shinomiya N. Suzuki H. ABCG2 dysfunction increases serum uric acid by decreased intestinal urate excretion. Nucl. Nucl. Nucl. Acids 2014 33 4-6 275 281 10.1080/15257770.2013.854902 24940679
    [Google Scholar]
  91. Wrigley R. Phipps-Green A.J. Topless R.K. Major T.J. Cadzow M. Riches P. Tausche A.K. Janssen M. Joosten L.A.B. Jansen T.L. So A. Hindmarsh H.J. Stamp L.K. Dalbeth N. Merriman T.R. Pleiotropic effect of the ABCG2 gene in gout: Involvement in serum urate levels and progression from hyperuricemia to gout. Arthritis Res. Ther. 2020 22 1 45 10.1186/s13075‑020‑2136‑z 32164793
    [Google Scholar]
  92. Ichida K. Matsuo H. Takada T. Nakayama A. Murakami K. Shimizu T. Yamanashi Y. Kasuga H. Nakashima H. Nakamura T. Takada Y. Kawamura Y. Inoue H. Okada C. Utsumi Y. Ikebuchi Y. Ito K. Nakamura M. Shinohara Y. Hosoyamada M. Sakurai Y. Shinomiya N. Hosoya T. Suzuki H. Decreased extra-renal urate excretion is a common cause of hyperuricemia. Nat. Commun. 2012 3 1 764 10.1038/ncomms1756 22473008
    [Google Scholar]
  93. Peterson L.W. Artis D. Intestinal epithelial cells: Regulators of barrier function and immune homeostasis. Nat. Rev. Immunol. 2014 14 3 141 153 10.1038/nri3608 24566914
    [Google Scholar]
  94. Li Q. Yu C. Chen Y. Liu S. Azevedo P. Gong J. O K. Yang C. Citral alleviates peptidoglycan‐induced inflammation and disruption of barrier functions in porcine intestinal epithelial cells. J. Cell. Physiol. 2022 237 3 1768 1779 10.1002/jcp.30640 34791644
    [Google Scholar]
  95. Yao Y. Shang W. Bao L. Peng Z. Wu C. Epithelial‐immune cell crosstalk for intestinal barrier homeostasis. Eur. J. Immunol. 2024 54 6 2350631 10.1002/eji.202350631 38556632
    [Google Scholar]
  96. Peng J. Song X. Zhu F. Zhang C. Xia J. Zou D. Liu J. Yin F. Yin L. Guo H. Liu J. ABCG2 plays a central role in the dysregulation of 25-hydrovitamin D in Crohn’s disease. J. Nutr. Biochem. 2023 118 109360 10.1016/j.jnutbio.2023.109360 37087072
    [Google Scholar]
  97. Liu J. Fu L. Yin F. Yin L. Song X. Guo H. Liu J. Diosmetin maintains barrier integrity by reducing the expression of ABCG2 in colonic epithelial cells. J. Agric. Food Chem. 2023 71 23 8931 8940 10.1021/acs.jafc.3c00912 37269551
    [Google Scholar]
  98. Dahan A. Amidon G.L. Small intestinal efflux mediated by MRP2 and BCRP shifts sulfasalazine intestinal permeability from high to low, enabling its colonic targeting. Am. J. Physiol. Gastrointest. Liver Physiol. 2009 297 2 G371 G377 10.1152/ajpgi.00102.2009 19541926
    [Google Scholar]
  99. AlMarzooqi S.K. Almarzooqi F. Sadida H.Q. Jerobin J. Ahmed I. Abou-Samra A.B. Fakhro K.A. Dhawan P. Bhat A.A. Al-Shabeeb Akil A.S. Deciphering the complex interplay of obesity, epithelial barrier dysfunction, and tight junction remodeling: Unraveling potential therapeutic avenues. Obes. Rev. 2024 25 8 e13766 10.1111/obr.13766 38745386
    [Google Scholar]
  100. Mishra J. Simonsen R. Kumar N. Intestinal breast cancer resistance protein (BCRP) requires Janus kinase 3 activity for drug efflux and barrier functions in obesity. J. Biol. Chem. 2019 294 48 18337 18348 10.1074/jbc.RA119.007758 31653704
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002368449250331144821
Loading
/content/journals/cdm/10.2174/0113892002368449250331144821
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test