Skip to content
2000
image of Influence of Orange Oil on Skin Permeability, Dermatokinetics, and In Vivo Anti-inflammatory Properties of Lornoxicam-loaded Niosomal Gel

Abstract

Introduction

Lornoxicam is a non-steroidal anti-inflammatory drug belonging to the oxicam class. This study aimed to develop a niosomal gel containing orange oil for improving the anti-inflammatory effect of lornoxicam.

Methods

Lornoxicam-loaded niosomes (LOR-OR-NIO) were prepared using film hydration followed by the sonication method. Particle size, entrapment efficiency, and ex vivo permeation were all considered during the optimization of the niosomal gels by employing the Box-Behnken design. Dermatokinetics and anti-inflammatory studies were performed using male Wistar rats.

Results

The particle size, entrapment efficiency, and skin permeation ability of the optimized LOR-OR-NIO formulation were found to be 354.3 nm, 83.56%, and 105.63 µg/cm2, respectively. The ex vivo studies indicated that the optimized LOR-OR-NIO gel demonstrated superior drug penetration properties (105.43 µg/cm2) compared to both the LOR-NIO gel (69.23 µg/cm2) and the LOR gel (35.34 µg/cm2). The activation energy values of LOR gel, LOR-NIO gel, and LOR-OR-NIO gel were 2.74 Kcal mol-1, 1.93 Kcal mol-1, and 0.94 Kcal mol-1, respectively.

Discussion

The lower activation energy of the LOR-OR-NIO gel contributed to more skin penetration of the drug. Dermatokinetics investigation demonstrated that the LOR-OR-NIO gel had superior penetration in the epidermal and dermal areas compared to the LOR gel. anti-inflammatory studies indicated that the LOR-OR-NIO gel exhibited greater edema inhibition compared to both the LOR-NIO gel and LOR gel. These results demonstrated the enhanced anti-inflammatory activity of the LOR-OR-NIO gel.

Conclusion

The study concluded that orange oil enhanced skin permeability and influenced the dermatokinetics of the LOR-OR-NIO gel, leading to an improvement in anti-inflammatory properties.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002368281250630073115
2025-08-07
2025-11-05
Loading full text...

Full text loading...

References

  1. Gharbavi M. Amani J. Kheiri-Manjili H. Danafar H. Sharafi A. Niosome: A promising nanocarrier for natural drug delivery through blood‐brain barrier. Adv. Pharmacol. Sci. 2018 2018 1 15 10.1155/2018/6847971 30651728
    [Google Scholar]
  2. Masjedi M. Montahaei T. An illustrated review on nonionic surfactant vesicles (niosomes) as an approach in modern drug delivery: Fabrication, characterization, pharmaceutical, and cosmetic applications. J. Drug Deliv. Sci. Technol. 2021 61 102234 10.1016/j.jddst.2020.102234
    [Google Scholar]
  3. Mittal S. Chaudhary A. Chaudhary A. Kumar A. Proniosomes: The effective and efficient drug-carrier system. Ther. Deliv. 2020 11 2 125 137 10.4155/tde‑2019‑0065 31937205
    [Google Scholar]
  4. G D.B. P V.L. Recent advances of non-ionic surfactant-based nano-vesicles (niosomes and proniosomes): A brief review of these in enhancing transdermal delivery of drug. Future J. Pharm. Sci. 2020 6 1 100 10.1186/s43094‑020‑00117‑y
    [Google Scholar]
  5. Bhardwaj P. Tripathi P. Gupta R. Pandey S. Niosomes: A review on niosomal research in the last decade. J. Drug Deliv. Sci. Technol. 2020 56 101581 10.1016/j.jddst.2020.101581
    [Google Scholar]
  6. Chen S. Hanning S. Falconer J. Locke M. Wen J. Recent advances in non-ionic surfactant vesicles (niosomes): Fabrication, characterization, pharmaceutical and cosmetic applications. Eur. J. Pharm. Biopharm. 2019 144 18 39 10.1016/j.ejpb.2019.08.015 31446046
    [Google Scholar]
  7. Zaid Alkilani A. Hamed R. Abdo H. Swellmeen L. Basheer H.A. Wahdan W. Abu Kwiak A.D. Formulation and evaluation of azithromycin-loaded niosomal gel: Optimization, in vitro studies, rheological characterization, and cytotoxicity study. ACS Omega 2022 7 44 39782 39793 10.1021/acsomega.2c03762 36385887
    [Google Scholar]
  8. Anita C. Munira M. Mural Q. Shaily L. Topical nanocarriers for management of Rheumatoid Arthritis: A review. Biomed. Pharmacother. 2021 141 111880 10.1016/j.biopha.2021.111880 34328101
    [Google Scholar]
  9. Cosco D. Paolino D. Muzzalupo R. Celia C. Citraro R. Caponio D. Picci N. Fresta M. Novel PEG-coated niosomes based on bola-surfactant as drug carriers for 5-fluorouracil. Biomed. Microdevices 2009 11 5 1115 1125 10.1007/s10544‑009‑9328‑2 19507033
    [Google Scholar]
  10. Elsewedy H.S. Younis N.S. Shehata T.M. Mohamed M.E. Soliman W.E. Enhancement of anti-inflammatory activity of optimized niosomal colchicine loaded into jojoba oil-based emulgel using response surface methodology. Gels 2021 8 1 16 10.3390/gels8010016 35049551
    [Google Scholar]
  11. Sammour R. Taher M. Chatterjee B. Shahiwala A. Mahmood S. Optimization of aceclofenacproniosomes by using different carriers, part 1: Development and characterization. Pharmaceutics 2019 11 7 350 10.3390/pharmaceutics11070350 31323799
    [Google Scholar]
  12. Shilakari Asthana G. Asthana A. Singh D. Sharma P.K. Etodolac containing topical niosomal gel: Formulation development and evaluation. J. Drug Deliv. 2016 2016 1 8 10.1155/2016/9324567 27478643
    [Google Scholar]
  13. Junyaprasert V.B. Singhsa P. Jintapattanakit A. Influence of chemical penetration enhancers on skin permeability of ellagic acid-loaded niosomes. Asian J. Pharm. Sci. 2013 8 2 110 117 [REMOVED HYPERLINK FIELD]. 10.1016/j.ajps.2013.07.014
    [Google Scholar]
  14. Patil U.K. Saraogi R. Natural products as potential drug permeation enhancer in transdermal drug delivery system. Arch. Dermatol. Res. 2014 306 5 419 426 10.1007/s00403‑014‑1445‑y 24481830
    [Google Scholar]
  15. Vashisth I. Ahad A. Aqil M. Agarwal S.P. Investigating the potential of essential oils as penetration enhancer for transdermal losartan delivery: Effectiveness and mechanism of action. Asian J. Pharm. Sci. 2014 9 5 260 267 10.1016/j.ajps.2014.06.007
    [Google Scholar]
  16. Aggarwal G. Dhawan S. HariKumar S.L. Natural oils as skin permeation enhancers for transdermal delivery of olanzapine: in vitro and in vivo evaluation. Curr. Drug Deliv. 2012 9 2 172 181 10.2174/156720112800234567 22023211
    [Google Scholar]
  17. Das M.K. Palei N.N. Sorbitan ester niosomes for topical delivery of rofecoxib. Indian J. Exp. Biol. 2011 49 6 438 445 21702223
    [Google Scholar]
  18. Palei N.N. Mohanta B.C. Das M.K. Sabapathi M.L. Lornoxicam loaded nanostructured lipid carriers for topical delivery: Optimization, skin uptake and in vivo studies. J. Drug Deliv. Sci. Technol. 2017 39 490 500 10.1016/j.jddst.2017.05.001
    [Google Scholar]
  19. Shakeel F. Baboota S. Ahuja A. Ali J. Shafiq S. Skin permeation mechanism and bioavailability enhancement of celecoxib from transdermally applied nanoemulsion. J. Nanobiotechnology 2008 6 1 8 10.1186/1477‑3155‑6‑8 18613981
    [Google Scholar]
  20. Palei N.N. Vijayaraj S. Lathasri K. Archana D. Rajavel P. Chemometric approach to develop and validate rp-hplc method for estimation of erlotinib hydrochloride in nano structured lipid carriers. Curr. Pharm. Anal. 2020 16 2 210 219 10.2174/1573412915666181113130245
    [Google Scholar]
  21. Al-Suwayeh S.A. Taha E.I. Al-Qahtani F.M. Ahmed M.O. Badran M.M. Evaluation of skin permeation and analgesic activity effects of carbopol lornoxicam topical gels containing penetration enhancer. Sci. World J. 2014 2014 1 9 10.1155/2014/127495 25045724
    [Google Scholar]
  22. Vijayaraj S. Palei N.N. Archana D. Lathasri K. Rajavel P. Quality by design (Qbd) approach to develop stability indicating HPLC method for estimation of rutin in chitosan-sodium alginate nanoparticles. Braz. J. Pharm. Sci. 2020 56 e18793 10.1590/s2175‑97902020000318793
    [Google Scholar]
  23. Rapalli V.K. Sharma S. Roy A. Singhvi G. Design and dermatokinetic evaluation of Apremilast loaded nanostructured lipid carriers embedded gel for topical delivery: A potential approach for improved permeation and prolong skin deposition. Colloids Surf. B Biointerfaces 2021 206 111945 10.1016/j.colsurfb.2021.111945 34216849
    [Google Scholar]
  24. Surendran V. Palei N.N. Vanangamudi M. Madheswaragupta P. Systemic optimization and validation of RP-HPLC method for the estimation of ritonavir from hybrid polymeric nanoparticles in rat plasma. Curr. Pharm. Anal. 2022 18 6 650 662 10.2174/1573412918666220128092959
    [Google Scholar]
  25. Rapalli V.K. Singhvi G. Dermato-pharmacokinetic: assessment tools for topically applied dosage forms. Expert Opin. Drug Deliv. 2021 18 4 423 426 10.1080/17425247.2021.1856071 33232212
    [Google Scholar]
  26. Muhammad N. Saeed M. Khan H. Antipyretic, analgesic and anti-inflammatory activity of Viola betonicifolia whole plant. BMC Complement. Altern. Med. 2012 12 1 59 10.1186/1472‑6882‑12‑59 22551220
    [Google Scholar]
  27. Palei N.N. Mohanta B.C. Rajangam J. Guptha P.M. Olmesartan medoxomil-loaded niosomal gel for buccal delivery: Formulation, optimization, and ex vivo studies. Turk. J. Pharm. Sci. 2024 21 3 199 210 38994813
    [Google Scholar]
  28. Shilakari Asthana G. Sharma P.K. Asthana A. In vitro and in vivo evaluation of niosomal formulation for controlled delivery of clarithromycin. Scientifica (Cairo) 2016 2016 1 10 10.1155/2016/6492953 27293976
    [Google Scholar]
  29. Ravalika V. Sailaja A.K. Formulation and evaluation of etoricoxib niosomes by thin film hydration technique and ether injection method. Nano Biomed. Eng. 2017 9 3 242 248 10.5101/nbe.v9i3.p242‑248
    [Google Scholar]
  30. Kumar G.P. Rajeshwarrao P. Nonionic surfactant vesicular systems for effective drug delivery—an overview. Acta Pharm. Sin. B 2011 1 4 208 219 10.1016/j.apsb.2011.09.002
    [Google Scholar]
  31. Alnaim A.S. Shah H. Nair A.B. Mewada V. Patel S. Jacob S. Aldhubiab B. Morsy M.A. Almuqbil R.M. Shinu P. Shah J. Qbd-based approach to optimize niosomal gel of levosulpiride for transdermal drug delivery. Gels 2023 9 3 213 10.3390/gels9030213 36975662
    [Google Scholar]
  32. Soliman S.M. Abdel Malak N.S. El-Gazayerly O.N. Abdel Rehim A.A. Formulation of microemulsion gel systems for transdermal delivery of celecoxib: In vitro permeation, anti-inflammatory activity and skin irritation tests. Drug Discov. Ther. 2010 4 6 459 471 22491312
    [Google Scholar]
  33. El-Say K.M. Abd-Allah F.I. Lila A.E. Hassan A.E.S.A. Kassem A.E.A. Diacerein niosomal gel for topical delivery: Development, in vitro and in vivo assessment. J. Liposome Res. 2016 26 1 57 68 10.3109/08982104.2015.1029495 25853339
    [Google Scholar]
  34. Al-Suwayeh S.A. Badran M.M. Alhumoud G.O. Taha E.I. Ashri L.Y. Kazi M. Design and dermatokinetic appraisal of lornoxicam-loaded ultrafine self-nanoemulsion hydrogel for the management of inflammation: In vitro and in vivo studies. Saudi Pharm. J. 2023 31 6 889 903 10.1016/j.jsps.2023.04.004 37228319
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002368281250630073115
Loading
/content/journals/cdm/10.2174/0113892002368281250630073115
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: orange oil ; optimization ; Lornoxicam ; dermatokinetics ; niosomes ; in vivo studies
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test