Skip to content
2000
image of Unexpected Clinically Significant Drug-Drug Interaction between Tacrolimus and Metronidazole in the Early Period after Renal Transplantation: A Literature Review

Abstract

Introduction

Drug interactions necessitate careful consideration in clinical practice. It is imperative for clinicians and pharmacists to monitor drug exposure and the co-administration of medications promptly in order to avert adverse outcomes and achieve optimal efficacy.

Objectives

The prevalence of oral lesions varies from 28% to 60% in the short term after renal transplantation. The clinical use of metronidazole in the treatment of anaerobic bacterial infections among solid organ transplant recipients has been complicated by the potentially significant and unpredictable drug-drug interactions.

Methods

We present an unexpected clinically significant drug-drug interaction between tacrolimus and metronidazole in the early period after renal transplantation and describe the potential mechanism and clinical characteristics of this drug-drug interaction through a literature review.

Results

A 34-year-old female experienced a 65% increase in dose-normalized tacrolimus trough concentration after intravenous administration of metronidazole at 1000 mg/day for 8 days. When metronidazole was switched from intravenous to oral for 5 days, dose-normalized tacrolimus trough concentration was still increased by 52.4%. The magnitude of tacrolimus-metronidazole drug-drug interaction seems to be contingent upon the dose of metronidazole and the route of metronidazole administration. After cessation of metronidazole for one month, this drug-drug interaction, as assessed by weight-normalized tacrolimus dose, may still persist.

Conclusion

In the early period following renal transplantation, the long-term concomitant use of metronidazole is likely to elevate the trough concentration of tacrolimus. Gene screening for CYP3A5*3/*3 and ABCB1 3435C>T in recipients of solid organ transplants may support individualized tacrolimus prescribing and facilitate the mitigation of risks associated with drug-drug interactions.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002364104250701091104
2025-07-11
2025-09-15
Loading full text...

Full text loading...

References

  1. Didilescu A.C. Vacaru R.P. Pronk C. Scheau C. Lazu A. Dan L.P. Brand H.S. Oral diseases after liver transplantation: A systematic review and meta-analysis. Br. Dent. J. 2021 231 2 117 124 10.1038/s41415‑021‑3219‑1 34302095
    [Google Scholar]
  2. Sarmento D.J.S. Aires Antunes R.S.C.C. Cristelli M. Braz-Silva P.H. Maciel R. Pestana J.O.M.A. Gallottini M. Oral manifestations of allograft recipients immediately before and after kidney transplantation. Acta Odontol. Scand. 2020 78 3 217 222 10.1080/00016357.2019.1685680 31718409
    [Google Scholar]
  3. Nunes-dos-Santos D.L. Gomes S.V. Rodrigues V.P. Pereira A.L.A. Periodontal status and clinical outcomes in kidney transplant recipients: A systematic review. Oral Dis. 2020 26 1 22 34 10.1111/odi.13040 30661274
    [Google Scholar]
  4. Didilescu A.C. Lazu A. Pronk C. Vacaru R.P. Brand H.S. Clinical periodontal and dental findings in liver transplant patients: A systematic review and meta-analysis. Br. Dent. J. 2020 228 2 108 116 10.1038/s41415‑020‑1196‑4 31980788
    [Google Scholar]
  5. Barrach R.H. Souza M.P. Silva D.P. Lopez P.S. Montovani J.C. Oral changes in individuals undergoing hematopoietic stem cell transplantation. Rev. Bras. Otorrinolaringol. 2015 81 2 141 147 10.1016/j.bjorl.2014.04.004 25458262
    [Google Scholar]
  6. Prytuła A. Cransberg K. Raes A. Drug-metabolizing enzymes CYP3A as a link between tacrolimus and vitamin D in renal transplant recipients: Is it relevant in clinical practice? Pediatr. Nephrol. 2019 34 7 1201 1210 10.1007/s00467‑018‑4030‑3 30058048
    [Google Scholar]
  7. Yu M. Liu M. Zhang W. Ming Y. Pharmacokinetics, pharmacodynamics and pharmacogenetics of tacrolimus in kidney transplantation. Curr. Drug Metab. 2018 19 6 513 522 10.2174/1389200219666180129151948 29380698
    [Google Scholar]
  8. Lau A.H. Lam N.P. Piscitelli S.C. Wilkes L. Danziger L.H. Clinical pharmacokinetics of metronidazole and other nitroimidazole anti-infectives. Clin. Pharmacokinet. 1992 23 5 328 364 10.2165/00003088‑199223050‑00002 1478003
    [Google Scholar]
  9. Lamp K.C. Freeman C.D. Klutman N.E. Lacy M.K. Pharmacokinetics and pharmacodynamics of the nitroimidazole antimicrobials. Clin. Pharmacokinet. 1999 36 5 353 373 10.2165/00003088‑199936050‑00004 10384859
    [Google Scholar]
  10. Dingsdag S.A. Hunter N. Metronidazole: An update on metabolism, structure–cytotoxicity and resistance mechanisms. J. Antimicrob. Chemother. 2018 73 2 265 279 10.1093/jac/dkx351 29077920
    [Google Scholar]
  11. Roedler R. Neuhauser M.M. Penzak S.R. Does metronidazole interact with CYP3A substrates by inhibiting their metabolism through this metabolic pathway? Or should other mechanisms be considered? Ann. Pharmacother. 2007 41 4 653 658 10.1345/aph.1H401 17374625
    [Google Scholar]
  12. Early C.R. Park J.M. Dorsch M.P. Pogue K.T. Hanigan S.M. Effect of metronidazole use on tacrolimus concentrations in transplant patients treated forC lostridium difficile. Transpl. Infect. Dis. 2016 18 5 714 720 10.1111/tid.12588 27501504
    [Google Scholar]
  13. Lee Page R. II Klem P.M. Rogers C. Potential elevation of tacrolimus trough concentrations with concomitant metronidazole therapy. Ann. Pharmacother. 2005 39 6 1109 1113 10.1345/aph.1E399 15855244
    [Google Scholar]
  14. Herzig K. Johnson D.W. Marked elevation of blood cyclosporin and tacrolimus levels due to concurrent metronidazole therapy. Nephrol. Dial. Transplant. 1999 14 2 521b 523 10.1093/ndt/14.2.521b 10069238
    [Google Scholar]
  15. Jouret F. Sneyers B. Goffin E. Castanares-Zapatero D. Interaction between tacrolimus and clindamycin. NDT Plus 2010 3 4 422 424 [J]. 25949453
    [Google Scholar]
  16. He J. Yu Y. Yin C. Liu H. Zou H. Ma J. Yang W. Liu Y. Zhong L. Chen X. Clinically significant drug‐drug interaction between tacrolimus and fluconazole in stable renal transplant recipient and literature review. J. Clin. Pharm. Ther. 2020 45 2 264 269 10.1111/jcpt.13075 31756280
    [Google Scholar]
  17. Mimura A. Yamaori S. Ikemura N. Katsuyama Y. Matsuzawa N. Ohmori S. Influence of azole antifungal drugs on blood tacrolimus levels after switching from intravenous tacrolimus to once‐daily modified release tacrolimus in patients receiving allogeneic hematopoietic stem cell transplantation. J. Clin. Pharm. Ther. 2019 44 4 jcpt.12834 10.1111/jcpt.12834 30950099
    [Google Scholar]
  18. Wang J.S. Backman J.T. Kivistö K.T. Neuvonen P.J. Effects of metronidazole on midazolam metabolism in vitro and in vivo. Eur. J. Clin. Pharmacol. 2000 56 8 555 559 10.1007/s002280000201 11151744
    [Google Scholar]
  19. Haas C.E. Kaufman D.C. DiCenzo R.C. Effects of metronidazole on hepatic CYP3A4 activity. Pharmacotherapy 2001 21 10 1192 1195 10.1592/phco.21.15.1192.33896 11601665
    [Google Scholar]
  20. Kim K.A. Park J.Y. Effect of metronidazole on the pharmacokinetics of fexofenadine, a P-glycoprotein substrate, in healthy male volunteers. Eur. J. Clin. Pharmacol. 2010 66 7 721 725 10.1007/s00228‑010‑0797‑2 20306185
    [Google Scholar]
  21. Tan S.Y. Kan E. Lim W.Y. Chay G. Law J.H.K. Soo G.W. Bukhari N.I. Segarra I. Metronidazole leads to enhanced uptake of imatinib in brain, liver and kidney without affecting its plasma pharmacokinetics in mice. J. Pharm. Pharmacol. 2011 63 7 918 925 10.1111/j.2042‑7158.2011.01296.x 21635257
    [Google Scholar]
  22. Dilger K. Fux R. Röck D. Mörike K. Gleiter C.H. Effect of high-dose metronidazole on pharmacokinetics of oral budesonide and vice versa: A double drug interaction study. J. Clin. Pharmacol. 2007 47 12 1532 1539 10.1177/0091270007308617 18048573
    [Google Scholar]
  23. Amon I. Amon K. Hüller H. Pharmacokinetics and therapeutic efficacy of metronidazole at different dosages. Int. J. Clin. Pharmacol. Biopharm. 1978 16 8 384 386 [J]. 357311
    [Google Scholar]
  24. Buttar H.S. Siddiqui W.H. Moffatt J.H. The disposition of [14C]metronidazole in rats following vaginal and oral administration. J. Pharm. Pharmacol. 1979 31 1 542 544 10.1111/j.2042‑7158.1979.tb13580.x 39996
    [Google Scholar]
  25. Singh D.K. Ahire D. Davydov D.R. Prasad B. Differential tissue abundance of membrane-bound drug metabolizing enzymes and transporter proteins by global proteomics. Drug Metab. Dispos. 2024 52 11 1152 1160 10.1124/dmd.124.001477 38641346
    [Google Scholar]
  26. Prasad B. Gaedigk A. Vrana M. Gaedigk R. Leeder J.S. Salphati L. Chu X. Xiao G. Hop C.E.C.A. Evers R. Gan L. Unadkat J.D. Ontogeny of hepatic drug transporters as quantified by LC‐MS/MS proteomics. Clin. Pharmacol. Ther. 2016 100 4 362 370 10.1002/cpt.409 27301780
    [Google Scholar]
  27. Kounas S.P. Letsas K.P. Sideris A. Efraimidis M. Kardaras F. QT interval prolongation and torsades de pointes due to a coadministration of metronidazole and amiodarone. Pacing Clin. Electrophysiol. 2005 28 5 472 473 10.1111/j.1540‑8159.2005.09348.x 15869686
    [Google Scholar]
  28. Patterson B.D. Possible interaction between metronidazole and carbamazepine. Ann. Pharmacother. 1994 28 11 1303 1304 10.1177/106002809402801118 7849350
    [Google Scholar]
  29. Cooke C.E. Sklar G.E. Nappi J.M. Possible pharmacokinetic interaction with quinidine: Ciprofloxacin or metronidazole? Ann. Pharmacother. 1996 30 4 364 366 10.1177/106002809603000408 8729890
    [Google Scholar]
  30. Zylber-Katz E. Rubinger D. Berlatzky Y. Cyclosporine interactions with metronidazole and cimetidine. Drug Intell. Clin. Pharm. 1988 22 6 504 505 10.1177/106002808802200616 3293960
    [Google Scholar]
  31. Gnanapandithan K. Karthik N. Gerber J. Methadone, Metoclopramide and Metronidazole Interaction Causing Torsades de Pointes. Clin. Pract. 2021 11 1 101 105 10.3390/clinpract11010015 33562182
    [Google Scholar]
  32. Gulbis A.M. Culotta K.S. Jones R.B. Andersson B.S. Busulfan and metronidazole: An often forgotten but significant drug interaction. Ann. Pharmacother. 2011 45 7-8 1024 10.1345/aph.1Q087 21730282
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002364104250701091104
Loading
/content/journals/cdm/10.2174/0113892002364104250701091104
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Review Article
Keywords: renal transplantation ; metronidazole ; Tacrolimus ; CYP3A ; drug-drug interaction
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test