Skip to content
2000
Volume 25, Issue 10
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

Rifampicin is essential for treating TB. The high incidence of resistance to this drug requires efforts to increase the effectiveness of TB therapy. Immunomodulator supplementation is one effort to overcome this problem. has an immunomodulating effect, which has been proven to influence the clinical improvement of the immunological profile. However, the effect of this plant on rifampicin’s bioavailability should be reviewed to determine potential changes that may affect its antibacterial performance. Several studies have shown an increase in the bioavailability of rifampicin when administered with extracts and active isolates of Carum carvi, Cuminum cyminum, Piper nigrum, and Moringa oleifera through inhibition of the P-gp efflux function in the absorption phase. On the other hand, the decrease occurred in coadministration with Garcinia cola, which activated PXR action and subsequently changed P-gp regulation. Administration of Allium sativum and Zingiber officinale extracts did not show significant alteration in bioavailability due to the stimulation of several mechanisms with opposite outputs by each secondary metabolite. In the case of P. niruri supplementation, the potential for a rise in bioavailability could occur due to synergistic effects inhibiting the performance of P-gp, AADAC, and OATP1B. However, the stimulation of PXR and PPARα may reduce or eliminate these effects. Finally, considering that there are so many specific secondary metabolites in P. niruri whose effects on the performance of these functional proteins have not been exposed, studies are needed to confirm the interactions within complex biological systems.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002361205250123101231
2024-12-01
2025-09-06
Loading full text...

Full text loading...

References

  1. SantosJ.C. SilvaJ.B. RangelM.A. BarbosaL. CarvalhoI. Preventive therapy compliance in pediatric tuberculosis: A single center experience.Pulmonology2020262788310.1016/j.pulmoe.2019.06.002 31427215
    [Google Scholar]
  2. AlipanahN. JarlsbergL. MillerC. LinhN.N. FalzonD. JaramilloE. NahidP. Adherence interventions and outcomes of tuberculosis treatment: A systematic review and meta-analysis of trials and observational studies.PLoS Med.2018157e100259510.1371/journal.pmed.1002595 29969463
    [Google Scholar]
  3. LiuY. PertinezH. Ortega-MuroF. Alameda-MartinL. HarrisonT. DaviesG. CoatesA. HuY. Optimal doses of rifampicin in the standard drug regimen to shorten tuberculosis treatment duration and reduce relapse by eradicating persistent bacteria.J. Antimicrob. Chemother.201873372473110.1093/jac/dkx467 29244108
    [Google Scholar]
  4. AvalianiT. SeredaY. DavtyanH. TukvadzeN. TogonidzeT. KiriaN. DenisiukO. GozalovO. AhmedovS. HovhannesyanA. Effectiveness and safety of fully oral modified shorter treatment regimen for multidrug-resistant tuberculosis in Georgia, 2019-2020.Monaldi Arch. Chest Dis.202191110.4081/monaldi.2021.1679 33470088
    [Google Scholar]
  5. TjandrawinataR.R. SusantoL.W. NofiarnyD. The use of Phyllanthus niruri L. as an immunomodulator for the treatment of infectious diseases in clinical settings.Asian Pac. J. Trop. Dis.20177313214010.12980/apjtd.7.2017D6‑287
    [Google Scholar]
  6. PutriD.U. RintiswatiN. SoesatyoM.H.N.E. HaryanaS.M. Immune modulation properties of herbal plant leaves: Phyllanthus niruri aqueous extract on immune cells of tuberculosis patient - in vitro study.Nat. Prod. Res.201832446346710.1080/14786419.2017.1311888 28391709
    [Google Scholar]
  7. AlsultanA. PeloquinC.A. Therapeutic drug monitoring in the treatment of tuberculosis: An update.Drugs201474883985410.1007/s40265‑014‑0222‑8 24846578
    [Google Scholar]
  8. VerbeeckR.K. GüntherG. KibuuleD. HunterC. RennieT.W. Optimizing treatment outcome of first-line anti-tuberculosis drugs: The role of therapeutic drug monitoring.Eur. J. Clin. Pharmacol.201672890591610.1007/s00228‑016‑2083‑4 27305904
    [Google Scholar]
  9. AgrawalS. PanchagnulaR. Implication of biopharmaceutics and pharmacokinetics of rifampicin in variable bioavailability from solid oral dosage forms.Biopharm. Drug Dispos.200526832133410.1002/bdd.464 16059874
    [Google Scholar]
  10. AbdelgawadN. TshavhungweM.P. RohlwinkU. McIlleronH. AbdelwahabM.T. WiesnerL. CastelS. SteeleC. EnslinJ.N. ThangoN.S. DentiP. FigajiA. Population pharmacokinetic analysis of rifampicin in plasma, cerebrospinal fluid, and brain extracellular fluid in south african children with tuberculous meningitis.Antimicrob. Agents Chemother.2023673e01474e2210.1128/aac.01474‑22 36815838
    [Google Scholar]
  11. AruldhasB.W. HoglundR.M. RanjalkarJ. TarningJ. MathewS.K. VergheseV.P. BoseA. MathewB.S. Optimization of dosing regimens of isoniazid and rifampicin in children with tuberculosis in India.Br. J. Clin. Pharmacol.201985364465410.1111/bcp.13846 30588647
    [Google Scholar]
  12. Garcia-PratsA.J. SvenssonE.M. WincklerJ. DraperH.R. FairlieL. van der LaanL.E. MasenyaM. SchaafH.S. WiesnerL. NormanJ. AarnoutseR.E. KarlssonM.O. DentiP. HesselingA.C. Pharmacokinetics and safety of high-dose rifampicin in children with TB: The Opti-Rif trial.J. Antimicrob. Chemother.202176123237324610.1093/jac/dkab336 34529779
    [Google Scholar]
  13. KatoT. MikkaichiT. YoshigaeY. OkudairaN. ShimizuT. IzumiT. AndoS. MatsumotoY. Quantitative analysis of an impact of P-glycoprotein on edoxaban’s disposition using a human physiologically based pharmacokinetic (PBPK) model.Int. J. Pharm.202159712034910.1016/j.ijpharm.2021.120349 33545293
    [Google Scholar]
  14. NagarS. TuckerJ. WeiskircherE.A. BhoopathyS. HidalgoI.J. KorzekwaK. Compartmental models for apical efflux by P-glycoprotein--part 1: Evaluation of model complexity.Pharm. Res.201431234735910.1007/s11095‑013‑1164‑7 24019023
    [Google Scholar]
  15. Medellin-GaribayS.E. Huerta-GarcíaA.P. Rodríguez-BáezA.S. Magaña-AquinoM. Ortiz-ÁlvarezA. Portales-PérezD.P. Milán-SegoviaR.C. Romano-MorenoS. A population approach of rifampicin pharmacogenetics and pharmacokinetics in Mexican patients with tuberculosis.Tuberculosis (Edinb.)202012410198210.1016/j.tube.2020.101982 32810723
    [Google Scholar]
  16. HartkoornR.C. ChandlerB. OwenA. WardS.A. Bertel SquireS. BackD.J. KhooS.H. Differential drug susceptibility of intracellular and extracellular tuberculosis, and the impact of P-glycoprotein.Tuberculosis (Edinb.)200787324825510.1016/j.tube.2006.12.001 17258938
    [Google Scholar]
  17. MaL. WeiY. ZhouY. MaX. WuX. Effects of Pluronic F68 and Labrasol on the intestinal absorption and pharmacokinetics of rifampicin in rats.Arch. Pharm. Res.201134111939194310.1007/s12272‑011‑1114‑z 22139693
    [Google Scholar]
  18. PrakashJ. VelpandianT. PandeJ.N. GuptaS.K. Serum rifampicin levels in patients with tuberculosis.Clin. Drug Investig.200323746347210.2165/00044011‑200323070‑00005 17535057
    [Google Scholar]
  19. ElmeliegyM. VourvahisM. GuoC. WangD.D. Effect of P-glycoprotein (P-gp) inducers on exposure of P-gp substrates: Review of clinical drug–drug interaction studies.Clin. Pharmacokinet.202059669971410.1007/s40262‑020‑00867‑1 32052379
    [Google Scholar]
  20. PullenJ. StolkL.M.L. DegraeuweP.L.J. van TielF.H. NeefC. ZimmermannL.J.I. Pharmacokinetics of intravenous rifampicin (rifampin) in neonates.Ther. Drug Monit.200628565466110.1097/01.ftd.0000245382.79939.a4 17038881
    [Google Scholar]
  21. UchoaB.K.B. AlbérioC.A.A. PintoA.C.G. de Medeiros Araujo LucenaS. VieiraJ.L.F. Concentrations of rifampicin in pre-dose samples in patients with pulmonary tuberculosis.Braz. J. Infect. Dis.201923213013310.1016/j.bjid.2019.05.001 31128081
    [Google Scholar]
  22. GuoM. DaiX. HuD. ZhangY. SunY. RenW. WangL. Potential pharmacokinetic effect of rifampicin on enrofloxacin in broilers: Roles of P-glycoprotein and BCRP induction by rifampicin.Poult. Sci.20169592129213510.3382/ps/pew148 27118859
    [Google Scholar]
  23. KimS.W. Md Hasanuzzaman ChoM. KimN.H. ChoiH.Y. HanJ.W. ParkH.J. OhJ.W. ShinJ.G. Role of 14-3-3 sigma in over-expression of P-gp by rifampin and paclitaxel stimulation through interaction with PXR.Cell. Signal.20173112413410.1016/j.cellsig.2017.01.001 28077325
    [Google Scholar]
  24. MartinecO. BielC. de GraafI.A.M. HuliciakM. de JongK.P. StaudF. CeckaF. OlingaP. VokralI. CervenyL. Rifampicin induces gene, protein, and activity of p-glycoprotein (ABCB1) in human precision-cut intestinal slices.Front. Pharmacol.20211268415610.3389/fphar.2021.684156 34177592
    [Google Scholar]
  25. HolmstockN. GonzalezF.J. BaesM. AnnaertP. AugustijnsP. PXR/CYP3A4-humanized mice for studying drug-drug interactions involving intestinal P-glycoprotein.Mol. Pharm.20131031056106210.1021/mp300512r 23360470
    [Google Scholar]
  26. KotaB.P. TranV.H. AllenJ. BebawyM. RoufogalisB.D. Characterization of PXR mediated P-glycoprotein regulation in intestinal LS174T cells.Pharmacol. Res.201062542643110.1016/j.phrs.2010.07.001 20624464
    [Google Scholar]
  27. NaidooA. ChirehwaM. RamsuranV. McIlleronH. NaidooK. Yende-ZumaN. SinghR. NcgapuS. AdamsonJ. GovenderK. DentiP. PadayatchiN. Effects of genetic variability on rifampicin and isoniazid pharmacokinetics in South African patients with recurrent tuberculosis.Pharmacogenomics201920422524010.2217/pgs‑2018‑0166 30767706
    [Google Scholar]
  28. VavrickaS.R. Van MontfoortJ. HaH.R. MeierP.J. FattingerK. Interactions of rifamycin SV and rifampicin with organic anion uptake systems of human liver.Hepatology200236116417210.1053/jhep.2002.34133 12085361
    [Google Scholar]
  29. BiY.A. JordanS. King-AhmadA. WestM. A. YamaguchiE. RyuS. MathialaganS. TessD. A. VarmaM. V. S. Low Molecular Weight Acids and OATP1B Mediated Hepatic Clearance: In vitro and in vivo Evaluation Using Novel Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitors (Dustats).Drug Metab. Dispos.202452539940710.1124/dmd.123.001630
    [Google Scholar]
  30. BiY.-A. JordanS. King-AhmadA. WestM.A. YamaguchiE. RyuS. MathialaganS. TessD.A. VarmaM.V.S. Low Molecular Weight Acids and OATP1B Mediated Hepatic Clearance: In Vitro and in Vivo Evaluation Using Novel Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitors (Dustats).Drug Metab. Dispos.202452539940710.1124/dmd.123.001630
    [Google Scholar]
  31. MoriD. KimotoE. RagoB. KondoY. King-AhmadA. RamanathanR. WoodL.S. JohnsonJ.G. LeV.H. VourvahisM. David RodriguesA. MutoC. FurihataK. SugiyamaY. KusuharaH. Dose‐dependent inhibition of OATP1B by rifampicin in healthy volunteers: Comprehensive evaluation of candidate biomarkers and OATP1B probe drugs.Clin. Pharmacol. Ther.202010741004101310.1002/cpt.1695 31628668
    [Google Scholar]
  32. WilliamsonB. DooleyK.E. ZhangY. BackD.J. OwenA. Induction of influx and efflux transporters and cytochrome P450 3A4 in primary human hepatocytes by rifampin, rifabutin, and rifapentine.Antimicrob. Agents Chemother.201357126366636910.1128/AAC.01124‑13 24060875
    [Google Scholar]
  33. JingY. ZhuL.Q. YangJ.W. HuangS.P. WangQ. ZhangJ. Population pharmacokinetics of rifampicin in chinese patients with pulmonary tuberculosis.J. Clin. Pharmacol.201656562262710.1002/jcph.643 26387492
    [Google Scholar]
  34. LoosU. MuschE. JensenJ.C. MikusG. SchwabeH.K. EichelbaumM. Pharmacokinetics of oral and intravenous rifampicin during chronic administration.Klin. Wochenschr.198563231205121110.1007/BF01733779 4087830
    [Google Scholar]
  35. RobbinsJ.A. MenzelK. LassmanM. ZhaoT. FancourtC. ChuX. MostollerK. WitterR. Marceau WestR. StochS.A. McCreaJ.B. IwamotoM. Acute and Chronic effects of rifampin on letermovir suggest transporter inhibition and induction contribute to letermovir pharmacokinetics.Clin. Pharmacol. Ther.2022111366467510.1002/cpt.2510 34888851
    [Google Scholar]
  36. DomprehA. TangX. ZhouJ. YangH. TopletzA. Adu AhwirengE. AntwiS. EnimilA. LangaeeT. PeloquinC.A. CourtM.H. KwaraA. Effect of genetic variation of NAT2 on Isoniazid and SLCO1B1 and CES2 on rifampin pharmacokinetics in ghanaian children with tuberculosis.Antimicrob. Agents Chemother.2018623e02099e1710.1128/AAC.02099‑17 29263072
    [Google Scholar]
  37. SongS.H. ChangH.E. JunS.H. ParkK.U. LeeJ.H. LeeE.M. SongY.H. SongJ. Relationship between CES2 genetic variations and rifampicin metabolism.J. Antimicrob. Chemother.20136861281128410.1093/jac/dkt036 23471941
    [Google Scholar]
  38. FukamiT. KariyaM. KurokawaT. IidaA. NakajimaM. Comparison of substrate specificity among human arylacetamide deacetylase and carboxylesterases.Eur. J. Pharm. Sci.201578475310.1016/j.ejps.2015.07.006 26164127
    [Google Scholar]
  39. NakajimaA. FukamiT. KobayashiY. WatanabeA. NakajimaM. YokoiT. Human arylacetamide deacetylase is responsible for deacetylation of rifamycins: Rifampicin, rifabutin, and rifapentine.Biochem. Pharmacol.201182111747175610.1016/j.bcp.2011.08.003 21856291
    [Google Scholar]
  40. ZhangJ.N. LiuX.G. ZhuM. ChiuF.C.K. LiR.C. Assessment of presystemic factors on the oral bioavailability of rifampicin following multiple dosing.J. Chemother.199810535435910.1179/joc.1998.10.5.354 9822352
    [Google Scholar]
  41. YunivitaV. DianS. GaniemA.R. HayatiE. Hanggono AchmadT. Purnama DewiA. TeulenM. Meijerhof-JagerP. van CrevelR. AarnoutseR. RuslamiR. Pharmacokinetics and safety/tolerability of higher oral and intravenous doses of rifampicin in adult tuberculous meningitis patients.Int. J. Antimicrob. Agents201648441542110.1016/j.ijantimicag.2016.06.016 27526979
    [Google Scholar]
  42. MorikawaT. FukamiT. Gotoh-SaitoS. NakanoM. NakajimaM. PPARα regulates the expression of human arylacetamide deacetylase involved in drug hydrolysis and lipid metabolism.Biochem. Pharmacol.202219911501010.1016/j.bcp.2022.115010 35314168
    [Google Scholar]
  43. SachinB.S. SharmaS.C. SethiS. TasduqS.A. TikooM.K. TikooA.K. SattiN.K. GuptaB.D. SuriK.A. JohriR.K. QaziG.N. Herbal modulation of drug bioavailability: Enhancement of rifampicin levels in plasma by herbal products and a flavonoid glycoside derived from Cuminum cyminum.Phytother. Res.200721215716310.1002/ptr.2046 17128432
    [Google Scholar]
  44. SachinB.S. MonicaP. SharmaS.C. SattiN.K. TikooM.K. TikooA.K. SuriK.A. GuptaB.D. JohriR.K. Pharmacokinetic interaction of some antitubercular drugs with caraway: Implications in the enhancement of drug bioavailability.Hum. Exp. Toxicol.200928417518410.1177/0960327108097431 19734267
    [Google Scholar]
  45. PalA. BawankuleD.U. DarokarM.P. GuptaS.C. AryaJ.S. ShankerK. GuptaM.M. YadavN.P. Singh KhanujaS.P. Influence of Moringa oleifera on pharmacokinetic disposition of rifampicin using HPLC‐PDA method: A pre‐clinical study.Biomed. Chromatogr.201125664164510.1002/bmc.1494 20845375
    [Google Scholar]
  46. SinghD.V. GodboleM.M. MisraK. A plausible explanation for enhanced bioavailability of P-gp substrates in presence of piperine: Simulation for next generation of P-gp inhibitors.J. Mol. Model.201319122723810.1007/s00894‑012‑1535‑8 22864626
    [Google Scholar]
  47. KhajuriaV. ChoudharyN. GillaniZ. TandonV. AroraE. Effect of Carum carvi, a herbal bioenhancer on pharmacokinetics of antitubercular drugs: A study in healthy human volunteers.Perspect. Clin. Res.201452808410.4103/2229‑3485.128027 24741485
    [Google Scholar]
  48. SinghA. SinghA.P. FuloriaN.K. FuloriaS. VermaS. JarariN.M. Effect of piperine on pharmacokinetics of rifampicin and isoniazid: Development and validation of high performance liquid chromatography method.J. Appl. Pharm. Sci.20188310.7324/JAPS.2018.8311
    [Google Scholar]
  49. AshmawyS.M. EltahanD.A. OsmanM.A. EssaE.A. Influence of piperine and omeprazole on the regional absorption of Daclatasvir from rabbit intestine.Biopharm. Drug Dispos.2022431334410.1002/bdd.2308 34997607
    [Google Scholar]
  50. MoneraT.G. WolfeA.R. MapongaC.C. BenetL.Z. GuglielmoJ. Moringa oleifera leaf extracts inhibit 6β-hydroxylation of testosterone by CYP3A4.J. Infect. Dev. Ctries.20082537938310.3855/jidc.201 19745507
    [Google Scholar]
  51. FantoukhO.I. AlbadryM.A. ParveenA. HawwalM.F. MajrashiT. AliZ. KhanS.I. ChittiboyinaA.G. KhanI.A. Isolation, synthesis, and drug interaction potential of secondary metabolites derived from the leaves of miracle tree (Moringa oleifera) against CYP3A4 and CYP2D6 isozymes.Phytomedicine20196015301010.1016/j.phymed.2019.153010 31301970
    [Google Scholar]
  52. TauchenJ. FrankovaA. ManourovaA. ValterovaI. LojkaB. LeunerO. Garcinia Kola: A critical review on chemistry and pharmacology of an important West African medicinal plant.Phytochem. Rev.20232251305135110.1007/s11101‑023‑09869‑w 37359709
    [Google Scholar]
  53. BollaL. SrivastavaP. RavichandiranV. NanjappanS.K. Cytochrome P450 and P-gp mediated herb-drug interactions and molecular docking studies of garcinol.Membranes2021111299210.3390/membranes11120992 34940493
    [Google Scholar]
  54. BartoliniD. De FrancoF. TorquatoP. MarinelliR. CerraB. RonchettiR. SchonA. FallarinoF. De LucaA. BellezzaG. FerriI. SidoniA. WaltonW.G. PellockS.J. RedinboM.R. ManiS. PellicciariR. GioielloA. GalliF. Garcinoic acid is a natural and selective agonist of pregnane X receptor.J. Med. Chem.20206373701371210.1021/acs.jmedchem.0c00012 32160459
    [Google Scholar]
  55. AyoguE.E. OkpalaokaO. AmorhaK.C. NdukaS.O. OkontaM.J. Evaluation of Zingiber officinale effects on rifampicin pharmacokinetic parameters using animal model.Int. J. Pharm. Res.201810310.31838/ijpr/2018.10.03.039
    [Google Scholar]
  56. ZhangW. LimL.Y. Effects of spice constituents on P-glycoprotein-mediated transport and CYP3A4-mediated metabolism in vitro.Drug Metab. Dispos.20083671283129010.1124/dmd.107.019737 18385293
    [Google Scholar]
  57. SunS. ChenQ. GeJ. LiuX. WangX. ZhanQ. ZhangH. ZhangG. Pharmacokinetic interaction of aconitine, liquiritin and 6-gingerol in a traditional Chinese herbal formula, Sini Decoction.Xenobiotica2018481455210.1080/00498254.2017.1278807 28051355
    [Google Scholar]
  58. HusainI. DaleO.R. IdrisiM. GurleyB.J. AvulaB. KatraguntaK. AliZ. ChittiboyinaA. NoonanG. KhanI.A. KhanS.I. Evaluation of the herb–drug interaction (HDI) potential of Zingiber officinale and its major phytoconstituents.J. Agric. Food Chem.202371197521753410.1021/acs.jafc.2c07912 37134183
    [Google Scholar]
  59. DhamijaP. MalhotraS. PandhiP. Effect of oral administration of crude aqueous extract of garlic on pharmacokinetic parameters of isoniazid and rifampicin in rabbits.Pharmacology200677210010410.1159/000093285 16699292
    [Google Scholar]
  60. KaranR.S. BhargavaV.K. GargS.K. Effect of trikatu, an Ayurvedic prescription, on the pharmacokinetic profile of rifampicin in rabbits.J. Ethnopharmacol.199964325926410.1016/S0378‑8741(98)00127‑5 10363842
    [Google Scholar]
  61. MitraS.K. SundaramR. VenkatarangannaM.V. GopumadhavanS. Pharmacokinetic interaction of diabecon (D-400) with rifampicin and nifedipine.Eur. J. Drug Metab. Pharmacokinet.1999241798210.1007/BF03190014 10412895
    [Google Scholar]
  62. WangX. WangY. FangC. GongQ. HuangJ. ZhangY. WangL. Allicin affects the pharmacokinetics of sulfadiazine and florfenicol by downregulating the expression of jejunum P-gp and BCRP in broilers.Poult. Sci.2022101710194710.1016/j.psj.2022.101947 35688033
    [Google Scholar]
  63. ZengT. ZhangC.L. SongF.Y. ZhaoX.L. XieK.Q. Garlic oil alleviated ethanol-induced fat accumulation viamodulation of SREBP-1, PPAR-α and CYP2E1.Food Chem. Toxicol.2012503-448549110.1016/j.fct.2011.11.030 22138249
    [Google Scholar]
  64. TurkanovicJ. WardM.B. GerberJ.P. MilneR.W. Effect of Garlic, Gingko, and St. John’s Wort extracts on the pharmacokinetics of fexofenadine: A mechanistic study.Drug Metab. Dispos.201745556957510.1124/dmd.116.073528 28188296
    [Google Scholar]
  65. XiaQ. WangZ.Y. LiH.Q. DiaoY.T. LiX.L. CuiJ. ChenX.L. LiH. Reversion of p-glycoprotein-mediated multidrug resistance in human leukemic cell line by diallyl trisulfide.Evid. Based Complement. Alternat. Med.2012201211110.1155/2012/719805 22919419
    [Google Scholar]
  66. WasefA.K. WahdanS.A. SaeedN.M. El-DemerdashE. Effects of aged garlic and ginkgo biloba extracts on the pharmacokinetics of sofosbuvir in rats.Biopharm. Drug Dispos.202243415216210.1002/bdd.2326 35975782
    [Google Scholar]
  67. MurunikkaraV. RasoolM.K. Trikatu, a herbal compound mitigates the biochemical and immunological complications in adjuvant-induced arthritic rats.Int. J. Rheum. Dis.201720329830810.1111/1756‑185X.12535 25546349
    [Google Scholar]
  68. QiangF. KangK.W. HanH.K. Repeated dosing of piperine induced gene expression of P‐glycoprotein viastimulated pregnane‐X‐receptor activity and altered pharmacokinetics of diltiazem in rats.Biopharm. Drug Dispos.201233844645410.1002/bdd.1811 22927137
    [Google Scholar]
  69. MaitreT. BaulardA. AubryA. VezirisN. Optimizing the use of current antituberculosis drugs to overcome drug resistance in Mycobacterium tuberculosis.Infect. Dis. Now202454110480710.1016/j.idnow.2023.104807 37839674
    [Google Scholar]
  70. Ramos-EspinosaO. Islas-WeinsteinL. Peralta-ÁlvarezM.P. López-TorresM.O. Hernández-PandoR. The use of immunotherapy for the treatment of tuberculosis.Expert Rev. Respir. Med.201812542744010.1080/17476348.2018.1457439 29575946
    [Google Scholar]
  71. NworuC.S. AkahP.A. OkoyeF.B.C. ProkschP. EsimoneC.O. The effects of Phyllanthus niruri aqueous extract on the activation of murine lymphocytes and bone marrow-derived macrophages.Immunol. Invest.201039324526710.3109/08820131003599585 20380522
    [Google Scholar]
  72. AminZ.A. AbdullaM.A. AliH.M. AlshawshM.A. QadirS.W. Assessment of in vitro antioxidant, antibacterial and immune activation potentials of aqueous and ethanol extracts of Phyllanthus niruri.J. Sci. Food Agric.20129291874187710.1002/jsfa.5554 22231455
    [Google Scholar]
  73. JejeT.O. BandoH. AzadM.T.A. FukudaY. OluwafemiI.E. KatoK. Antiplasmodial and interferon-gamma-modulating activities of the aqueous extract of stone breaker (Phyllanthus niruri Linn.) in malaria infection.Parasitol. Int.20239710278910.1016/j.parint.2023.102789 37473798
    [Google Scholar]
  74. SadaphalP. ChakrabortyK. Jassim-AlMossawiH. PillayY. RoscignoG. KaulA. KakN. MatjiR. MvusiL. DeStefanoA. Rifampicin bioavailability in fixed-dose combinations for tuberculosis treatment: Evidence and policy actions.J. Lung Health Dis20193391510.29245/2689‑999X/2019/3.1155
    [Google Scholar]
  75. ColangeliR. JedreyH. KimS. ConnellR. MaS. Chippada VenkataU.D. ChakravortyS. GuptaA. SizemoreE.E. DiemL. ShermanD.R. OkweraA. DietzeR. BoomW.H. JohnsonJ.L. Mac KenzieW.R. AllandD. Bacterial factors that predict relapse after tuberculosis therapy.N. Engl. J. Med.2018379982383310.1056/NEJMoa1715849 30157391
    [Google Scholar]
  76. SiccardiM. OlagunjuA. SedenK. EbrahimjeeF. RannardS. BackD. OwenA. Use of a physiologically-based pharmacokinetic model to simulate artemether dose adjustment for overcoming the drug-drug interaction with efavirenz.In Silico Pharmacol.201311410.1186/2193‑9616‑1‑4 25505649
    [Google Scholar]
  77. BhatnagarS. MukherjeeD. SalemA.H. MilesD. MenonR.M. GibbsJ.P. Dose adjustment of venetoclax when co-administered with posaconazole: Clinical drug–drug interaction predictions using a PBPK approach.Cancer Chemother. Pharmacol.202187446547410.1007/s00280‑020‑04179‑w 33398386
    [Google Scholar]
  78. ChallaV.R. Ravindra BabuP. ChallaS.R. JohnsonB. MaheswariC. Pharmacokinetic interaction study between quercetin and valsartan in rats and in vitro models.Drug Dev. Ind. Pharm.201339686587210.3109/03639045.2012.693502 22670860
    [Google Scholar]
  79. ZhaoQ. WeiJ. ZhangH. Effects of quercetin on the pharmacokinetics of losartan and its metabolite EXP3174 in rats.Xenobiotica201949556356810.1080/00498254.2018.1478168 29768080
    [Google Scholar]
  80. ParkJ.W. ChoiJ.S. Role of kaempferol to increase bioavailability and pharmacokinetics of nifedipine in rats.Chin. J. Nat. Med.201917969069710.1016/S1875‑5364(19)30083‑4 31526504
    [Google Scholar]
  81. SinghK. TarapcsákS. GyöngyZ. RitterZ. BattaG. BosireR. RemenyikJ. GodaK. Effects of polyphenols on P-glycoprotein (ABCB1) activity.Pharmaceutics20211312206210.3390/pharmaceutics13122062 34959345
    [Google Scholar]
  82. WangY. CaoJ. ZengS. Involvement of P-glycoprotein in regulating cellular levels of Ginkgo flavonols: Quercetin, kaempferol, and isorhamnetin.J. Pharm. Pharmacol.200557675175810.1211/0022357056299 15969930
    [Google Scholar]
  83. BhutaniP. RajannaP.K. PaulA.T. Impact of quercetin on pharmacokinetics of quetiapine: Insights from in-vivo studies in wistar rats.Xenobiotica202050121483148910.1080/00498254.2020.1792002 32623931
    [Google Scholar]
  84. NguyenM.A. StaubachP. WolfframS. LangguthP. Effect of single-dose and short-term administration of quercetin on the pharmacokinetics of talinolol in humans: Implications for the evaluation of transporter-mediated flavonoid–drug interactions.Eur. J. Pharm. Sci.201461546010.1016/j.ejps.2014.01.003 24472704
    [Google Scholar]
  85. MedianiA. AbasF. KhatibA. TanC.P. IsmailI.S. ShaariK. IsmailA. LajisN.H. Relationship between metabolites composition and biological activities of Phyllanthus niruri extracts prepared by different drying methods and solvents extraction.Plant Foods Hum. Nutr.201570218419210.1007/s11130‑015‑0478‑5 25800644
    [Google Scholar]
  86. KumarK.K. PriyankaL. GnananathK. BabuP.R. SujathaS. Pharmacokinetic drug interactions between apigenin, rutin and paclitaxel mediated by P-glycoprotein in rats.Eur. J. Drug Metab. Pharmacokinet.201540326727610.1007/s13318‑014‑0203‑z 24871039
    [Google Scholar]
  87. WangF. LiuJ.C. ZhouR.J. ZhaoX. LiuM. YeH. XieM.L. Apigenin protects against alcohol-induced liver injury in mice by regulating hepatic CYP2E1-mediated oxidative stress and PPARα-mediated lipogenic gene expression.Chem. Biol. Interact.201727517117710.1016/j.cbi.2017.08.006 28803762
    [Google Scholar]
  88. XuC. LuoM. JiangH. YuL. ZengS. Involvement of CAR and PXR in the transcriptional regulation of CYP2B6 gene expression by ingredients from herbal medicines.Xenobiotica201545977378110.3109/00498254.2015.1020076 25869249
    [Google Scholar]
  89. NavarroM. MoreiraI. ArnaezE. QuesadaS. AzofeifaG. AlvaradoD. MonagasM. Proanthocyanidin characterization, antioxidant and cytotoxic activities of three plants commonly used in traditional medicine in Costa Rica: Petiveria alliaceae L., Phyllanthus niruri L. and Senna reticulata Willd.Plants2017645010.3390/plants6040050 29048336
    [Google Scholar]
  90. HongY.J. YangS.Y. NamM.H. KooY. LeeK.W. Caffeic acid inhibits the uptake of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) by inducing the efflux transporters expression in Caco-2 cells.Biol. Pharm. Bull.201538220120710.1248/bpb.b14‑00495 25399682
    [Google Scholar]
  91. KimB. KimJ.E. KimH.S. Caffeic acid induces keratinocyte differentiation by activation of PPAR-α.J. Pharm. Pharmacol.2014661849210.1111/jphp.12159 24138287
    [Google Scholar]
  92. FerranteC. ChiavaroliA. AngeliniP. VenanzoniR. Angeles FloresG. BrunettiL. PetrucciM. PolitiM. MenghiniL. LeoneS. RecinellaL. ZenginG. AkG. Di MascioM. BacchinF. OrlandoG. Phenolic content and antimicrobial and anti-inflammatory effects of Solidago virga-aurea, Phyllanthus niruri, Epilobium angustifolium, Peumus boldus, and Ononis spinosa extracts.Antibiotics202091178310.3390/antibiotics9110783 33172081
    [Google Scholar]
  93. ChenH.J. ChungY.L. LiC.Y. ChangY.T. WangC.C.N. LeeH.Y. LinH.Y. HungC.C. Taxifolin resensitizes multidrug resistance cancer cells viauncompetitive inhibition of P-Glycoprotein function.Molecules20182312305510.3390/molecules23123055 30469543
    [Google Scholar]
  94. ShanmugamK. ShanmugamB. RaviS. SubbaiahG. RamakrishanaC. MallikarjunaK. ReddyK. Exploratory studies of (-)-Epicatechin, a bioactive compound of Phyllanthus niruri, on the antioxidant enzymes and oxidative stress markers in D-galactosamine-induced hepatitis in rats: A study with reference to clinical prospective.Pharmacogn. Mag.20171349Suppl. 15610.4103/0973‑1296.203973 28479727
    [Google Scholar]
  95. YasudaK. WatanabeK. FukamiT. NakashimaS. IkushiroS. NakajimaM. SakakiT. Epicatechin gallate and epigallocatechin gallate are potent inhibitors of human arylacetamide deacetylase.Drug Metab. Pharmacokinet.20213910039710.1016/j.dmpk.2021.100397 34171773
    [Google Scholar]
  96. Ortiz-FloresM. Portilla-MartínezA. Cabrera-PérezF. NájeraN. MeaneyE. VillarrealF. Pérez-DuránJ. CeballosG. PXR is a target of (-)-epicatechin in skeletal muscle.Heliyon2020610e0535710.1016/j.heliyon.2020.e05357 33163657
    [Google Scholar]
  97. Al ZarzourR. AhmadM. AsmawiM. KaurG. SaeedM. Al-MansoubM. SaghirS. UsmanN. Al-DulaimiD. YamM. Phyllanthus niruri standardized extract alleviates the progression of non-alcoholic fatty liver disease and decreases atherosclerotic risk in sprague–dawley rats.Nutrients20179776610.3390/nu9070766 28718838
    [Google Scholar]
  98. HassimN. MarkomM. RosliM.I. HarunS. Publisher correction: Scale-up approach for supercritical fluid extraction with ethanol–water modified carbon dioxide on Phyllanthus niruri for safe enriched herbal extracts.Sci. Rep.20211111723110.1038/s41598‑021‑96669‑x 34417534
    [Google Scholar]
  99. AthukuriB.L. NeeratiP. Enhanced oral bioavailability of domperidone with piperine in male wistar rats: Involvement of CYP3A1 and P-gp inhibition.J. Pharm. Pharm. Sci.201720283710.18433/J3MK72 28459658
    [Google Scholar]
  100. Rahimi NaiiniM. ShahouzehiB. KhaksariM. AziziS. NaghibiN. Nazari-RobatiM. Ellagic acid reduces hepatic lipid contents through regulation of SIRT1 and AMPK in old rats.Arch. Physiol. Biochem.2023Oct1810.1080/13813455.2023.2262165 37814948
    [Google Scholar]
  101. MuthusamyG. BalupillaiA. RamasamyK. ShanmugamM. GunaseelanS. MaryB. PrasadN.R. Ferulic acid reverses ABCB1-mediated paclitaxel resistance in MDR cell lines.Eur. J. Pharmacol.201678619420310.1016/j.ejphar.2016.05.023 27262378
    [Google Scholar]
  102. NaowabootJ. PiyabhanP. MunkongN. ParklakW. PannangpetchP. Ferulic acid improves lipid and glucose homeostasis in high‐fat diet‐induced obese mice.Clin. Exp. Pharmacol. Physiol.201643224225010.1111/1440‑1681.12514 26541794
    [Google Scholar]
  103. LiZ. WangK. ZhengJ. CheungF.S.G. ChanT. ZhuL. ZhouF. Interactions of the active components of Punica granatum (pomegranate) with the essential renal and hepatic human Solute Carrier transporters.Pharm. Biol.201452121510151710.3109/13880209.2014.900809 25026340
    [Google Scholar]
  104. VariyaB.C. BakraniaA.K. ChenY. HanJ. PatelS.S. Corrigendum to suppression of abdominal fat and anti-hyperlipidemic potential of Emblica officinalis: Upregulation of PPARs and identification of active moiety.Biomed. Pharmacother.202417711694510.1016/j.biopha.2024.116945 38897910
    [Google Scholar]
  105. EzzatM.I. OkbaM.M. AhmedS.H. El-BannaH.A. PrinceA. MohamedS.O. EzzatS.M. In-depth hepatoprotective mechanistic study of Phyllanthus niruri: In vitro and in vivo studies and its chemical characterization.PLoS One2020151e022618510.1371/journal.pone.0226185 31940365
    [Google Scholar]
  106. HoangM.H. JiaY. LeeJ.H. KimY. LeeS.J. Kaempferol reduces hepatic triglyceride accumulation by inhibiting Akt.J. Food Biochem.20194311e1303410.1111/jfbc.13034 31489640
    [Google Scholar]
  107. LauA.J. ChangT.K.H. 3-Hydroxyflavone and structural analogues differentially activate pregnane X receptor: Implication for inflammatory bowel disease.Pharmacol. Res.2015100647210.1016/j.phrs.2015.07.031 26238175
    [Google Scholar]
  108. LiuQ. PanR. DingL. ZhangF. HuL. DingB. ZhuL. XiaY. DouX. Rutin exhibits hepatoprotective effects in a mouse model of non-alcoholic fatty liver disease by reducing hepatic lipid levels and mitigating lipid-induced oxidative injuries.Int. Immunopharmacol.20174913214110.1016/j.intimp.2017.05.026 28577437
    [Google Scholar]
  109. ZhaoJ. SunY. YuanC. LiT. LiangY. ZouH. ZhangJ. RenL. Quercetin ameliorates hepatic fat accumulation in high-fat diet-induced obese mice via PPARs.Food Funct.20231431674168410.1039/D2FO03013F 36691903
    [Google Scholar]
  110. DunkoksungW. VardhanabhutiN. JianmongkolS. Potential P-glycoprotein-mediated herb-drug interaction of phyllanthin at the intestinal absorptive barrier.J. Pharm. Pharmacol.201971221321910.1111/jphp.13019 30251430
    [Google Scholar]
  111. LeeJ.A. HaS.K. KimY.C. ChoiI. Effects of friedelin on the intestinal permeability and bioavailability of apigenin.Pharmacol. Rep.20176951044104810.1016/j.pharep.2017.04.012 28939344
    [Google Scholar]
  112. SuzukiK. TaniyamaK. AoyamaT. WatanabeY. Evaluation of the role of P-glycoprotein (P-gp)-Mediated efflux in the intestinal absorption of common substrates with elacridar, a P-gp inhibitor, in rats.Eur. J. Drug Metab. Pharmacokinet.202045338539210.1007/s13318‑019‑00602‑7 32078103
    [Google Scholar]
  113. LiH. LiM. FuJ. AoH. WangW. WangX. Enhancement of oral bioavailability of quercetin by metabolic inhibitory nanosuspensions compared to conventional nanosuspensions.Drug Deliv.20212811226123610.1080/10717544.2021.1927244 34142631
    [Google Scholar]
  114. MaJ.J. HuangX.N. YinS.W. YuY.G. YangX.Q. Bioavailability of quercetin in zein-based colloidal particles-stabilized Pickering emulsions investigated by the in vitro digestion coupled with Caco-2 cell monolayer model.Food Chem.202136013015210.1016/j.foodchem.2021.130152 34034052
    [Google Scholar]
  115. HollandsW.J. HartD.J. DaintyJ.R. HasselwanderO. TiihonenK. WoodR. KroonP.A. Bioavailability of epicatechin and effects on nitric oxide metabolites of an apple flavanol‐rich extract supplemented beverage compared to a whole apple puree: A randomized, placebo‐controlled, crossover trial.Mol. Nutr. Food Res.20135771209121710.1002/mnfr.201200663 23610075
    [Google Scholar]
  116. Di PedeG. MenaP. BrescianiL. AchourM. Lamuela-RaventósR.M. EstruchR. LandbergR. KullingS.E. WishartD. Rodriguez-MateosA. CrozierA. ManachC. Del RioD. Revisiting the bioavailability of flavan-3-ols in humans: A systematic review and comprehensive data analysis.Mol. Aspects Med.20238910114610.1016/j.mam.2022.101146 36207170
    [Google Scholar]
  117. GarrisonD.A. JinY. TalebiZ. HuS. SparreboomA. BakerS.D. EisenmannE.D. Itraconazole-induced increases in gilteritinib exposure are mediated by CYP3A and OATP1B.Molecules20222720681510.3390/molecules27206815 36296409
    [Google Scholar]
  118. EisenmannE.D. GarrisonD.A. TalebiZ. JinY. SilvaroliJ.A. KimJ.G. SparreboomA. SavonaM.R. MimsA.S. BakerS.D. Interaction of antifungal drugs with CYP3A- and OATP1B-mediated venetoclax elimination.Pharmaceutics202214469410.3390/pharmaceutics14040694 35456528
    [Google Scholar]
  119. ShiD. YangD. YanB. Dexamethasone transcriptionally increases the expression of the pregnane X receptor and synergistically enhances pyrethroid esfenvalerate in the induction of cytochrome P450 3A23.Biochem. Pharmacol.20108081274128310.1016/j.bcp.2010.06.043 20599767
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002361205250123101231
Loading
/content/journals/cdm/10.2174/0113892002361205250123101231
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): AADAC; Herb-drug interaction; OATP1B; P-glycoprotein; PPARα; PXR
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test