Skip to content
2000
Volume 26, Issue 1
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

Background

When managing diabetes, polypharmacy the use of several drugs simultaneously to obtain the best possible glucose control is typical. Drug-drug interactions (DDIs), which can result in side effects and reduced treatment efficacy, have increased.

Objectives

This study evaluated the data mining approach of polypharmacy-based drug-drug interactions for common diabetes medication.

Methods

To identify publications that met the inclusion criteria, several scientific reviews and research papers were searched, including Scopus, Web of Science, Google Scholar, PubMed, Science Direct, Springer Link, and NCBI, using keywords such as diabetes, drug-drug interaction, polypharmacy, data mining, and herbal interaction.

Results

Many important drug-drug interactions among popular anti-diabetic drugs have been identified using data mining. Using iodinated contrast media and metformin together increased the risk of lactic acidosis, and using NSAIDs and sulfonylureas simultaneously increased the risk of hypoglycemia. A higher incidence of DDIs was found in an analysis of elderly individuals and those with several comorbidities. Predictive models have demonstrated high sensitivity and accuracy in detecting possible DDIs from patient and drug data.

Conclusion

Finding and evaluating DDIs in polypharmacy related to diabetes care are made possible through data mining. These results could potentially improve patient safety by influencing more individualized and cautious prescription techniques. The improvement of these methods and their application in standard clinical practice should be the main goal of future studies.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002358291250401190533
2025-04-17
2025-12-09
Loading full text...

Full text loading...

References

  1. BeythR.J. ShorrR.I. Epidemiology of adverse drug reactions in older people according to drug categories.Drugs Aging199914323123910.2165/00002512‑199914030‑0000510220106
    [Google Scholar]
  2. GizziL.A. SlainD. HareJ.T. SagerR. BriggsF.III PalmerC.H. Assessment of a safety enhancement to the hospital medication reconciliation process for elderly patients.Am. J. Geriatr. Pharmacother.20108212713510.1016/j.amjopharm.2010.03.00420439062
    [Google Scholar]
  3. EggerS.S. DreweJ. SchliengerR.G. Potential drug–drug interactions in the medication of medical patients at hospital discharge.Eur. J. Clin. Pharmacol.2003581177377810.1007/s00228‑002‑0557‑z12634985
    [Google Scholar]
  4. PeronE.P. OgbonnaK.C. DonohoeK.L. Antidiabetic medications and polypharmacy.Clin. Geriatr. Med.20153111727[vii.10.1016/j.cger.2014.08.01725453298
    [Google Scholar]
  5. JuurlinkD.N. MamdaniM. KoppA. LaupacisA. RedelmeierD.A. Drug-drug interactions among elderly patients hospitalized for drug toxicity.JAMA2003289131652165810.1001/jama.289.13.165212672733
    [Google Scholar]
  6. MuirA.J. SandersL.L. WilkinsonW.E. SchmaderK. Reducing medication regimen complexity.J. Gen. Intern. Med.2001162778210.1046/j.1525‑1497.2001.016002077.x11251757
    [Google Scholar]
  7. SprietI. GrootaertV. MeyfroidtG. DebaveyeY. WillemsL. Switching from intravenous to oral tacrolimus and voriconazole leads to a more pronounced drug–drug interaction.Eur. J. Clin. Pharmacol.201369373773810.1007/s00228‑012‑1365‑822878691
    [Google Scholar]
  8. PawarodeA. ShuklaS. MindermanH. FrickeS.M. PinderE.M. O’LoughlinK.L. AmbudkarS.V. BaerM.R. Differential effects of the immunosuppressive agents cyclosporin A, tacrolimus and sirolimus on drug transport by multidrug resistance proteins.Cancer Chemother. Pharmacol.200760217918810.1007/s00280‑006‑0357‑817031644
    [Google Scholar]
  9. GuptaA. DaiY. VethanayagamR.R. HebertM.F. ThummelK.E. UnadkatJ.D. RossD.D. MaoQ. Cyclosporin A, tacrolimus and sirolimus are potent inhibitors of the human breast cancer resistance protein (ABCG2) and reverse resistance to mitoxantrone and topotecan.Cancer Chemother. Pharmacol.200658337438310.1007/s00280‑005‑0173‑616404634
    [Google Scholar]
  10. WatashiK. SluderA. DaitoT. MatsunagaS. RyoA. NagamoriS. IwamotoM. NakajimaS. TsukudaS. Borroto-EsodaK. SugiyamaM. TanakaY. KanaiY. KusuharaH. MizokamiM. WakitaT. Cyclosporin A and its analogs inhibit hepatitis B virus entry into cultured hepatocytes through targeting a membrane transporter, sodium taurocholate cotransporting polypeptide (NTCP).Hepatology20145951726173710.1002/hep.2698224375637
    [Google Scholar]
  11. GrahamG.G. PuntJ. AroraM. DayR.O. DoogueM.P. DuongJ.K. FurlongT.J. GreenfieldJ.R. GreenupL.C. KirkpatrickC.M. RayJ.E. TimminsP. WilliamsK.M. Clinical pharmacokinetics of metformin.Clin. Pharmacokinet.2011502819810.2165/11534750‑000000000‑0000021241070
    [Google Scholar]
  12. KurianB. JoshiR. HelmuthA. Effectiveness and long-term safety of thiazolidinediones and metformin in renal transplant recipients.Endocr. Pract.200814897998410.4158/EP.14.8.97919095596
    [Google Scholar]
  13. van Berlo-van de LaarI.R.F. VermeijC.G. DoorenbosC.J. Metformin associated lactic acidosis: Incidence and clinical correlation with metformin serum concentration measurements.J. Clin. Pharm. Ther.201136337638210.1111/j.1365‑2710.2010.01192.x21545617
    [Google Scholar]
  14. ScheenA.J. Clinical pharmacokinetics of metformin.Clin. Pharmacokinet.199630535937110.2165/00003088‑199630050‑000038743335
    [Google Scholar]
  15. KrepinskyJ. IngramA.J. ClaseC.M. Prolonged sulfonylurea-induced hypoglycemia in diabetic patients with end-stage renal disease.Am. J. Kidney Dis.200035350050510.1016/S0272‑6386(00)70204‑610692277
    [Google Scholar]
  16. TirkkonenT. HeikkiläP. HuupponenR. LaineK. HeikkilaP. HuupponenR. Potential CYP2C9‐mediated drug–drug interactions in hospitalized type 2 diabetes mellitus patients treated with the sulphonylureas glibenclamide, glimepiride or glipizide.J. Intern. Med.2010268435936610.1111/j.1365‑2796.2010.02257.x20698928
    [Google Scholar]
  17. SagedalS. ÁsbergA. HartmannA. BerganS. BergK.J. Glipizide treatment of post‐transplant diabetes does not interfere with cyclosporine pharmacokinetics in renal allograft recipients.Clin. Transplant.199812655355610.1111/j.1399‑0012.1998.tb01013.x9850449
    [Google Scholar]
  18. BednarczykD. Fluorescence-based assays for the assessment of drug interaction with the human transporters OATP1B1 and OATP1B3.Anal. Biochem.20104051505810.1016/j.ab.2010.06.01220540932
    [Google Scholar]
  19. GolsteinP.E. BoomA. van GeffelJ. JacobsP. MasereelB. BeauwensR. P-glycoprotein inhibition by glibenclamide and related compounds.Pflugers Arch.1999437565266010.1007/s00424005082910087141
    [Google Scholar]
  20. DeaconC.F. LebovitzH.E. Comparative review of dipeptidyl peptidase‐4 inhibitors and sulphonylureas.Diabetes Obes. Metab.201618433334710.1111/dom.1261026597596
    [Google Scholar]
  21. GolightlyL.K. DraynaC.C. McDermottM.T. Comparative clinical pharmacokinetics of dipeptidyl peptidase-4 inhibitors.Clin. Pharmacokinet.201251850151410.1007/BF0326192722686547
    [Google Scholar]
  22. Tradjenta (linagliptin): Prescribing information; Boehringer Ingelheim Pharmaceuticals, Inc.:Silver Spring2012118
    [Google Scholar]
  23. ScheenA.J. Dipeptidylpeptidase-4 inhibitors (gliptins): Focus on drug-drug interactions.Clin. Pharmacokinet.201049957358810.2165/11532980‑000000000‑0000020690781
    [Google Scholar]
  24. ScheenA.J. Drug-drug interactions with sodium-glucose cotransporters type 2 (SGLT2) inhibitors, new oral glucose-lowering agents for the management of type 2 diabetes mellitus.Clin. Pharmacokinet.201453429530410.1007/s40262‑013‑0128‑824420910
    [Google Scholar]
  25. Jardiance (empagliflozin): Prescribing information; Boehringer Ingelheim Pharmaceuticals, Inc.:Silver Spring2015108
    [Google Scholar]
  26. DevineniD. ManitpisitkulP. VaccaroN. BernardA. SkeeD. MamidiR.N.V.S. TianH. WeinerS. StieltjesH. ShaS. RothenbergP. Effect of canagliflozin, a sodium glucose co-transporter 2 inhibitor, on the pharmacokinetics of oral contraceptives, warfarin, and digoxin in healthy participants.Int. J. Clin. Pharmacol. Ther.2015531415310.5414/CP20215725345427
    [Google Scholar]
  27. Bayer. Acarbose: Prescribing information; Boehringer Ingelheim Pharmaceuticals, Inc.:Silver Spring200998
    [Google Scholar]
  28. HardingerK.L. BrennanD.C. LowellJ. SchnitzlerM.A. Long-term outcome of gastrointestinal complications in renal transplant patients treated with mycophenolate mofetil.Transpl. Int.2004171060961610.1111/j.1432‑2277.2004.tb00394.x15517170
    [Google Scholar]
  29. DuckworthW.C. BennettR.G. HamelF.G. Insulin degradation: Progress and potential.Endocr. Rev.19981956086249793760
    [Google Scholar]
  30. HurrenK.M. PinelliN.R. Drug-drug interactions with glucagon-like peptide-1 receptor agonists.Ann. Pharmacother.201246571071710.1345/aph.1Q58322510669
    [Google Scholar]
  31. ChauraisaV. PalS. Data mining approach to detect heart diseases.Int. J. Adv. Comp. Sci. Infor. Technol201325666
    [Google Scholar]
  32. UccellatoreA. GenoveseS. DicembriniI. MannucciE. CerielloA. Comparison review of short-acting and long-acting glucagon-like peptide-1 receptor agonists.Diabetes Ther.20156323925610.1007/s13300‑015‑0127‑x26271795
    [Google Scholar]
  33. TournierN. SabaW. CisterninoS. PeyronneauM.A. DamontA. GoutalS. DuboisA. DolléF. ScherrmannJ.M. ValetteH. KuhnastB. BottlaenderM. Effects of selected OATP and/or ABC transporter inhibitors on the brain and whole-body distribution of glyburide.AAPS J.20131541082109010.1208/s12248‑013‑9514‑223907487
    [Google Scholar]
  34. DevineniD. VaccaroN. MurphyJ. CurtinC. MamidiR.N.V.S. WeinerS. WangS.S. AriyawansaJ. StieltjesH. WajsE. ProsperoN.A.D. RothenbergP. Effects of rifampin, cyclosporine A, and probenecid on the pharmacokinetic profile of canagliflozin, a sodium glucose co-transporter 2 inhibitor, in healthy participants.Int. J. Clin. Pharmacol. Ther.201553211512810.5414/CP20215825407255
    [Google Scholar]
  35. AhmadP. QamarS. Qasim Afser RizviS. Techniques of data mining in healthcare: A review.Int. J. Comput. Appl.201512015385010.5120/21307‑4126
    [Google Scholar]
  36. AfloriC. CrausM. Grid implementation of the Apriori algorithm.Adv. Eng. Softw.200738529530010.1016/j.advengsoft.2006.08.011
    [Google Scholar]
  37. SarwarT. SeifollahiS. ChanJ. ZhangX. AksakalliV. HudsonI. VerspoorK. CavedonL. The secondary use of electronic health records for data mining: Data characteristics and challenges.ACM Comput. Surv.2023552140[CSUR].10.1145/3490234
    [Google Scholar]
  38. YadavP. SteinbachM. KumarV. SimonG. Mining electronic health records (EHRs): A survey.ACM Comput. Surv.2018506140[CSUR].10.1145/3127881
    [Google Scholar]
  39. PatelV. ReedM.E. GrantR.W. Electronic health records and the evolution of diabetes care: A narrative review.J. Diabetes Sci. Technol.20159367668010.1177/193229681557225625711684
    [Google Scholar]
  40. LégatL. Van LaereS. NyssenM. SteurbautS. DupontA.G. CornuP. Clinical decision support systems for drug allergy checking: Systematic review.J. Med. Internet Res.2018209e25810.2196/jmir.820630194058
    [Google Scholar]
  41. EyohU. Polypharmacy, the Electronic Medical Record, and Adverse Drug Events., Doctoral dissertation, Walden University,2016.18
    [Google Scholar]
  42. SakaedaT. TamonA. KadoyamaK. OkunoY. Data mining of the public version of the FDA adverse event reporting system.Int. J. Med. Sci.201310779680310.7150/ijms.604823794943
    [Google Scholar]
  43. AL-Musawe,L.; Martins, A.P.; Raposo, J.F.; Torre, C. The association between polypharmacy and adverse health consequences in elderly type 2 diabetes mellitus patients; a systematic review and meta-analysis.Diabetes Res. Clin. Pract.201915510780410.1016/j.diabres.2019.107804
    [Google Scholar]
  44. ShahB.M. HajjarE.R. Polypharmacy, adverse drug reactions, and geriatric syndromes.Clin. Geriatr. Med.201228217318610.1016/j.cger.2012.01.00222500537
    [Google Scholar]
  45. HarpazR. DuMouchelW. LePenduP. Bauer-MehrenA. RyanP. ShahN.H. Performance of pharmacovigilance signal-detection algorithms for the FDA adverse event reporting system.Clin. Pharmacol. Ther.201393653954610.1038/clpt.2013.2423571771
    [Google Scholar]
  46. BihanK. Lebrun-VignesB. Funck-BrentanoC. SalemJ-E. Uses of pharmacovigilance databases: An overview.Therapie202075659159810.1016/j.therap.2020.02.02232169289
    [Google Scholar]
  47. VilarS. LorberbaumT. HripcsakG. TatonettiN.P. Improving detection of arrhythmia drug-drug interactions in pharmacovigilance data through the implementation of similarity-based modeling.PLoS One2015106e012997410.1371/journal.pone.012997426068584
    [Google Scholar]
  48. ChandranU MehendaleN PatilS ChaguturuR PatwardhanB Chapter 5 - Network pharmacology.Innovative Approaches in Drug Discovery.Chapter 5Cambridge, USAcademic Press201712716410.1016/B978‑0‑12‑801814‑9.00005‑2
    [Google Scholar]
  49. NoorF. Tahir ul Qamar, M.; Ashfaq, U.A.; Albutti, A.; Alwashmi, A.S.S.; Aljasir, M.A. Network pharmacology approach for medicinal plants: Review and assessment.Pharmaceuticals (Basel)202215557210.3390/ph1505057235631398
    [Google Scholar]
  50. SenA. A study on drug-drug interaction between anti-hypertensive drug (Propranolol) and anti-diabetic drug (glipizide).Ann. Biol. Res.2010133540
    [Google Scholar]
  51. SharmaG. HarikumarS.L. NavisS. A review on drug-drug and drug-food interactions in patients during the treatment of diabetes mellitus.Int. J. Pharmacol. Clini. Sci.2015449810510.5530/ijpcs.4.4.6
    [Google Scholar]
  52. ChangC.L. LinY. BartolomeA.P. ChenY.C. ChiuS.C. YangW.C. Herbal therapies for type 2 diabetes mellitus: Chemistry, biology, and potential application of selected plants and compounds.Evid. Bas. Compl. Alternat. Med.2013201337865710.1155/2013/37865723662132
    [Google Scholar]
  53. WillcoxM.L. ElugbajuC. Al-AnbakiM. LownM. GrazB. Effectiveness of medicinal plants for glycaemic control in type 2 diabetes: An overview of meta-analyses of clinical trials.Front. Pharmacol.20211277756110.3389/fphar.2021.77756134899340
    [Google Scholar]
  54. UsaiR. MajoniS. RwereF. Natural products for the treatment and management of diabetes mellitus in Zimbabwe-a review.Front. Pharmacol.20221398081910.3389/fphar.2022.98081936091798
    [Google Scholar]
  55. GuptaR.C. ChangD. NammiS. BensoussanA. BilinskiK. RoufogalisB.D. Interactions between antidiabetic drugs and herbs: An overview of mechanisms of action and clinical implications.Diabetol. Metab. Syndr.2017915910.1186/s13098‑017‑0254‑928770011
    [Google Scholar]
  56. SuranaA.R. AgrawalS.P. KumbhareM.R. GaikwadS.B. Current perspectives in herbal and conventional drug interactions based on clinical manifestations.Fut. J. Pharmaceut. Sci.20217110310.1186/s43094‑021‑00256‑w
    [Google Scholar]
  57. Nikkhah BodaghM. MalekiI. HekmatdoostA. Ginger in gastrointestinal disorders: A systematic review of clinical trials.Food Sci. Nutr.2019719610810.1002/fsn3.80730680163
    [Google Scholar]
  58. DeutchM.R. GrimmD. WehlandM. InfangerM. KrügerM. Bioactive candy: Effects of licorice on the cardiovascular system.Foods201981049510.3390/foods810049531615045
    [Google Scholar]
  59. IslasJ.F. AcostaE. G-Buentello, Z.; Delgado-Gallegos, J.L.; Moreno-Treviño, M.G.; Escalante, B.; Moreno-Cuevas, J.E. An overview of Neem (Azadirachta indica) and its potential impact on health.J. Funct. Foods20207410417110.1016/j.jff.2020.104171
    [Google Scholar]
  60. ZhaoM. YuY. WangR. ChangM. MaS. QuH. ZhangY. Mechanisms and efficacy of Chinese herbal medicines in chronic kidney disease.Front. Pharmacol.20211161920110.3389/fphar.2020.61920133854427
    [Google Scholar]
  61. WalP. DwivediJ. WalA. VigH. SinghY. Detailed insight into the pathophysiology and the behavioral complications associated with the Parkinson’s disease and its medications.Fut J. Pharmaceut. Sci.2022813310.1186/s43094‑022‑00425‑5
    [Google Scholar]
  62. SahooB PanigrahiD. Medicinal plants with antidiabetic effects - an overview (part 1).J. Pharm.2019930946
    [Google Scholar]
  63. PirilloA. CatapanoA.L. Berberine, a modulator of cholesterol and glucose metabolism.Atherosclerosis2015243230030726520899
    [Google Scholar]
  64. GuptaA.K. KumarS. Review on diabetic complications and their management by flavonoids and triterpenoids.Nat. Prod. J.2023138105114
    [Google Scholar]
  65. Post-WhiteJ. LadasE.J. KellyK.M. Advances in the use of milk thistle (Silybum marianum).Integr. Cancer Ther.20076210410910.1177/153473540730163217548789
    [Google Scholar]
  66. ScarpelloJ.H.B. HowlettH.C.S. Metformin therapy and clinical uses.Diab. Vasc. Dis. Res.20085315716710.3132/dvdr.2008.02718777488
    [Google Scholar]
  67. KrentzA.J. BaileyC.J. Oral antidiabetic agents: Current role in type 2 diabetes mellitus.Drugs200565338541110.2165/00003495‑200565030‑0000515669880
    [Google Scholar]
  68. YeswanthG. Study Of Microalbuminuria In Type-2 Diabetes Mellitus.Doctoral dissertation, Rajiv Gandhi University of Health Sciences India202217
    [Google Scholar]
  69. DormandyJ.A. CharbonnelB. EcklandD.J.A. ErdmannE. Massi-BenedettiM. MoulesI.K. SkeneA.M. TanM.H. LefèbvreP.J. MurrayG.D. StandlE. WilcoxR.G. WilhelmsenL. BetteridgeJ. BirkelandK. GolayA. HeineR.J. KorányiL. LaaksoM. MokáňM. NorkusA. PiragsV. PodarT. ScheenA. ScherbaumW. SchernthanerG. SchmitzO. ŠkrhaJ. SmithU. TatoňJ. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): A randomised controlled trial.Lancet200536694931279128910.1016/S0140‑6736(05)67528‑916214598
    [Google Scholar]
  70. RosenstockJ. Aguilar-SalinasC. KleinE. NepalS. ListJ. ChenR. Effect of saxagliptin monotherapy in treatment-naïve patients with type 2 diabetes.Curr. Med. Res. Opin.200925102401241110.1185/0300799090317873519650754
    [Google Scholar]
  71. ZinmanB. WannerC. LachinJ.M. FitchettD. BluhmkiE. HantelS. MattheusM. DevinsT. JohansenO.E. WoerleH.J. BroedlU.C. InzucchiS.E. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes.N. Engl. J. Med.2015373222117212810.1056/NEJMoa150472026378978
    [Google Scholar]
  72. MaratheP.H. GaoH.X. CloseK.L. American diabetes association standards of medical care in diabetes 2017.J. Diabetes20179432032410.1111/1753‑0407.1252428070960
    [Google Scholar]
  73. BellD.S.H. FonsecaV. Therapeutic approaches to achieving the ADA goals in high-risk patients with type 2 diabetes.Diabetes Obes. Metab.200575381391
    [Google Scholar]
  74. SolomonR. BarrettB. Follow-up of patients with diabetes mellitus, hyperglycemia, or renal insufficiency.Radiology2006240372572716837671
    [Google Scholar]
  75. Park-WyllieL.Y. JuurlinkD.N. KoppA. ShahB.R. StukelT.A. StumpoC. DresserL. LowD.E. MamdaniM.M. Outpatient gatifloxacin therapy and dysglycemia in older adults.N. Engl. J. Med.2006354131352136110.1056/NEJMoa05519116510739
    [Google Scholar]
  76. RatnerR.E. MansonJ.E. BuringJ.E. LiuS. Pramlintide and insulin interaction.Diabetes Care20042792108211515333470
    [Google Scholar]
  77. VincentS.H. Sitagliptin-digoxin interaction.Clin. Pharmacol. Ther.2007823298304
    [Google Scholar]
  78. WadaT. KamimuraT. The effect of beta-blockers on hypoglycemia in diabetes.J. Clin. Pharm. Ther.20123716367
    [Google Scholar]
  79. SomogyiA. StockleyC. Interaction between metformin and furosemide.Eur. J. Clin. Pharmacol.198324153576617724
    [Google Scholar]
  80. HolsteinA. EgbertsE.H. Risk of hypoglycemia and sulfonylureas.JAMA20032891316691671
    [Google Scholar]
  81. ScheenA.J. LeeM.G. Pharmacokinetic interactions between metformin and nifedipine.Clin. Pharmacokinet.1996304262278
    [Google Scholar]
  82. KnudsenJ.F. PridalL. Sulfonylureas and salicylates interaction.Diabetes Care1993166785791
    [Google Scholar]
  83. LauritanoC. IanoraA. Marine organisms with anti-diabetes properties.Mar. Drugs2016141222010.3390/md1412022027916864
    [Google Scholar]
  84. WangJ. ZhangQ. ZhangZ. LiZ. Anti-diabetic effects of brown seaweed on diabetes induced by high-fat diet and streptozotocin in rats.J. Ethnopharmacol.20081153450456
    [Google Scholar]
  85. DwivediJ. SachanP. WalP. WalA. RaiA.K. Current state and future perspective of diabetic wound healing treatment: Present evidence from clinical trials.Curr. Diabetes Rev.2024205e28082322040510.2174/157339982066623082809170837641999
    [Google Scholar]
  86. KangK.A. LeeK.H. ChaeS. ZhangR. JungM.S. LeeY. KimS.Y. KimH.S. JooH.G. ParkJ.W. HamY.M. LeeN.H. HyunJ.W. Eckol isolated from Ecklonia cava attenuates oxidative stress induced cell damage in lung fibroblast cells.FEBS Lett.2005579286295630410.1016/j.febslet.2005.10.00816253238
    [Google Scholar]
  87. SkopV. CahovaM. PapackovaZ. PalenickovaE. DankovaH. KazdovaL. Chitosan-fish oil dietary supplement attenuates hepatic steatosis in high-fat diet-fed mice: Relation to suppression of stearoyl-CoA desaturase.Nutr. Metab. (Lond.)200961112
    [Google Scholar]
  88. HoldtS.L. KraanS. Bioactive compounds in seaweed: Functional food applications and legislation.J. Appl. Phycol.201123354359710.1007/s10811‑010‑9632‑5
    [Google Scholar]
  89. SankarV. SaaedY. JosephR. AziziH. ThomasP. Serious drug-drug interactions in the prescriptions of diabetic patients.Med. Sci. (Basel)2015349310310.3390/medsci304009329083394
    [Google Scholar]
  90. ThomsenH.S. MorcosS.K. Contrast media and metformin: Guidelines to diminish the risk of lactic acidosis in non-insulin-dependent diabetics after administration of contrast media.Eur. Radiol.19999473874010.1007/s00330005074610354898
    [Google Scholar]
  91. ParkerR.K. LimmrothV. Interactions of nonsteroidal anti-inflammatory drugs with anti-hyperglycemic agents.Clin. Pharmacol. Ther.1995572193194
    [Google Scholar]
  92. DeleaT.E. EdelsbergJ.S. HagiwaraM. OsterG. PhillipsL.S. WeinsteinM.C. Use of thiazolidinediones and risk of heart failure in people with type 2 diabetes: A retrospective cohort study.Diabetes Care200326112983298910.2337/diacare.26.11.298314578227
    [Google Scholar]
  93. HirshJ. FusterV. AnsellJ. HalperinJ.L. American heart association/american college of cardiology foundation guide to warfarin therapy.Circulation2003107121692171110.1161/01.CIR.0000063575.17904.4E12668507
    [Google Scholar]
  94. PalmerB.F. Managing hyperkalemia caused by inhibitors of the renin-angiotensin-aldosterone system.N. Engl. J. Med.2004351658559210.1056/NEJMra03527915295051
    [Google Scholar]
  95. DwivediJ. SachanP. WalP. DwivediS. SharmaM.C. RaoS.P. Detailed review on phytosomal formulation attenuating new pharmacological therapies.Adv. Tradit. Med.20232410.1007/s13596‑023‑00712‑3
    [Google Scholar]
  96. BardinC.W. CatterallJ.F. Contraceptive efficacy of hormonal methods.Science19812114486296303
    [Google Scholar]
  97. IzzoA.A. ErnstE. Interactions between herbal medicines and prescribed drugs: An updated systematic review.Drugs200969131777179810.2165/11317010‑000000000‑0000019719333
    [Google Scholar]
  98. BrantleyS.J. ArgikarA.A. LinY.S. NagarS. PaineM.F. Herb-drug interactions: Challenges and opportunities for improved predictions.Drug Metab. Dispos.201442330131710.1124/dmd.113.05523624335390
    [Google Scholar]
  99. UlbrichtC. BaschE. SzaparyP. HammernessP. VoraM. WylieJ. Ginseng (Panax ginseng): A review of its clinical efficacy.J. Herb. Pharmacother.2002245385
    [Google Scholar]
  100. IzzoA.A. Drug interactions with St. John’s Wort (Hypericum perforatum): A review of the clinical evidence.Int. J. Clin. Pharmacol. Ther.200442313914810.5414/CPP4213915049433
    [Google Scholar]
  101. Fugh-BermanA. Herb-drug interactions.Lancet2000355919813413810.1016/S0140‑6736(99)06457‑010675182
    [Google Scholar]
  102. ErnstE. Second thoughts about safety of St John’s wort.Lancet199935491952014201610.1016/S0140‑6736(99)00418‑310636361
    [Google Scholar]
  103. BaileyD.G. MalcolmJ. ArnoldO. David SpenceJ. Grapefruit juice–drug interactions.Br. J. Clin. Pharmacol.199846210111010.1046/j.1365‑2125.1998.00764.x9723817
    [Google Scholar]
  104. YehG.Y. EisenbergD.M. KaptchukT.J. PhillipsR.S. Systematic review of herbs and dietary supplements for glycemic control in diabetes.Diabetes Care20032641277129410.2337/diacare.26.4.127712663610
    [Google Scholar]
  105. CadoganC.A. RyanC. HughesC.M. Appropriate polypharmacy and medicine safety: When many is not too many.Drug Saf.201639210911610.1007/s40264‑015‑0378‑526692396
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002358291250401190533
Loading
/content/journals/cdm/10.2174/0113892002358291250401190533
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): data mining; Diabetes; drug metabolism; drug-drug interaction; medications; polypharmacy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test