Skip to content
2000
image of A Data Mining Approach on Polypharmacy and Drug-drug Interactions of Common Diabetes Medications

Abstract

Background

When managing diabetes, polypharmacy the use of several drugs simultaneously to obtain the best possible glucose control is typical. Drug-drug interactions (DDIs), which can result in side effects and reduced treatment efficacy, have increased.

Objective

This study evaluated the data mining approach of polypharmacy-based drug-drug interactions for common diabetes medication.

Methods

To identify publications that met the inclusion criteria, several scientific reviews and research papers were searched, including Scopus, Web of Science, Google Scholar, PubMed, Science Direct, Springer Link, and NCBI, using keywords such as diabetes, drug-drug interaction, polypharmacy, data mining, and herbal interaction.

Results

Many important drug-drug interactions among popular anti-diabetic drugs have been identified using data mining. Using iodinated contrast media and metformin together increased the risk of lactic acidosis, and using NSAIDs and sulfonylureas simultaneously increased the risk of hypoglycemia. A higher incidence of DDIs was found in an analysis of elderly individuals and those with several comorbidities. Predictive models have demonstrated high sensitivity and accuracy in detecting possible DDIs from patient and drug data.

Conclusion

Finding and evaluating DDIs in polypharmacy related to diabetes care are made possible through data mining. These results could potentially improve patient safety by influencing more individualized and cautious prescription techniques. The improvement of these methods and their application in standard clinical practice should be the main goal of future studies.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002358291250401190533
2025-04-17
2025-10-24
Loading full text...

Full text loading...

References

  1. Beyth R.J. Shorr R.I. Epidemiology of adverse drug reactions in older people according to drug categories. Drugs Aging 1999 14 3 231 239 10.2165/00002512‑199914030‑00005 10220106
    [Google Scholar]
  2. Gizzi L.A. Slain D. Hare J.T. Sager R. Briggs F. III Palmer C.H. Assessment of a safety enhancement to the hospital medication reconciliation process for elderly patients. Am. J. Geriatr. Pharmacother. 2010 8 2 127 135 10.1016/j.amjopharm.2010.03.004 20439062
    [Google Scholar]
  3. Egger S.S. Drewe J. Schlienger R.G. Potential drug–drug interactions in the medication of medical patients at hospital discharge. Eur. J. Clin. Pharmacol. 2003 58 11 773 778 10.1007/s00228‑002‑0557‑z 12634985
    [Google Scholar]
  4. Peron E.P. Ogbonna K.C. Donohoe K.L. Antidiabetic medications and polypharmacy. Clin. Geriatr. Med. 2015 31 1 17 27, vii 10.1016/j.cger.2014.08.017 25453298
    [Google Scholar]
  5. Juurlink D.N. Mamdani M. Kopp A. Laupacis A. Redelmeier D.A. Drug-drug interactions among elderly patients hospitalized for drug toxicity. JAMA 2003 289 13 1652 1658 10.1001/jama.289.13.1652 12672733
    [Google Scholar]
  6. Muir A.J. Sanders L.L. Wilkinson W.E. Schmader K. Reducing medication regimen complexity. J. Gen. Intern. Med. 2001 16 2 77 82 10.1046/j.1525‑1497.2001.016002077.x 11251757
    [Google Scholar]
  7. Spriet I. Grootaert V. Meyfroidt G. Debaveye Y. Willems L. Switching from intravenous to oral tacrolimus and voriconazole leads to a more pronounced drug–drug interaction. Eur. J. Clin. Pharmacol. 2013 69 3 737 738 10.1007/s00228‑012‑1365‑8 22878691
    [Google Scholar]
  8. Pawarode A. Shukla S. Minderman H. Fricke S.M. Pinder E.M. O’Loughlin K.L. Ambudkar S.V. Baer M.R. Differential effects of the immunosuppressive agents cyclosporin A, tacrolimus and sirolimus on drug transport by multidrug resistance proteins. Cancer Chemother. Pharmacol. 2007 60 2 179 188 10.1007/s00280‑006‑0357‑8 17031644
    [Google Scholar]
  9. Gupta A. Dai Y. Vethanayagam R.R. Hebert M.F. Thummel K.E. Unadkat J.D. Ross D.D. Mao Q. Cyclosporin A, tacrolimus and sirolimus are potent inhibitors of the human breast cancer resistance protein (ABCG2) and reverse resistance to mitoxantrone and topotecan. Cancer Chemother. Pharmacol. 2006 58 3 374 383 10.1007/s00280‑005‑0173‑6 16404634
    [Google Scholar]
  10. Watashi K. Sluder A. Daito T. Matsunaga S. Ryo A. Nagamori S. Iwamoto M. Nakajima S. Tsukuda S. Borroto-Esoda K. Sugiyama M. Tanaka Y. Kanai Y. Kusuhara H. Mizokami M. Wakita T. Cyclosporin A and its analogs inhibit hepatitis B virus entry into cultured hepatocytes through targeting a membrane transporter, sodium taurocholate cotransporting polypeptide (NTCP). Hepatology 2014 59 5 1726 1737 10.1002/hep.26982 24375637
    [Google Scholar]
  11. Graham G.G. Punt J. Arora M. Day R.O. Doogue M.P. Duong J.K. Furlong T.J. Greenfield J.R. Greenup L.C. Kirkpatrick C.M. Ray J.E. Timmins P. Williams K.M. Clinical pharmacokinetics of metformin. Clin. Pharmacokinet. 2011 50 2 81 98 10.2165/11534750‑000000000‑00000 21241070
    [Google Scholar]
  12. Kurian B. Joshi R. Helmuth A. Effectiveness and long-term safety of thiazolidinediones and metformin in renal transplant recipients. Endocr. Pract. 2008 14 8 979 984 10.4158/EP.14.8.979 19095596
    [Google Scholar]
  13. van Berlo-van de Laar I.R.F. Vermeij C.G. Doorenbos C.J. Metformin associated lactic acidosis: Incidence and clinical correlation with metformin serum concentration measurements. J. Clin. Pharm. Ther. 2011 36 3 376 382 10.1111/j.1365‑2710.2010.01192.x 21545617
    [Google Scholar]
  14. Scheen A.J. Clinical pharmacokinetics of metformin. Clin. Pharmacokinet. 1996 30 5 359 371 10.2165/00003088‑199630050‑00003 8743335
    [Google Scholar]
  15. Krepinsky J. Ingram A.J. Clase C.M. Prolonged sulfonylurea-induced hypoglycemia in diabetic patients with end-stage renal disease. Am. J. Kidney Dis. 2000 35 3 500 505 10.1016/S0272‑6386(00)70204‑6 10692277
    [Google Scholar]
  16. Tirkkonen T. Heikkilä P. Huupponen R. Laine K. Heikkila P. Huupponen R. Potential CYP2C9‐mediated drug–drug interactions in hospitalized type 2 diabetes mellitus patients treated with the sulphonylureas glibenclamide, glimepiride or glipizide. J. Intern. Med. 2010 268 4 359 366 10.1111/j.1365‑2796.2010.02257.x 20698928
    [Google Scholar]
  17. Sagedal S. Ásberg A. Hartmann A. Bergan S. Berg K.J. Glipizide treatment of post‐transplant diabetes does not interfere with cyclosporine pharmacokinetics in renal allograft recipients. Clin. Transplant. 1998 12 6 553 556 10.1111/j.1399‑0012.1998.tb01013.x 9850449
    [Google Scholar]
  18. Bednarczyk D. Fluorescence-based assays for the assessment of drug interaction with the human transporters OATP1B1 and OATP1B3. Anal. Biochem. 2010 405 1 50 58 10.1016/j.ab.2010.06.012 20540932
    [Google Scholar]
  19. Golstein P.E. Boom A. van Geffel J. Jacobs P. Masereel B. Beauwens R. P-glycoprotein inhibition by glibenclamide and related compounds. Pflugers Arch. 1999 437 5 652 660 10.1007/s004240050829 10087141
    [Google Scholar]
  20. Deacon C.F. Lebovitz H.E. Comparative review of dipeptidyl peptidase‐4 inhibitors and sulphonylureas. Diabetes Obes. Metab. 2016 18 4 333 347 10.1111/dom.12610 26597596
    [Google Scholar]
  21. Golightly L.K. Drayna C.C. McDermott M.T. Comparative clinical pharmacokinetics of dipeptidyl peptidase-4 inhibitors. Clin. Pharmacokinet. 2012 51 8 501 514 10.1007/BF03261927 22686547
    [Google Scholar]
  22. Tradjenta (linagliptin): Prescribing information. Silver Spring Boehringer Ingelheim Pharmaceuticals, Inc. 2012 118
    [Google Scholar]
  23. Scheen A.J. Dipeptidylpeptidase-4 inhibitors (gliptins): Focus on drug-drug interactions. Clin. Pharmacokinet. 2010 49 9 573 588 10.2165/11532980‑000000000‑00000 20690781
    [Google Scholar]
  24. Scheen A.J. Drug-drug interactions with sodium-glucose cotransporters type 2 (SGLT2) inhibitors, new oral glucose-lowering agents for the management of type 2 diabetes mellitus. Clin. Pharmacokinet. 2014 53 4 295 304 10.1007/s40262‑013‑0128‑8 24420910
    [Google Scholar]
  25. Jardiance (empagliflozin): Prescribing information. Silver Spring Boehringer Ingelheim Pharmaceuticals, Inc. 2015 108
    [Google Scholar]
  26. Devineni D. Manitpisitkul P. Vaccaro N. Bernard A. Skee D. Mamidi R.N.V.S. Tian H. Weiner S. Stieltjes H. Sha S. Rothenberg P. Effect of canagliflozin, a sodium glucose co-transporter 2 inhibitor, on the pharmacokinetics of oral contraceptives, warfarin, and digoxin in healthy participants. Int. J. Clin. Pharmacol. Ther. 2015 53 1 41 53 10.5414/CP202157 25345427
    [Google Scholar]
  27. Bayer. Acarbose: Prescribing information. Silver Spring Boehringer Ingelheim Pharmaceuticals, Inc. 2009 98
    [Google Scholar]
  28. Hardinger K.L. Brennan D.C. Lowell J. Schnitzler M.A. Long-term outcome of gastrointestinal complications in renal transplant patients treated with mycophenolate mofetil. Transpl. Int. 2004 17 10 609 616 10.1111/j.1432‑2277.2004.tb00394.x 15517170
    [Google Scholar]
  29. Duckworth W.C. Bennett R.G. Hamel F.G. Insulin degradation: Progress and potential. Endocr. Rev. 1998 19 5 608 624 9793760
    [Google Scholar]
  30. Hurren K.M. Pinelli N.R. Drug-drug interactions with glucagon-like peptide-1 receptor agonists. Ann. Pharmacother. 2012 46 5 710 717 10.1345/aph.1Q583 22510669
    [Google Scholar]
  31. Chauraisa V. Pal S. Data mining approach to detect heart diseases. Int. J. Adv. Comp. Sci. Infor. Technol 2013 2 56 66
    [Google Scholar]
  32. Uccellatore A. Genovese S. Dicembrini I. Mannucci E. Ceriello A. Comparison review of short-acting and long-acting glucagon-like peptide-1 receptor agonists. Diabetes Ther. 2015 6 3 239 256 10.1007/s13300‑015‑0127‑x 26271795
    [Google Scholar]
  33. Tournier N. Saba W. Cisternino S. Peyronneau M.A. Damont A. Goutal S. Dubois A. Dollé F. Scherrmann J.M. Valette H. Kuhnast B. Bottlaender M. Effects of selected OATP and/or ABC transporter inhibitors on the brain and whole-body distribution of glyburide. AAPS J. 2013 15 4 1082 1090 10.1208/s12248‑013‑9514‑2 23907487
    [Google Scholar]
  34. Devineni D. Vaccaro N. Murphy J. Curtin C. Mamidi R.N.V.S. Weiner S. Wang S.S. Ariyawansa J. Stieltjes H. Wajs E. Prospero N.A.D. Rothenberg P. Effects of rifampin, cyclosporine A, and probenecid on the pharmacokinetic profile of canagliflozin, a sodium glucose co-transporter 2 inhibitor, in healthy participants. Int. J. Clin. Pharmacol. Ther. 2015 53 2 115 128 10.5414/CP202158 25407255
    [Google Scholar]
  35. Ahmad P. Qamar S. Qasim Afser Rizvi S. Techniques of data mining in healthcare: A review. Int. J. Comput. Appl. 2015 120 15 38 50 10.5120/21307‑4126
    [Google Scholar]
  36. Aflori C. Craus M. Grid implementation of the Apriori algorithm. Adv. Eng. Softw. 2007 38 5 295 300 10.1016/j.advengsoft.2006.08.011
    [Google Scholar]
  37. Sarwar T. Seifollahi S. Chan J. Zhang X. Aksakalli V. Hudson I. Verspoor K. Cavedon L. The secondary use of electronic health records for data mining: Data characteristics and challenges. ACM Comput. Surv. 2023 55 2 1 40 [CSUR]. 10.1145/3490234
    [Google Scholar]
  38. Yadav P. Steinbach M. Kumar V. Simon G. Mining electronic health records (EHRs): A survey. ACM Comput. Surv. 2018 50 6 1 40 [CSUR]. 10.1145/3127881
    [Google Scholar]
  39. Patel V. Reed M.E. Grant R.W. Electronic health records and the evolution of diabetes care: A narrative review. J. Diabetes Sci. Technol. 2015 9 3 676 680 10.1177/1932296815572256 25711684
    [Google Scholar]
  40. Légat L. Van Laere S. Nyssen M. Steurbaut S. Dupont A.G. Cornu P. Clinical decision support systems for drug allergy checking: Systematic review. J. Med. Internet Res. 2018 20 9 e258 10.2196/jmir.8206 30194058
    [Google Scholar]
  41. Eyoh U. Polypharmacy, the Electronic Medical Record, and Adverse Drug Events. Doctoral dissertation, Walden University 2016 1 8
    [Google Scholar]
  42. Sakaeda T. Tamon A. Kadoyama K. Okuno Y. Data mining of the public version of the FDA adverse event reporting system. Int. J. Med. Sci. 2013 10 7 796 803 10.7150/ijms.6048 23794943
    [Google Scholar]
  43. AL-Musawe L. Martins A.P. Raposo J.F. Torre C. The association between polypharmacy and adverse health consequences in elderly type 2 diabetes mellitus patients; a systematic review and meta-analysis. Diabetes Res. Clin. Pract. 2019 155 107804 10.1016/j.diabres.2019.107804
    [Google Scholar]
  44. Shah B.M. Hajjar E.R. Polypharmacy, adverse drug reactions, and geriatric syndromes. Clin. Geriatr. Med. 2012 28 2 173 186 10.1016/j.cger.2012.01.002 22500537
    [Google Scholar]
  45. Harpaz R. DuMouchel W. LePendu P. Bauer-Mehren A. Ryan P. Shah N.H. Performance of pharmacovigilance signal-detection algorithms for the FDA adverse event reporting system. Clin. Pharmacol. Ther. 2013 93 6 539 546 10.1038/clpt.2013.24 23571771
    [Google Scholar]
  46. Bihan K. Lebrun-Vignes B. Funck-Brentano C. Salem J-E. Uses of pharmacovigilance databases: An overview. Therapie. 2020 75 6 591 598 10.1016/j.therap.2020.02.022 32169289
    [Google Scholar]
  47. Vilar S. Lorberbaum T. Hripcsak G. Tatonetti N.P. Improving detection of arrhythmia drug-drug interactions in pharmacovigilance data through the implementation of similarity-based modeling. PLoS One 2015 10 6 e0129974 10.1371/journal.pone.0129974 26068584
    [Google Scholar]
  48. Chandran U Mehendale N Patil S Chaguturu R Patwardhan B. Chapter 5 - Network pharmacology. Innovative Approaches in Drug Discovery. Cambridge, US Academic Press 2017 127 164 10.1016/B978‑0‑12‑801814‑9.00005‑2
    [Google Scholar]
  49. Noor F. Tahir ul Qamar M. Ashfaq U.A. Albutti A. Alwashmi A.S.S. Aljasir M.A. Network pharmacology approach for medicinal plants: Review and assessment. Pharmaceuticals (Basel) 2022 15 5 572 10.3390/ph15050572 35631398
    [Google Scholar]
  50. Sen A. A study on drug-drug interaction between anti-hypertensive drug (Propranolol) and anti-diabetic drug (glipizide). Ann. Biol. Res. 2010 1 3 35 40
    [Google Scholar]
  51. Sharma G. Harikumar S.L. Navis S. A review on drug-drug and drug-food interactions in patients during the treatment of diabetes mellitus. Int. J. Pharmacol. Clini. Sci. 2015 4 4 98 105 10.5530/ijpcs.4.4.6
    [Google Scholar]
  52. Chang C.L. Lin Y. Bartolome A.P. Chen Y.C. Chiu S.C. Yang W.C. Herbal therapies for type 2 diabetes mellitus: Chemistry, biology, and potential application of selected plants and compounds. Evid. Bas. Compl. Alternat. Med. 2013 2013 378657 10.1155/2013/378657 23662132
    [Google Scholar]
  53. Willcox M.L. Elugbaju C. Al-Anbaki M. Lown M. Graz B. Effectiveness of medicinal plants for glycaemic control in type 2 diabetes: An overview of meta-analyses of clinical trials. Front. Pharmacol. 2021 12 777561 10.3389/fphar.2021.777561 34899340
    [Google Scholar]
  54. Usai R. Majoni S. Rwere F. Natural products for the treatment and management of diabetes mellitus in Zimbabwe-a review. Front. Pharmacol. 2022 13 980819 10.3389/fphar.2022.980819 36091798
    [Google Scholar]
  55. Gupta R.C. Chang D. Nammi S. Bensoussan A. Bilinski K. Roufogalis B.D. Interactions between antidiabetic drugs and herbs: An overview of mechanisms of action and clinical implications. Diabetol. Metab. Syndr. 2017 9 1 59 10.1186/s13098‑017‑0254‑9 28770011
    [Google Scholar]
  56. Surana A.R. Agrawal S.P. Kumbhare M.R. Gaikwad S.B. Current perspectives in herbal and conventional drug interactions based on clinical manifestations. Fut. J. Pharmaceut. Sci. 2021 7 1 103 10.1186/s43094‑021‑00256‑w
    [Google Scholar]
  57. Nikkhah Bodagh M. Maleki I. Hekmatdoost A. Ginger in gastrointestinal disorders: A systematic review of clinical trials. Food Sci. Nutr. 2019 7 1 96 108 10.1002/fsn3.807 30680163
    [Google Scholar]
  58. Deutch M.R. Grimm D. Wehland M. Infanger M. Krüger M. Bioactive candy: Effects of licorice on the cardiovascular system. Foods 2019 8 10 495 10.3390/foods8100495 31615045
    [Google Scholar]
  59. Islas J.F. Acosta E. G-Buentello Z. Delgado-Gallegos J.L. Moreno-Treviño M.G. Escalante B. Moreno-Cuevas J.E. An overview of Neem (Azadirachta indica) and its potential impact on health. J. Funct. Foods 2020 74 104171 10.1016/j.jff.2020.104171
    [Google Scholar]
  60. Zhao M. Yu Y. Wang R. Chang M. Ma S. Qu H. Zhang Y. Mechanisms and efficacy of Chinese herbal medicines in chronic kidney disease. Front. Pharmacol. 2021 11 619201 10.3389/fphar.2020.619201 33854427
    [Google Scholar]
  61. Wal P. Dwivedi J. Wal A. Vig H. Singh Y. Detailed insight into the pathophysiology and the behavioral complications associated with the Parkinson’s disease and its medications. Fut. J. Pharmaceut. Sci. 2022 8 1 33 10.1186/s43094‑022‑00425‑5
    [Google Scholar]
  62. Sahoo B Panigrahi D. Medicinal plants with antidiabetic effects -an overview (part 1). J. Pharm. 2019 9 3 09 46
    [Google Scholar]
  63. Pirillo A. Catapano A.L. Berberine, a modulator of cholesterol and glucose metabolism. Atherosclerosis 2015 243 2 300 307 26520899
    [Google Scholar]
  64. Gupta A.K. Kumar S. Review on diabetic complications and their management by flavonoids and triterpenoids. Nat. Prod. J. 2023 13 8 105 114
    [Google Scholar]
  65. Post-White J. Ladas E.J. Kelly K.M. Advances in the use of milk thistle (Silybum marianum). Integr. Cancer Ther. 2007 6 2 104 109 10.1177/1534735407301632 17548789
    [Google Scholar]
  66. Scarpello J.H.B. Howlett H.C.S. Metformin therapy and clinical uses. Diab. Vasc. Dis. Res. 2008 5 3 157 167 10.3132/dvdr.2008.027 18777488
    [Google Scholar]
  67. Krentz A.J. Bailey C.J. Oral antidiabetic agents: Current role in type 2 diabetes mellitus. Drugs 2005 65 3 385 411 10.2165/00003495‑200565030‑00005 15669880
    [Google Scholar]
  68. Yeswanth G. Study Of Microalbuminuria In Type-2 Diabetes Mellitus. Doctoral dissertation, Rajiv Gandhi University of Health Sciences India 2022 1 7
    [Google Scholar]
  69. Dormandy J.A. Charbonnel B. Eckland D.J.A. Erdmann E. Massi-Benedetti M. Moules I.K. Skene A.M. Tan M.H. Lefèbvre P.J. Murray G.D. Standl E. Wilcox R.G. Wilhelmsen L. Betteridge J. Birkeland K. Golay A. Heine R.J. Korányi L. Laakso M. Mokáň M. Norkus A. Pirags V. Podar T. Scheen A. Scherbaum W. Schernthaner G. Schmitz O. Škrha J. Smith U. Tatoň J. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): A randomised controlled trial. Lancet 2005 366 9493 1279 1289 10.1016/S0140‑6736(05)67528‑9 16214598
    [Google Scholar]
  70. Rosenstock J. Aguilar-Salinas C. Klein E. Nepal S. List J. Chen R. Effect of saxagliptin monotherapy in treatment-naïve patients with type 2 diabetes. Curr. Med. Res. Opin. 2009 25 10 2401 2411 10.1185/03007990903178735 19650754
    [Google Scholar]
  71. Zinman B. Wanner C. Lachin J.M. Fitchett D. Bluhmki E. Hantel S. Mattheus M. Devins T. Johansen O.E. Woerle H.J. Broedl U.C. Inzucchi S.E. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 2015 373 22 2117 2128 10.1056/NEJMoa1504720 26378978
    [Google Scholar]
  72. Marathe P.H. Gao H.X. Close K.L. American diabetes association standards of medical care in diabetes 2017. J. Diabetes 2017 9 4 320 324 10.1111/1753‑0407.12524 28070960
    [Google Scholar]
  73. Bell D.S.H. Fonseca V. Therapeutic approaches to achieving the ADA goals in high-risk patients with type 2 diabetes. Diabetes Obes. Metab. 2005 7 5 381 391
    [Google Scholar]
  74. Solomon R. Barrett B. Follow-up of patients with diabetes mellitus, hyperglycemia, or renal insufficiency. Radiology 2006 240 3 725 727 16837671
    [Google Scholar]
  75. Park-Wyllie L.Y. Juurlink D.N. Kopp A. Shah B.R. Stukel T.A. Stumpo C. Dresser L. Low D.E. Mamdani M.M. Outpatient gatifloxacin therapy and dysglycemia in older adults. N. Engl. J. Med. 2006 354 13 1352 1361 10.1056/NEJMoa055191 16510739
    [Google Scholar]
  76. Ratner R.E. Manson J.E. Buring J.E. Liu S. Pramlintide and insulin interaction. Diabetes Care 2004 27 9 2108 2115 15333470
    [Google Scholar]
  77. Vincent S.H. Sitagliptin-digoxin interaction. Clin. Pharmacol. Ther. 2007 82 3 298 304
    [Google Scholar]
  78. Wada T. Kamimura T. The effect of beta-blockers on hypoglycemia in diabetes. J. Clin. Pharm. Ther. 2012 37 1 63 67
    [Google Scholar]
  79. Somogyi A. Stockley C. Interaction between metformin and furosemide. Eur. J. Clin. Pharmacol. 1983 24 1 53 57 6617724
    [Google Scholar]
  80. Holstein A. Egberts E.H. Risk of hypoglycemia and sulfonylureas. JAMA 2003 289 13 1669 1671
    [Google Scholar]
  81. Scheen A.J. Lee M.G. Pharmacokinetic interactions between metformin and nifedipine. Clin. Pharmacokinet. 1996 30 4 262 278
    [Google Scholar]
  82. Knudsen J.F. Pridal L. Sulfonylureas and salicylates interaction. Diabetes Care 1993 16 6 785 791
    [Google Scholar]
  83. Lauritano C. Ianora A. Marine organisms with anti-diabetes properties. Mar. Drugs 2016 14 12 220 10.3390/md14120220 27916864
    [Google Scholar]
  84. Wang J. Zhang Q. Zhang Z. Li Z. Anti-diabetic effects of brown seaweed on diabetes induced by high-fat diet and streptozotocin in rats. J. Ethnopharmacol. 2008 115 3 450 456
    [Google Scholar]
  85. Dwivedi J. Sachan P. Wal P. Wal A. Rai A.K. Current state and future perspective of diabetic wound healing treatment: Present evidence from clinical trials. Curr. Diabetes Rev. 2024 20 5 e280823220405 10.2174/1573399820666230828091708 37641999
    [Google Scholar]
  86. Kang K.A. Lee K.H. Chae S. Zhang R. Jung M.S. Lee Y. Kim S.Y. Kim H.S. Joo H.G. Park J.W. Ham Y.M. Lee N.H. Hyun J.W. Eckol isolated from Ecklonia cava attenuates oxidative stress induced cell damage in lung fibroblast cells. FEBS. Lett. 2005 579 28 6295 6304 10.1016/j.febslet.2005.10.008 16253238
    [Google Scholar]
  87. Skop V. Cahova M. Papackova Z. Palenickova E. Dankova H. Kazdova L. Chitosan-fish oil dietary supplement attenuates hepatic steatosis in high-fat diet-fed mice: Relation to suppression of stearoyl-CoA desaturase. Nutr. Metab. (Lond.) 2009 6 1 1 12
    [Google Scholar]
  88. Holdt S.L. Kraan S. Bioactive compounds in seaweed: Functional food applications and legislation. J. Appl. Phycol. 2011 23 3 543 597 10.1007/s10811‑010‑9632‑5
    [Google Scholar]
  89. Sankar V. Saaed Y. Joseph R. Azizi H. Thomas P. Serious drug-drug interactions in the prescriptions of diabetic patients. Med. Sci. (Basel) 2015 3 4 93 103 10.3390/medsci3040093 29083394
    [Google Scholar]
  90. Thomsen H.S. Morcos S.K. Contrast media and metformin: Guidelines to diminish the risk of lactic acidosis in non-insulin-dependent diabetics after administration of contrast media. Eur. Radiol. 1999 9 4 738 740 10.1007/s003300050746 10354898
    [Google Scholar]
  91. Parker R.K. Limmroth V. Interactions of nonsteroidal anti-inflammatory drugs with anti-hyperglycemic agents. Clin. Pharmacol. Ther. 1995 57 2 193 194
    [Google Scholar]
  92. Delea T.E. Edelsberg J.S. Hagiwara M. Oster G. Phillips L.S. Weinstein M.C. Use of thiazolidinediones and risk of heart failure in people with type 2 diabetes: A retrospective cohort study. Diabetes Care 2003 26 11 2983 2989 10.2337/diacare.26.11.2983 14578227
    [Google Scholar]
  93. Hirsh J. Fuster V. Ansell J. Halperin J.L. American heart association/american college of cardiology foundation guide to warfarin therapy. Circulation 2003 107 12 1692 1711 10.1161/01.CIR.0000063575.17904.4E 12668507
    [Google Scholar]
  94. Palmer B.F. Managing hyperkalemia caused by inhibitors of the renin-angiotensin-aldosterone system. N. Engl. J. Med. 2004 351 6 585 592 10.1056/NEJMra035279 15295051
    [Google Scholar]
  95. Dwivedi J. Sachan P. Wal P. Dwivedi S. Sharma M.C. Rao S.P. Detailed review on phytosomal formulation attenuating new pharmacological therapies. Adv. Tradit. Med. 2023 24 659 684 10.1007/s13596‑023‑00712‑3
    [Google Scholar]
  96. Bardin C.W. Catterall J.F. Contraceptive efficacy of hormonal methods. Science 1981 211 4486 296 303
    [Google Scholar]
  97. Izzo A.A. Ernst E. Interactions between herbal medicines and prescribed drugs: An updated systematic review. Drugs 2009 69 13 1777 1798 10.2165/11317010‑000000000‑00000 19719333
    [Google Scholar]
  98. Brantley S.J. Argikar A.A. Lin Y.S. Nagar S. Paine M.F. Herb-drug interactions: Challenges and opportunities for improved predictions. Drug Metab. Dispos. 2014 42 3 301 317 10.1124/dmd.113.055236 24335390
    [Google Scholar]
  99. Ulbricht C. Basch E. Szapary P. Hammerness P. Vora M. Wylie J. Ginseng (Panax ginseng): A review of its clinical efficacy. J. Herb. Pharmacother. 2002 2 4 53 85
    [Google Scholar]
  100. Izzo A.A. Drug interactions with St. John’s Wort (Hypericum perforatum): A review of the clinical evidence. Int. J. Clin. Pharmacol. Ther. 2004 42 3 139 148 10.5414/CPP42139 15049433
    [Google Scholar]
  101. Fugh-Berman A. Herb-drug interactions. Lancet 2000 355 9198 134 138 10.1016/S0140‑6736(99)06457‑0 10675182
    [Google Scholar]
  102. Ernst E. Second thoughts about safety of St John’s wort. Lancet 1999 354 9195 2014 2016 10.1016/S0140‑6736(99)00418‑3 10636361
    [Google Scholar]
  103. Bailey D.G. Malcolm J. Arnold O. David Spence J. Grapefruit juice–drug interactions. Br. J. Clin. Pharmacol. 1998 46 2 101 110 10.1046/j.1365‑2125.1998.00764.x 9723817
    [Google Scholar]
  104. Yeh G.Y. Eisenberg D.M. Kaptchuk T.J. Phillips R.S. Systematic review of herbs and dietary supplements for glycemic control in diabetes. Diabetes Care 2003 26 4 1277 1294 10.2337/diacare.26.4.1277 12663610
    [Google Scholar]
  105. Cadogan C.A. Ryan C. Hughes C.M. Appropriate polypharmacy and medicine safety: When many is not too many. Drug Saf. 2016 39 2 109 116 10.1007/s40264‑015‑0378‑5 26692396
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002358291250401190533
Loading
/content/journals/cdm/10.2174/0113892002358291250401190533
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Diabetes ; data mining ; drug metabolism ; polypharmacy ; drug-drug interaction
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test