Skip to content
2000
Volume 26, Issue 3
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

Background

The female reproductive system is susceptible to oxidative stress, which can interfere with ovulation, menstrual cycles, egg quality, and tubal function, ultimately leading to infertility. Antioxidants might play a crucial role in protecting reproductive health by neutralizing Reactive Oxygen Species (ROS) and preventing cellular damage.

Objective

To provide an overview of the research that has been performed on the benefits of antioxidant supplementation for increasing female fertility.

Methods

We conducted a comprehensive search of PubMed, Embase, and Google for full-text, English-language publications between 2000 and 2023 that investigated the relationship between antioxidant supplementation and improvements in female fertility.

Results

Antioxidants have been investigated for their potential to improve fertility outcomes in subfertile women. Antioxidant supplementation shows promise in mitigating these effects by neutralizing excess ROS and restoring balance, leading to improved egg count and fertility outcomes. However, it is important to note that the effectiveness of antioxidant supplementation can vary depending on individual health factors and the specific antioxidants used. Studies suggest that a combination of antioxidants, such as vitamins C and E, selenium, and coenzyme Q10, may be more beneficial than single supplements. Although individual research has shown beneficial correlations between different antioxidant supplementation and female fertility, study repeatability is poor. As a result, further large-scale, well-designed clinical trials are necessary to better understand the precise role and optimal combinations of antioxidants for enhancing fertility in subfertile women.

Discussion and Conclusion

This review study offers crucial insights into the complex connection between OS and female reproductive health. It highlights the potential advantages of antioxidant supplements as a preventative strategy. To enhance female fertility outcomes, further research, particularly randomized controlled clinical trials, is needed to determine best practices, identify populations that could benefit the most, and explore innovative antioxidant treatments.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002357565250604075932
2025-06-16
2026-02-02
Loading full text...

Full text loading...

References

  1. KellowN.J. Le CerfJ. HortaF. DordevicA.L. BennettC.J. The effect of dietary patterns on clinical pregnancy and live birth outcomes in men and women receiving assisted reproductive technologies: a systematic review and meta-analysis.Adv. Nutr.202213385787410.1093/advances/nmac02335293975
    [Google Scholar]
  2. BarbieriR.L. Female infertility.Yen and Jaffe’s Reproductive Endocrinology.Elsevier201955610.1016/B978‑0‑323‑47912‑7.00022‑6
    [Google Scholar]
  3. Perez CapotostoM. An integrative review of fertility knowledge and fertility-awareness practices among women trying to conceive.Nurs. Womens. Health202125319820610.1016/j.nwh.2021.04.00133961806
    [Google Scholar]
  4. DeesL. SkelleyC.W. Effects of ethanol during the onset of female puberty.Neuroendocrinology1990511646910.1159/0001253172106089
    [Google Scholar]
  5. FuxeK. AnderssonK. EnerothP. HärfstrandA. AgnatiL.F. Neuroendocrine actions of nicotine and of exposure to cigarette smoke: Medical implications.Psychoneuroendocrinology1989141-2194110.1016/0306‑4530(89)90054‑12660182
    [Google Scholar]
  6. PainterR.C. RoseboomT.J. de RooijS.R. Long-term effects of prenatal stress and glucocorticoid exposure.Birth Defects Res. C Embryo Today201296431532410.1002/bdrc.2102124203920
    [Google Scholar]
  7. BehrmanH. KodamanP.H. PrestonS.L. GaoS. Oxidative stress and the ovary*1.J. Soc. Gynecol. Investig.200181S40S42[Suppl Proceedings]10.1016/S1071‑5576(00)00106‑411223371
    [Google Scholar]
  8. SmitsR.M. Mackenzie-ProctorR. FleischerK. ShowellM.G. Antioxidants in fertility: Impact on male and female reproductive outcomes.Fertil. Steril.2018110457858010.1016/j.fertnstert.2018.05.02830196940
    [Google Scholar]
  9. AminiL. ChekiniR. NateghiM.R. HaghaniH. JamialahmadiT. SathyapalanT. SahebkarA. The effect of combined vitamin C and vitamin E supplementation on oxidative stress markers in women with endometriosis: A randomized, triple‐blind placebo‐controlled clinical trial.Pain Res. Manag.2021202111610.1155/2021/552974134122682
    [Google Scholar]
  10. CardosoJ.P. CocuzzaM. EltermanD. Optimizing male fertility: Oxidative stress and the use of antioxidants.World J. Urol.20193761029103410.1007/s00345‑019‑02656‑330719570
    [Google Scholar]
  11. DaraghmehD.N. KaramanR. The redox process in red blood cells: Balancing oxidants and antioxidants.Antioxidants20241413610.3390/antiox1401003639857370
    [Google Scholar]
  12. PhoswaW.N. KhaliqO.P. The role of oxidative stress in hypertensive disorders of pregnancy (preeclampsia, gestational hypertension) and metabolic disorder of pregnancy (gestational diabetes mellitus).Oxid. Med. Cell. Longev.202120211558157010.1155/2021/558157034194606
    [Google Scholar]
  13. GadhokA. SharmaT. SinhaM. KhuntetaR. VardeyS. SahniP. SankhlaM. Natural antioxidant vitamins status in pregnancies complicated with intrauterine growth restriction.Clin. Lab.20176305+06/201794194510.7754/Clin.Lab.2017.16112028627837
    [Google Scholar]
  14. GuptaS. AgarwalA. BanerjeeJ. AlvarezJ.G. The role of oxidative stress in spontaneous abortion and recurrent pregnancy loss: A systematic review.Obstet. Gynecol. Surv.200762533534710.1097/01.ogx.0000261644.89300.df17425812
    [Google Scholar]
  15. ChenC.C. ChanW.H. Injurious effects of curcumin on maturation of mouse oocytes, fertilization and fetal development via apoptosis.Int. J. Mol. Sci.20121344655467210.3390/ijms1304465522606002
    [Google Scholar]
  16. FreemanM.P. TothT.L. CohenL.S. Assisted reproduction and risk of depressive relapse: Considerations for treatment.Ann. Clin. Psychiatry201325428324199219
    [Google Scholar]
  17. TesarikJ. Galán-LázaroM. Mendoza-TesarikR. Ovarian aging: Molecular mechanisms and medical management.Int. J. Mol. Sci.2021223137110.3390/ijms2203137133573050
    [Google Scholar]
  18. DuttaS. SenguptaP. IzukaE. MenubaI. NwaghaU. Oxidative and nitrosative stress and female reproduction: Roles of oxidants and antioxidants.J. Integr Sci. Technol202412375475410.62110/sciencein.jist.2024.v12.754
    [Google Scholar]
  19. ShowellM.G. MenubaI. NwaghaU. Antioxidants for female subfertility.Cochrane Databas Syst. Rev.20208CD00780710.1002/14651858.CD007807.pub4
    [Google Scholar]
  20. WalkeG. GaurkarS.S. PrasadR. LohakareT. WanjariM. The impact of oxidative stress on male reproductive function: Exploring the role of antioxidant supplementation.Cureus2023157e4258310.7759/cureus.4258337641770
    [Google Scholar]
  21. Al-GuboryK.H. FowlerP.A. GarrelC. The roles of cellular reactive oxygen species, oxidative stress and antioxidants in pregnancy outcomes.Int. J. Biochem. Cell Biol.201042101634165010.1016/j.biocel.2010.06.00120601089
    [Google Scholar]
  22. BurtonG.J. JauniauxE. Oxidative stress.Best Pract. Res. Clin. Obstet. Gynaecol.201125328729910.1016/j.bpobgyn.2010.10.01621130690
    [Google Scholar]
  23. DasA. RoychoudhuryS. Reactive oxygen species in the reproductive system: sources and physiological roles.Oxidative Stress and Toxicity in Reproductive Biology and Medicine: A Comprehensive Update on Male Infertility-Volume One.Springer202294010.1007/978‑3‑030‑89340‑8_2
    [Google Scholar]
  24. MurphyM.P. How mitochondria produce reactive oxygen species.Biochem. J.2009417111310.1042/BJ2008138619061483
    [Google Scholar]
  25. Ekinci AkdemirF.N. Ekinci AkdemirF.N. Ekinci AkdemirF.N. Ekinci AkdemirF.N. Quercetin protects rat skeletal muscle from ischemia reperfusion injury.J. Enzyme Inhib. Med. Chem.201631216210.1080/14756366.2016.1193735
    [Google Scholar]
  26. IratoP. SantovitoG. Enzymatic and non-enzymatic molecules with antioxidant function.Antioxidants202110457910.3390/antiox10040579
    [Google Scholar]
  27. RévészD. VerhoevenJ.E. PicardM. LinJ. SidneyS. EpelE.S. PenninxB.W.J.H. PutermanE. Associations between cellular aging markers and metabolic syndrome: Findings from the CARDIA study.J. Clin. Endocrinol. Metab.2018103114815710.1210/jc.2017‑0162529053810
    [Google Scholar]
  28. ZhaoY. VanhoutteP.M. LeungS.W.S. Vascular nitric oxide: Beyond eNOS.J. Pharmacol. Sci.20151292839410.1016/j.jphs.2015.09.00226499181
    [Google Scholar]
  29. TutejaN. ChandraM. TutejaR. MisraM.K. Nitric oxide as a unique bioactive signaling messenger in physiology and pathophysiology.J. Biomed. Biotechnol.20042004422723715467163
    [Google Scholar]
  30. ZhanX. LiD. JohnsR.A. Expression of endothelial nitric oxide synthase in ciliated epithelia of rats.J. Histochem. Cytochem.2003511818710.1177/00221554030510011012502757
    [Google Scholar]
  31. YingL. HofsethL.J. An emerging role for endothelial nitric oxide synthase in chronic inflammation and cancer.Cancer Res.20076741407141010.1158/0008‑5472.CAN‑06‑214917308075
    [Google Scholar]
  32. FörstermannU. SessaW.C. Nitric oxide synthases: Regulation and function.Eur Heart. J.2012337829837837a-837d.10.1093/eurheartj/ehr30421890489
    [Google Scholar]
  33. WangJ. HeQ. YanX. CaiY. ChenJ. Effect of exogenous nitric oxide on sperm motility in vitro.Biol. Res.20144714410.1186/0717‑6287‑47‑4425299622
    [Google Scholar]
  34. ShawJ.L.V. DeyS.K. CritchleyH.O.D. HorneA.W. Current knowledge of the aetiology of human tubal ectopic pregnancy.Hum. Reprod. Update201016443244410.1093/humupd/dmp05720071358
    [Google Scholar]
  35. LiJ. ZhangW. ZhuS. ShiF. Nitric oxide synthase is involved in follicular development via the PI3K/AKT/FoxO3a pathway in neonatal and immature rats.Animals202010224810.3390/ani1002024832033275
    [Google Scholar]
  36. NormanJ.E. Fashion Long Overcoat Jtengyao Wine2 Jacket Double Breasted Winter Classic Coat Trench Men's Stylish wqPqaI0-buffer. elephantrickshaw. com. in Fashion Long Overcoat Jtengyao Wine2 Jacket Double Breasted Winter Classic Coat Trench Men's Stylish wqPqaI0-buffer.elephantrickshaw2007
    [Google Scholar]
  37. KongL. WeiQ. FedailJ.S. ShiF. NagaokaK. WatanabeG. Effects of thyroid hormones on the antioxidative status in the uterus of young adult rats.J. Reprod. Dev.201561321922710.1262/jrd.2014‑12925797533
    [Google Scholar]
  38. HuJ. MaS. ZouS. LiX. CuiP. WeijdegårdB. WuG. ShaoR. BilligH. FengY. The regulation of nitric oxide synthase isoform expression in mouse and human fallopian tubes: Potential insights for ectopic pregnancy.Int. J. Mol. Sci.2014161496710.3390/ijms1601004925546387
    [Google Scholar]
  39. DuttaS. SenguptaP. The role of nitric oxide on male and female reproduction.Malays. J. Med. Sci.2022292183035528812
    [Google Scholar]
  40. BuhimschiI. AliM. JainV. ChwaliszK. GarfieldR.E. Pregnancy: Differential regulation of nitric oxide in the rat uterus and cervix during pregnancy and labour.Hum. Reprod.19961181755176610.1093/oxfordjournals.humrep.a0194818921128
    [Google Scholar]
  41. FaviniR. AldieriE. RevelliA. BosiaA. MassobrioM. GhigoD. Nitric oxide synthesis in human nonpregnant myometrium and uterine myomas.Fertil Steril200379749753(Suppl. 1)10.1016/S0015‑0282(02)04825‑212620487
    [Google Scholar]
  42. AouacheR. BiquardL. VaimanD. MirallesF. Oxidative stress in preeclampsia and placental diseases.Int. J. Mol. Sci.2018195149610.3390/ijms1905149629772777
    [Google Scholar]
  43. CellaM. FarinaM.G. Dominguez RubioA.P. Di GirolamoG. RibeiroM.L. FranchiA.M. Dual effect of nitric oxide on uterine prostaglandin synthesis in a murine model of preterm labour.Br. J. Pharmacol.2010161484485510.1111/j.1476‑5381.2010.00911.x20860663
    [Google Scholar]
  44. FroeseD.S. FowlerB. BaumgartnerM.R. Vitamin B 12, folate, and the methionine remethylation cycle—biochemistry, pathways, and regulation.J. Inherit. Metab. Dis.201942467368510.1002/jimd.1200930693532
    [Google Scholar]
  45. ShulpekovaY. NechaevV. KardashevaS. SedovaA. KurbatovaA. BueverovaE. KopylovA. MalsagovaK. DlaminiJ.C. IvashkinV. The concept of folic acid in health and disease.Molecules20212612373110.3390/molecules2612373134207319
    [Google Scholar]
  46. AsbaghiO. GhanavatiM. Ashtary-LarkyD. BagheriR. Rezaei KelishadiM. NazarianB. NordvallM. WongA. DutheilF. SuzukiK. Alavi NaeiniA. Effects of folic acid supplementation on oxidative stress markers: a systematic review and meta-analysis of randomized controlled trials.Antioxidants202110687110.3390/antiox1006087134071500
    [Google Scholar]
  47. Ben-MeirA. BursteinE. Borrego-AlvarezA. ChongJ. WongE. YavorskaT. NaranianT. ChiM. WangY. BentovY. AlexisJ. MerianoJ. SungH.K. GasserD.L. MoleyK.H. HekimiS. CasperR.F. JurisicovaA. Coenzyme Q10 restores oocyte mitochondrial function and fertility during reproductive aging.Aging Cell201514588789510.1111/acel.1236826111777
    [Google Scholar]
  48. Hernández-CamachoJ.D. BernierM. López-LluchG. NavasP. Coenzyme Q10 supplementation in aging and disease.Front. Physiol.201894410.3389/fphys.2018.0004429459830
    [Google Scholar]
  49. AkbariA. MobiniG.R. AgahS. MorvaridzadehM. OmidiA. PotterE. FazelianS. ArdehaliS.H. DaneshzadE. DehghaniS. Coenzyme Q10 supplementation and oxidative stress parameters: A systematic review and meta-analysis of clinical trials.Eur. J. Clin. Pharmacol.202076111483149910.1007/s00228‑020‑02919‑832583356
    [Google Scholar]
  50. SedaghatA. SamadiM. ShirvaniH. SepandiM. TahmasebiW. Coenzyme Q10 supplementation and oxidative stress parameters: An updated systematic review and meta-analysis of randomized controlled clinical trials.Asian J. Sports Med.2022133e13130810.5812/asjsm‑131308
    [Google Scholar]
  51. SilvestrisE. LoveroD. PalmirottaR. Nutrition and female fertility: An interdependent correlation.Front. Endocrinol. (Lausanne)20191034610.3389/fendo.2019.0034631231310
    [Google Scholar]
  52. Ben-MeirA. YahalomiS. MosheB. ShufaroY. ReubinoffB. SaadaA. Coenzyme Q–dependent mitochondrial respiratory chain activity in granulosa cells is reduced with aging.Fertil. Steril.2015104372472710.1016/j.fertnstert.2015.05.02326049051
    [Google Scholar]
  53. ÖzcanP. FıçıcıoğluC. KizilkaleO. YesiladaliM. TokO.E. OzkanF. EsrefogluM. Can Coenzyme Q10 supplementation protect the ovarian reserve against oxidative damage?J. Assist. Reprod. Genet.20163391223123010.1007/s10815‑016‑0751‑z27255570
    [Google Scholar]
  54. XuY. NisenblatV. LuC. LiR. QiaoJ. ZhenX. WangS. Pretreatment with coenzyme Q10 improves ovarian response and embryo quality in low-prognosis young women with decreased ovarian reserve: a randomized controlled trial.Reprod. Biol. Endocrinol.20181612910.1186/s12958‑018‑0343‑029587861
    [Google Scholar]
  55. AbdollahiS. GhasemzadehA. FarzadiL. Q10 co-enzyme effect on fetus implantation in ART cycles.Adv. Biosci. Clin. Med.20168210.7575/aiac.abcmed.v.8n.2p.17
    [Google Scholar]
  56. IzharR. HusainS. TahirM.A. HusainS. Effect of administrating coenzyme q10 with clomiphene citrate on ovulation induction in polycystic ovary syndrome cases with resistance to clomiphene citrate: A randomized controlled trial.J. Reprod. Infertil.202223317718310.18502/jri.v23i3.1000836415489
    [Google Scholar]
  57. SijilmassiO. Folic acid deficiency and vision: A review.Graefes Arch. Clin. Exp. Ophthalmol.201925781573158010.1007/s00417‑019‑04304‑330919078
    [Google Scholar]
  58. TalaulikarV. ArulkumaranS. Folic acid in pregnancy.Obstetrics, Gynaecol. Reprod. Med.201323928628810.1016/j.ogrm.2013.06.007
    [Google Scholar]
  59. GreenbergJ.A. BellS.J. GuanY. YuY.H. Folic Acid supplementation and pregnancy: more than just neural tube defect prevention.Rev. Obstet. Gynecol.201142525922102928
    [Google Scholar]
  60. BahmaniF. KaramaliM. ShakeriH. AsemiZ. The effects of folate supplementation on inflammatory factors and biomarkers of oxidative stress in overweight and obese women with polycystic ovary syndrome: A randomized, double‐blind, placebo ‐controlled clinical trial.Clin. Endocrinol. (Oxf.)201481458258710.1111/cen.1245124628390
    [Google Scholar]
  61. WotherspoonF. LaightD.W. TurnerC. MeekingD.R. AllardS.E. MundayL.J. ShawK.M. CummingsM.H. The effect of oral folic acid upon plasma homocysteine, endothelial function and oxidative stress in patients with type 1 diabetes and microalbuminuria.Int. J. Clin. Pract.200862456957410.1111/j.1742‑1241.2007.01658.x18248393
    [Google Scholar]
  62. ChiuY.H. ChavarroJ.E. SouterI. Diet and female fertility: Doctor, what should I eat?Fertil. Steril.2018110456056910.1016/j.fertnstert.2018.05.02730196938
    [Google Scholar]
  63. GaskinsA.J. AfeicheM.C. WrightD.L. TothT.L. WilliamsP.L. GillmanM.W. HauserR. ChavarroJ.E. Dietary folate and reproductive success among women undergoing assisted reproduction.Obstet. Gynecol.2014124480180910.1097/AOG.000000000000047725198264
    [Google Scholar]
  64. TremellenK. PearceK. Nutrition, Fertility, and Human Reproductive Function.CRC Press201510.1201/b18190
    [Google Scholar]
  65. SkorackaK. RatajczakA.E. RychterA.M. Female fertility and the nutritional approach: The most essential aspects.Adv. Nutr.2021126237210.1093/advances/nmab068
    [Google Scholar]
  66. SzymańskiW. Kazdepka-ZiemińskaA. Effect of homocysteine concentration in follicular fluid on a degree of oocyte maturity.Ginekol. Pol.200374101392139614669450
    [Google Scholar]
  67. ForgesT. Monnier-BarbarinoP. AlbertoJ.M. Guéant-RodriguezR.M. DavalJ.L. GuéantJ.L. Impact of folate and homocysteine metabolism on human reproductive health.Hum. Reprod. Update200713322523810.1093/humupd/dml06317307774
    [Google Scholar]
  68. GrodnitskayaE.E. KurtserM.A. Homocysteine metabolism in polycystic ovary syndrome.Gynecol. Endocrinol.201228318618910.3109/09513590.2011.58992721793705
    [Google Scholar]
  69. KazerooniT. AsadiN. DehbashiS. ZolghadriJ. Effect of folic acid in women with and without insulin resistance who have hyperhomocysteinemic polycystic ovary syndrome.Int. J. Gynaecol. Obstet.2008101215616010.1016/j.ijgo.2007.10.02418313674
    [Google Scholar]
  70. BikleD.D. VitaminD. Newer concepts of its metabolism and function at the basic and clinical level.J. Endocr. Soc.202042bvz03810.1210/jendso/bvz03832051922
    [Google Scholar]
  71. MansonJ.E. CookN.R. LeeI.M. ChristenW. BassukS.S. MoraS. GibsonH. GordonD. CopelandT. D’AgostinoD. FriedenbergG. RidgeC. BubesV. GiovannucciE.L. WillettW.C. BuringJ.E. Vitamin D supplements and prevention of cancer and cardiovascular disease.N. Engl. J. Med.20193801334410.1056/NEJMoa180994430415629
    [Google Scholar]
  72. ValkoM. LeibfritzD. MoncolJ. CroninM.T.D. MazurM. TelserJ. Free radicals and antioxidants in normal physiological functions and human disease.Int. J. Biochem. Cell Biol.2007391448410.1016/j.biocel.2006.07.00116978905
    [Google Scholar]
  73. GandhiM. ElfekyO. ErtugrulH. ChelaH.K. DaglilarE. Scurvy: rediscovering a forgotten disease.Diseases20231127810.3390/diseases1102007837366866
    [Google Scholar]
  74. ManokaranK. BhatP. NayakD. BaskaranR. ParamasivamP. AhmedS.F. PriyaK. Ranganath PaiK.S. BalajiV.E. Oxidative stress and female reproductive disorder.Asian Pac. J. Reprod.202211310711610.4103/2305‑0500.346088
    [Google Scholar]
  75. AsemiZ. SamimiM. TabassiZ. ShakeriH. EsmaillzadehA. Vitamin D supplementation affects serum high-sensitivity C-reactive protein, insulin resistance, and biomarkers of oxidative stress in pregnant women.J. Nutr.201314391432143810.3945/jn.113.17755023884390
    [Google Scholar]
  76. ScholtenS. SergeevI. BirgerC. SongQ. Effects of vitamin D and quercetin, alone and in combination, on cardiorespiratory fitness and muscle function in physically active male adults.Open Access J. Sports Med.2015622923910.2147/OAJSM.S8315926244032
    [Google Scholar]
  77. CiepielaP. DulębaA.J. KowaleczkoE. ChełstowskiK. KurzawaR. Vitamin D as a follicular marker of human oocyte quality and a serum marker of in vitro fertilization outcome.J. Assist. Reprod. Genet.20183571265127610.1007/s10815‑018‑1179‑429774457
    [Google Scholar]
  78. MasjediF. KeshtgarS. ZalF. Talaei-KhozaniT. SametiS. FallahiS. KazeroniM. Effects of vitamin D on steroidogenesis, reactive oxygen species production, and enzymatic antioxidant defense in human granulosa cells of normal and polycystic ovaries.J. Steroid Biochem. Mol. Biol.202019710552110.1016/j.jsbmb.2019.10552131705961
    [Google Scholar]
  79. MoridiI. ChenA. TalO. TalR. The association between vitamin D and anti-müllerian hormone: A systematic review and meta-analysis.Nutrients2020126156710.3390/nu1206156732481491
    [Google Scholar]
  80. DresenE. LeeZ.Y. HillA. NotzQ. PatelJ.J. StoppeC. History of scurvy and use of vitamin C in critical illness: A narrative review.Nutr. Clin. Pract.2023381465410.1002/ncp.1091436156315
    [Google Scholar]
  81. DarlowB.A. GrahamP. Rojas‐ReyesM.X. Vitamin A supplementation to prevent mortality and short‐and long‐term morbidity in very low birth weight infants.Cochrane Database Syst. Rev.2016168CD00050110.1002/14651858.CD000501.pub4
    [Google Scholar]
  82. CarazoA. MacákováK. MatoušováK. KrčmováL.K. ProttiM. MladěnkaP. Vitamin A update: Forms, sources, kinetics, detection, function, deficiency, therapeutic use and toxicity.Nutrients2021135170310.3390/nu1305170334069881
    [Google Scholar]
  83. Meléndez-MartínezA.J. An overview of carotenoids, apocarotenoids, and vitamin A in agro‐food, nutrition, health, and disease.Mol. Nutr. Food Res.20196315180104510.1002/mnfr.20180104531189216
    [Google Scholar]
  84. Clagett-DameM. KnutsonD. Vitamin A in reproduction and development.Nutrients20113438542810.3390/nu304038522254103
    [Google Scholar]
  85. PantiA.A. ShehuC.E. SaiduY. TunauK.A. NwobodoE.I. JimohA. BilbisL.S. UmarA.B. HassanM. Oxidative stress and outcome of antioxidant supplementation in patients with polycystic ovarian syndrome (PCOS).Int. J. Reprod. Contracept. Obstet. Gynecol.201875166710.18203/2320‑1770.ijrcog20181892
    [Google Scholar]
  86. YangJ. ZhangY. NaX. ZhaoA. β-Carotene supplementation and risk of cardiovascular disease: A systematic review and meta-analysis of randomized controlled trials.Nutrients2022146128410.3390/nu1406128435334942
    [Google Scholar]
  87. ZaeemzadehN. Jahanian SadatmahallehS. ZiaeiS. KazemnejadA. MovahedinejadM. MottaghiA. MohamadzadehN. Comparison of dietary micronutrient intake in PCOS patients with and without metabolic syndrome.J. Ovarian Res.20211411010.1186/s13048‑020‑00746‑033422126
    [Google Scholar]
  88. RoshanzadehG. JahanianS. MoiniA. RostamiF. MottaghiA. The relationship between dietary micronutrients and endometriosis: A case-control study.Int. J. Reprod. Biomed.202121433310.18502/ijrm.v21i4.13272
    [Google Scholar]
  89. PehlivanF.E. VitaminC. An antioxidant agent.Vitamin C201722335
    [Google Scholar]
  90. HillA. WendtS. BenstoemC. NeubauerC. MeybohmP. LangloisP. AdhikariN.K.J. HeylandD.K. StoppeC. Vitamin C to improve organ dysfunction in cardiac surgery patients: Review and pragmatic approach.Nutrients201810897410.3390/nu1008097430060468
    [Google Scholar]
  91. GęgotekA. SkrzydlewskaE. Antioxidative and anti-inflammatory activity of ascorbic acid.Antioxidants20221110199310.3390/antiox1110199336290716
    [Google Scholar]
  92. RoweS. CarrA.C. Global vitamin C status and prevalence of deficiency: A cause for concern?Nutrients2020127200810.3390/nu1207200832640674
    [Google Scholar]
  93. PouraghajanK. MohamadpourM. The potential effects of magnesium, chromium, vitamin C, and metformin on inflammatory, hormonal, and metabolic factors of women with polycystic ovary syndrome.202310.21203/rs.3.rs‑3402313/v1
    [Google Scholar]
  94. MarkowskaA. AntoszczakM. MarkowskaJ. HuczyńskiA. Role of vitamin C in selected malignant neoplasms in women.Nutrients202214488210.3390/nu1404088235215535
    [Google Scholar]
  95. GökçayH. KöseH. AğaçT. SolmazM. Brief psychotic episode after vitamin C overdose due to fear of getting COVID-19.Psychiatr. Ann.2022521044244410.3928/00485713‑20220927‑01
    [Google Scholar]
  96. GalliF. BonominiM. BartoliniD. ZatiniL. ReboldiG. MarcantoniniG. GentileG. SirolliV. Di PietroN. Vitamin E (alpha-tocopherol) metabolism and nutrition in chronic kidney disease.Antioxidants202211598910.3390/antiox1105098935624853
    [Google Scholar]
  97. BlanerW.S. ShmarakovI.O. TraberM.G. Vitamin A and vitamin E: will the real antioxidant please stand up?Annu. Rev. Nutr.202141110513110.1146/annurev‑nutr‑082018‑12422834115520
    [Google Scholar]
  98. NikiE. Evidence for beneficial effects of vitamin E.Korean J. Intern. Med. (Korean. Assoc. Intern. Med.)201530557157910.3904/kjim.2015.30.5.57126354050
    [Google Scholar]
  99. ChappellL.C. SeedP.T. BrileyA.L. KellyF.J. LeeR. HuntB.J. ParmarK. BewleyS.J. ShennanA.H. SteerP.J. PostonL. Effect of antioxidants on the occurrence of pre-eclampsia in women at increased risk: a randomised trial.Lancet1999354918181081610.1016/S0140‑6736(99)80010‑510485722
    [Google Scholar]
  100. IzadiA. ShiraziS. TaghizadehS. GargariB.P. Independent and additive effects of coenzyme Q10 and vitamin E on cardiometabolic outcomes and visceral adiposity in women with polycystic ovary syndrome.Arch. Med. Res.201950211010.1016/j.arcmed.2019.04.00431349945
    [Google Scholar]
  101. JamilianM. ShojaeiA. SamimiM. Afshar EbrahimiF. AghadavodE. KaramaliM. TaghizadehM. JamilianH. AlaeinasabS. JafarnejadS. AsemiZ. The effects of omega-3 and vitamin E co-supplementation on parameters of mental health and gene expression related to insulin and inflammation in subjects with polycystic ovary syndrome.J. Affect. Disord.2018229414710.1016/j.jad.2017.12.04929306057
    [Google Scholar]
  102. JansenE. ViezelieneD. BeekhofP.K. GremmerE.R. Effects of higher doses of vitamin E on toxicity and inflammation.European J. Nutr. Food saf.201882475810.9734/EJNFS/2018/39438
    [Google Scholar]
  103. StoverP.J. Vitamin B12 and older adults.Curr. Opin. Clin. Nutr. Metab. Care2010131242710.1097/MCO.0b013e328333d15719904199
    [Google Scholar]
  104. BitoT. MisakiT. YabutaY. IshikawaT. KawanoT. WatanabeF. Vitamin B12 deficiency results in severe oxidative stress, leading to memory retention impairment in Caenorhabditis elegans.Redox Biol.201711212910.1016/j.redox.2016.10.01327840283
    [Google Scholar]
  105. BirchC.S. BraschN.E. McCaddonA. WilliamsJ.H.H. A novel role for vitamin B12: Cobalamins are intracellular antioxidants in vitro.Free Radic. Biol. Med.200947218418810.1016/j.freeradbiomed.2009.04.02319409980
    [Google Scholar]
  106. KaramshettyV. AcharyaJ.D. GhaskadbiS. GoelP. Mathematical modeling of glutathione status in type 2 diabetics with vitamin B12 deficiency.Front. Cell Dev. Biol.201641610.3389/fcell.2016.0001627047940
    [Google Scholar]
  107. SchaeferE. NockD. The impact of preconceptional multiple-micronutrient supplementation on female fertility.Clin. Med. Insights Womens. Health.2019121179562X1984386810.1177/1179562X19843868
    [Google Scholar]
  108. IbehN. CharlesO. NwadinigboO. ManafaP.O. Relationship between vitamin B12 deficiency and infertility on women attending Obstetrics and Gynaecological clinic at a Tertiary Hospital in South East Nigeria. J.Medical Laboratory Science201929317
    [Google Scholar]
  109. KilicdagE.B. BagisT. TarimE. AslanE. ErkanliS. SimsekE. HaydardedeogluB. KuscuE. Administration of B-group vitamins reduces circulating homocysteine in polycystic ovarian syndrome patients treated with metformin: a randomized trial.Hum. Reprod.20052061521152810.1093/humrep/deh82515790610
    [Google Scholar]
  110. SchinkM. KonturekP.C. HerbertS.L. RennerS.P. BurghausS. BlumS. FaschingP.A. NeurathM.F. ZopfY. Different nutrient intake and prevalence of gastrointestinal comorbidities in women with endometriosis.J. Physiol. Pharmacol.201970231443088
    [Google Scholar]
  111. Morales-GutierrezJ. Díaz-CortésS. Montoya-GiraldoM.A. ZuluagaA.F. Toxicity induced by multiple high doses of vitamin B 12 during pernicious anemia treatment: A case report.Clin. Toxicol. (Phila.)202058212913110.1080/15563650.2019.160643231018715
    [Google Scholar]
  112. TisatoF. MarzanoC. PorchiaM. PelleiM. SantiniC. Copper in diseases and treatments, and copper‐based anticancer strategies.Med. Res. Rev.201030470874910.1002/med.2017419626597
    [Google Scholar]
  113. ProhaskaJ.R. Neurochemical roles of copper as antioxidant or prooxidant.Metals and oxidative damage in neurological disorders.Springer1997577510.1007/978‑1‑4899‑0197‑2_4
    [Google Scholar]
  114. SkalnayaM.G. TinkovA.A. LobanovaY.N. ChangJ.S. SkalnyA.V. Serum levels of copper, iron, and manganese in women with pregnancy, miscarriage, and primary infertility.J. Trace Elem. Med. Biol.20195612413010.1016/j.jtemb.2019.08.00931466044
    [Google Scholar]
  115. ZhaoH. MeiK. HuQ. WuY. XuY. Qinling; Yu, P.; Deng, Y.; Zhu, W.; Yan, Z.; Liu, X. Circulating copper levels and the risk of cardio-cerebrovascular diseases and cardiovascular and all-cause mortality: A systematic review and meta-analysis of longitudinal studies.Environ. Pollut.2024340Pt 212271110.1016/j.envpol.2023.12271137852312
    [Google Scholar]
  116. ChasapisC.T. LoutsidouA.C. SpiliopoulouC.A. StefanidouM.E. Zinc and human health: An update.Arch. Toxicol.201286452153410.1007/s00204‑011‑0775‑122071549
    [Google Scholar]
  117. PrasadA.S. BaoB. BeckF.W.J. KucukO. SarkarF.H. Antioxidant effect of zinc in humans.Free Radic. Biol. Med.20043781182119010.1016/j.freeradbiomed.2004.07.00715451058
    [Google Scholar]
  118. NasiadekM. StragierowiczJ. KlimczakM. KilanowiczA. The role of zinc in selected female reproductive system disorders.Nutrients2020128246410.3390/nu1208246432824334
    [Google Scholar]
  119. JamilianM. ForoozanfardF. BahmaniF. TalaeeR. MonavariM. AsemiZ. Effects of zinc supplementation on endocrine outcomes in women with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial.Biol. Trace Elem. Res.2016170227127810.1007/s12011‑015‑0480‑726315303
    [Google Scholar]
  120. Afshar EbrahimiF. ForoozanfardF. AghadavodE. BahmaniF. AsemiZ. The effects of magnesium and zinc co-supplementation on biomarkers of inflammation and oxidative stress, and gene expression related to inflammation in polycystic ovary syndrome: A randomized controlled clinical trial.Biol. Trace Elem. Res.2018184230030710.1007/s12011‑017‑1198‑529127547
    [Google Scholar]
  121. ZekavatO.R. KarimiM.Y. AmanatA. AlipourF. A randomised controlled trial of oral zinc sulphate for primary dysmenorrhoea in adolescent females.Aust. N. Z. J. Obstet. Gynaecol.201555436937310.1111/ajo.1236726132140
    [Google Scholar]
  122. KurokawaS. BerryM.J. Role of the essential metalloid in health.Interrelations between essential metal ions and human diseases.Springer2013
    [Google Scholar]
  123. MistryH.D. Broughton PipkinF. RedmanC.W.G. PostonL. Selenium in reproductive health.Am. J. Obstet. Gynecol.20122061213010.1016/j.ajog.2011.07.03421963101
    [Google Scholar]
  124. SunL. WangF. WuZ. MaL. BaumruckerC. BuD. Comparison of selenium source in preventing oxidative stress in bovine mammary epithelial cells.Animals202010584210.3390/ani1005084232414143
    [Google Scholar]
  125. PieczyńskaJ. GrajetaH. The role of selenium in human conception and pregnancy.J. Trace Elem. Med. Biol.201529313810.1016/j.jtemb.2014.07.00325175508
    [Google Scholar]
  126. RazaviM. JamilianM. KashanZ.F. HeidarZ. MohseniM. GhandiY. BagherianT. AsemiZ. Selenium supplementation and the effects on reproductive outcomes, biomarkers of inflammation, and oxidative stress in women with polycystic ovary syndrome.Horm. Metab. Res.201648318519010.1055/s‑0035‑155960426267328
    [Google Scholar]
  127. TanQ. HuangY. LiuX. LiuL. LoK. ChenJ. FengY. A U-shaped relationship between selenium concentrations and all-cause or cardiovascular mortality in patients with hypertension.Front. Cardiovasc. Med.2021867161810.3389/fcvm.2021.67161834395551
    [Google Scholar]
  128. ZhangY. LiuJ. LiX. ZhouG. SangY. ZhangM. GaoL. XueJ. ZhaoM. YuH. ZhouX. Dietary selenium excess affected spermatogenesis via DNA damage and telomere-related cell senescence and apoptosis in mice.Food Chem. Toxicol.202317111355610.1016/j.fct.2022.11355636502996
    [Google Scholar]
  129. Ferracioli-OdaE. QawasmiA. BlochM.H. Meta-analysis: Melatonin for the treatment of primary sleep disorders.PLoS One201385e6377310.1371/journal.pone.006377323691095
    [Google Scholar]
  130. TokluH. DENİZ, M.; Yüksel, M. The protective effect of melatonin and amlodipine against cerebral ischemia/reperfusion-induced oxidative brain injury in rats.Marmara Medical J.200922134
    [Google Scholar]
  131. TanD.X. ManchesterL.C. LiuX. Rosales-CorralS.A. Acuna-CastroviejoD. ReiterR.J. Mitochondria and chloroplasts as the original sites of melatonin synthesis: A hypothesis related to melatonin’s primary function and evolution in eukaryotes.J. Pineal Res.201354212713810.1111/jpi.1202623137057
    [Google Scholar]
  132. EspinoJ. MacedoM. LozanoG. OrtizÁ. RodríguezC. RodríguezA.B. BejaranoI. Impact of melatonin supplementation in women with unexplained infertility undergoing fertility treatment.Antioxidants20198933810.3390/antiox809033831450726
    [Google Scholar]
  133. MokhtariF. Akbari AsbaghF. AzmoodehO. BakhtiyariM. Almasi-HashianiA. Effects of melatonin administration on chemical pregnancy rates of polycystic ovary syndrome patients undergoing intrauterine insemination: A randomized clinical trial.Int. J. Fertil. Steril.201913322522931310077
    [Google Scholar]
  134. JamilianM. ForoozanfardF. MirhosseiniN. KavossianE. AghadavodE. BahmaniF. OstadmohammadiV. KiaM. EftekharT. AyatiE. MahdaviniaM. AsemiZ. Effects of melatonin supplementation on hormonal, inflammatory, genetic, and oxidative stress parameters in women with polycystic ovary syndrome.Front. Endocrinol. (Lausanne)20191027310.3389/fendo.2019.0027331139144
    [Google Scholar]
  135. AkterS. BanuJ. IshratS. RaniC. JahanS. NazneenS. JahanN. Melatonin enhances ovarian response in infertile women with polycystic ovary syndrome: A randomized controlled trial.Bangladesh J. of Medical Science202322485085810.3329/bjms.v22i4.67124
    [Google Scholar]
  136. KocyigitA. GulerE.M. KaratasE. CaglarH. BulutH. Dose-dependent proliferative and cytotoxic effects of melatonin on human epidermoid carcinoma and normal skin fibroblast cells.Mutat. Res. Genet. Toxicol. Environ. Mutagen.2018829-830506010.1016/j.mrgentox.2018.04.00229704993
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002357565250604075932
Loading
/content/journals/cdm/10.2174/0113892002357565250604075932
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test