Skip to content
2000
image of Exploring the Effects of Oxidative Stress on Female Reproductive Function: The Role of Antioxidant Supplementation

Abstract

Background

The female reproductive system is susceptible to oxidative stress, which can interfere with ovulation, menstrual cycles, egg quality, and tubal function, ultimately leading to infertility. Antioxidants might play a crucial role in protecting reproductive health by neutralizing Reactive Oxygen Species (ROS) and preventing cellular damage.

Objective

To provide an overview of the research that has been performed on the benefits of antioxidant supplementation for increasing female fertility.

Methods

We conducted a comprehensive search of PubMed, Embase, and Google for full-text, English-language publications between 2000 and 2023 that investigated the relationship between antioxidant supplementation and improvements in female fertility.

Results

Antioxidants have been investigated for their potential to improve fertility outcomes in subfertile women. Antioxidant supplementation shows promise in mitigating these effects by neutralizing excess ROS and restoring balance, leading to improved egg count and fertility outcomes. However, it is important to note that the effectiveness of antioxidant supplementation can vary depending on individual health factors and the specific antioxidants used. Studies suggest that a combination of antioxidants, such as vitamins C and E, selenium, and coenzyme Q10, may be more beneficial than single supplements. Although individual research has shown beneficial correlations between different antioxidant supplementation and female fertility, study repeatability is poor. As a result, further large-scale, well-designed clinical trials are necessary to better understand the precise role and optimal combinations of antioxidants for enhancing fertility in subfertile women.

Conclusion

This review study offers crucial insights into the complex connection between OS and female reproductive health. It highlights the potential advantages of antioxidant supplements as a preventative strategy. To enhance female fertility outcomes, further research, particularly randomized controlled clinical trials, is needed to determine best practices, identify populations that could benefit the most, and explore innovative antioxidant treatments.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002357565250604075932
2025-06-16
2025-09-15
Loading full text...

Full text loading...

References

  1. Kellow N.J. Le Cerf J. Horta F. Dordevic A.L. Bennett C.J. The effect of dietary patterns on clinical pregnancy and live birth outcomes in men and women receiving assisted reproductive technologies: a systematic review and meta-analysis. Adv. Nutr. 2022 13 3 857 874 10.1093/advances/nmac023 35293975
    [Google Scholar]
  2. Barbieri R.L. Female infertility. Yen and Jaffe's Reproductive Endocrinology Elsevier 2019 556 10.1016/B978‑0‑323‑47912‑7.00022‑6
    [Google Scholar]
  3. Perez Capotosto M. An integrative review of fertility knowledge and fertility-awareness practices among women trying to conceive. Nurs. Womens. Health 2021 25 3 198 206 10.1016/j.nwh.2021.04.001 33961806
    [Google Scholar]
  4. Dees L. Skelley C.W. Effects of ethanol during the onset of female puberty. Neuroendocrinology 1990 51 1 64 69 10.1159/000125317 2106089
    [Google Scholar]
  5. Fuxe K. Andersson K. Eneroth P. Härfstrand A. Agnati L.F. Neuroendocrine actions of nicotine and of exposure to cigarette smoke: Medical implications. Psychoneuroendocrinology 1989 14 1-2 19 41 10.1016/0306‑4530(89)90054‑1 2660182
    [Google Scholar]
  6. Painter R.C. Roseboom T.J. de Rooij S.R. Long-term effects of prenatal stress and glucocorticoid exposure. Birth Defects Res. C Embryo Today 2012 96 4 315 324 10.1002/bdrc.21021 24203920
    [Google Scholar]
  7. Behrman H. Kodaman P.H. Preston S.L. Gao S. Oxidative stress and the ovary*1. J. Soc. Gynecol. Investig. 2001 8 1 S40 S42.(Suppl Proceedings) 10.1016/S1071‑5576(00)00106‑4 11223371
    [Google Scholar]
  8. Smits R.M. Mackenzie-Proctor R. Fleischer K. Showell M.G. Antioxidants in fertility: Impact on male and female reproductive outcomes. Fertil. Steril. 2018 110 4 578 580 10.1016/j.fertnstert.2018.05.028 30196940
    [Google Scholar]
  9. Amini L. Chekini R. Nateghi M.R. Haghani H. Jamialahmadi T. Sathyapalan T. Sahebkar A. The effect of combined vitamin C and vitamin E supplementation on oxidative stress markers in women with endometriosis: A randomized, triple‐blind placebo‐controlled clinical trial. Pain Res. Manag. 2021 2021 1 1 6 10.1155/2021/5529741 34122682
    [Google Scholar]
  10. Cardoso J.P. Cocuzza M. Elterman D. Optimizing male fertility: Oxidative stress and the use of antioxidants. World J. Urol. 2019 37 6 1029 1034 10.1007/s00345‑019‑02656‑3 30719570
    [Google Scholar]
  11. Daraghmeh D.N. Karaman R. The redox process in red blood cells: Balancing oxidants and antioxidants. Antioxidants 2024 14 1 36 10.3390/antiox14010036 39857370
    [Google Scholar]
  12. Phoswa W.N. Khaliq O.P. The role of oxidative stress in hypertensive disorders of pregnancy (preeclampsia, gestational hypertension) and metabolic disorder of pregnancy (gestational diabetes mellitus). Oxid. Med. Cell. Longev. 2021 2021 1 5581570 10.1155/2021/5581570 34194606
    [Google Scholar]
  13. Gadhok A. Sharma T. Sinha M. Khunteta R. Vardey S. Sahni P. Sankhla M. Natural antioxidant vitamins status in pregnancies complicated with intrauterine growth restriction. Clin. Lab. 2017 63 05+06/2017 941 945 10.7754/Clin.Lab.2017.161120 28627837
    [Google Scholar]
  14. Gupta S. Agarwal A. Banerjee J. Alvarez J.G. The role of oxidative stress in spontaneous abortion and recurrent pregnancy loss: A systematic review. Obstet. Gynecol. Surv. 2007 62 5 335 347 10.1097/01.ogx.0000261644.89300.df 17425812
    [Google Scholar]
  15. Chen C.C. Chan W.H. Injurious effects of curcumin on maturation of mouse oocytes, fertilization and fetal development via apoptosis. Int. J. Mol. Sci. 2012 13 4 4655 4672 10.3390/ijms13044655 22606002
    [Google Scholar]
  16. Freeman M.P. Toth T.L. Cohen L.S. Assisted reproduction and risk of depressive relapse: Considerations for treatment. Ann Clin Psychiatry. 2013 25 4 283 24199219
    [Google Scholar]
  17. Tesarik J. Galán-Lázaro M. Mendoza-Tesarik R. Ovarian aging: Molecular mechanisms and medical management. Int. J. Mol. Sci. 2021 22 3 1371 10.3390/ijms22031371 33573050
    [Google Scholar]
  18. Dutta S. Sengupta P. Izuka E. Menuba I. Nwagha U. Oxidative and nitrosative stress and female reproduction: Roles of oxidants and antioxidants. J. Integr. Sci. Technol. 2024 12 3 754 754 10.62110/sciencein.jist.2024.v12.754
    [Google Scholar]
  19. Showell M.G. Menuba I. Nwagha U. Antioxidants for female subfertility. Cochrane. Databas. Syst. Rev 2020 8 CD007807 10.1002/14651858.CD007807.pub4
    [Google Scholar]
  20. Walke G. Gaurkar S.S. Prasad R. Lohakare T. Wanjari M. The impact of oxidative stress on male reproductive function: Exploring the role of antioxidant supplementation. Cureus 2023 15 7 e42583 10.7759/cureus.42583 37641770
    [Google Scholar]
  21. Al-Gubory K.H. Fowler P.A. Garrel C. The roles of cellular reactive oxygen species, oxidative stress and antioxidants in pregnancy outcomes. Int. J. Biochem. Cell Biol. 2010 42 10 1634 1650 10.1016/j.biocel.2010.06.001 20601089
    [Google Scholar]
  22. Burton G.J. Jauniaux E. Oxidative stress. Best Pract. Res. Clin. Obstet. Gynaecol. 2011 25 3 287 299 10.1016/j.bpobgyn.2010.10.016 21130690
    [Google Scholar]
  23. Das A. Roychoudhury S. Reactive oxygen species in the reproductive system: sources and physiological roles. Oxidative Stress and Toxicity in Reproductive Biology and Medicine: A Comprehensive Update on Male Infertility-Volume One. Springer 2022 9 40 10.1007/978‑3‑030‑89340‑8_2
    [Google Scholar]
  24. Murphy M.P. How mitochondria produce reactive oxygen species. Biochem. J. 2009 417 1 1 13 10.1042/BJ20081386 19061483
    [Google Scholar]
  25. Ekinci Akdemir F.N. Ekinci Akdemir F.N. Ekinci Akdemir F.N. Ekinci Akdemir F.N. Quercetin protects rat skeletal muscle from ischemia reperfusion injury. J Enzyme Inhib Med Chem 2016 31 2 162 10.1080/14756366.2016.1193735
    [Google Scholar]
  26. Irato P. Santovito G. Enzymatic and non-enzymatic molecules with antioxidant function. Antioxidants 2021 10 4 579 10.3390/antiox10040579
    [Google Scholar]
  27. Révész D. Verhoeven J.E. Picard M. Lin J. Sidney S. Epel E.S. Penninx B.W.J.H. Puterman E. Associations between cellular aging markers and metabolic syndrome: Findings from the CARDIA study. J. Clin. Endocrinol. Metab. 2018 103 1 148 157 10.1210/jc.2017‑01625 29053810
    [Google Scholar]
  28. Zhao Y. Vanhoutte P.M. Leung S.W.S. Vascular nitric oxide: Beyond eNOS. J. Pharmacol. Sci. 2015 129 2 83 94 10.1016/j.jphs.2015.09.002 26499181
    [Google Scholar]
  29. Tuteja N. Chandra M. Tuteja R. Misra M.K. Nitric oxide as a unique bioactive signaling messenger in physiology and pathophysiology. J. Biomed. Biotechnol. 2004 2004 4 227 237 15467163
    [Google Scholar]
  30. Zhan X. Li D. Johns R.A. Expression of endothelial nitric oxide synthase in ciliated epithelia of rats. J. Histochem. Cytochem. 2003 51 1 81 87 10.1177/002215540305100110 12502757
    [Google Scholar]
  31. Ying L. Hofseth L.J. An emerging role for endothelial nitric oxide synthase in chronic inflammation and cancer. Cancer Res. 2007 67 4 1407 1410 10.1158/0008‑5472.CAN‑06‑2149 17308075
    [Google Scholar]
  32. Förstermann U. Sessa W.C. Nitric oxide synthases: Regulation and function. Eur. Heart J. 2012 33 7 829 837, 837a-837d 10.1093/eurheartj/ehr304 21890489
    [Google Scholar]
  33. Wang J. He Q. Yan X. Cai Y. Chen J. Effect of exogenous nitric oxide on sperm motility in vitro. Biol. Res. 2014 47 1 44 10.1186/0717‑6287‑47‑44 25299622
    [Google Scholar]
  34. Shaw J.L.V. Dey S.K. Critchley H.O.D. Horne A.W. Current knowledge of the aetiology of human tubal ectopic pregnancy. Hum. Reprod. Update 2010 16 4 432 444 10.1093/humupd/dmp057 20071358
    [Google Scholar]
  35. Li J. Zhang W. Zhu S. Shi F. Nitric oxide synthase is involved in follicular development via the PI3K/AKT/FoxO3a pathway in neonatal and immature rats. Animals 2020 10 2 248 10.3390/ani10020248 32033275
    [Google Scholar]
  36. Norman J.E. Fashion Long Overcoat Jtengyao Wine2 Jacket Double Breasted Winter Classic Coat Trench Men's Stylish wqPqaI0-buffer. elephantrickshaw. com. in Fashion Long Overcoat Jtengyao Wine2 Jacket Double Breasted Winter Classic Coat Trench Men's Stylish wqPqaI0-buffer. elephantrickshaw. 2007
    [Google Scholar]
  37. Kong L. Wei Q. Fedail J.S. Shi F. Nagaoka K. Watanabe G. Effects of thyroid hormones on the antioxidative status in the uterus of young adult rats. J. Reprod. Dev. 2015 61 3 219 227 10.1262/jrd.2014‑129 25797533
    [Google Scholar]
  38. Hu J. Ma S. Zou S. Li X. Cui P. Weijdegård B. Wu G. Shao R. Billig H. Feng Y. The regulation of nitric oxide synthase isoform expression in mouse and human fallopian tubes: Potential insights for ectopic pregnancy. Int. J. Mol. Sci. 2014 16 1 49 67 10.3390/ijms16010049 25546387
    [Google Scholar]
  39. Dutta S. Sengupta P. The role of nitric oxide on male and female reproduction. Malays. J. Med. Sci. 2022 29 2 18 30 35528812
    [Google Scholar]
  40. Buhimschi I. Ali M. Jain V. Chwalisz K. Garfield R.E. Pregnancy: Differential regulation of nitric oxide in the rat uterus and cervix during pregnancy and labour. Hum. Reprod. 1996 11 8 1755 1766 10.1093/oxfordjournals.humrep.a019481 8921128
    [Google Scholar]
  41. Favini R. Aldieri E. Revelli A. Bosia A. Massobrio M. Ghigo D. Nitric oxide synthesis in human nonpregnant myometrium and uterine myomas. Fertil. Steril. 2003 79 749 753.(Suppl. 1) 10.1016/S0015‑0282(02)04825‑2 12620487
    [Google Scholar]
  42. Aouache R. Biquard L. Vaiman D. Miralles F. Oxidative stress in preeclampsia and placental diseases. Int. J. Mol. Sci. 2018 19 5 1496 10.3390/ijms19051496 29772777
    [Google Scholar]
  43. Cella M. Farina M.G. Dominguez Rubio A.P. Di Girolamo G. Ribeiro M.L. Franchi A.M. Dual effect of nitric oxide on uterine prostaglandin synthesis in a murine model of preterm labour. Br. J. Pharmacol. 2010 161 4 844 855 10.1111/j.1476‑5381.2010.00911.x 20860663
    [Google Scholar]
  44. Froese D.S. Fowler B. Baumgartner M.R. Vitamin B 12, folate, and the methionine remethylation cycle—biochemistry, pathways, and regulation. J. Inherit. Metab. Dis. 2019 42 4 673 685 10.1002/jimd.12009 30693532
    [Google Scholar]
  45. Shulpekova Y. Nechaev V. Kardasheva S. Sedova A. Kurbatova A. Bueverova E. Kopylov A. Malsagova K. Dlamini J.C. Ivashkin V. The concept of folic acid in health and disease. Molecules 2021 26 12 3731 10.3390/molecules26123731 34207319
    [Google Scholar]
  46. Asbaghi O. Ghanavati M. Ashtary-Larky D. Bagheri R. Rezaei Kelishadi M. Nazarian B. Nordvall M. Wong A. Dutheil F. Suzuki K. Alavi Naeini A. Effects of folic acid supplementation on oxidative stress markers: a systematic review and meta-analysis of randomized controlled trials. Antioxidants 2021 10 6 871 10.3390/antiox10060871 34071500
    [Google Scholar]
  47. Ben-Meir A. Burstein E. Borrego-Alvarez A. Chong J. Wong E. Yavorska T. Naranian T. Chi M. Wang Y. Bentov Y. Alexis J. Meriano J. Sung H.K. Gasser D.L. Moley K.H. Hekimi S. Casper R.F. Jurisicova A. Coenzyme Q10 restores oocyte mitochondrial function and fertility during reproductive aging. Aging Cell 2015 14 5 887 895 10.1111/acel.12368 26111777
    [Google Scholar]
  48. Hernández-Camacho J.D. Bernier M. López-Lluch G. Navas P. Coenzyme Q10 supplementation in aging and disease. Front. Physiol. 2018 9 44 10.3389/fphys.2018.00044 29459830
    [Google Scholar]
  49. Akbari A. Mobini G.R. Agah S. Morvaridzadeh M. Omidi A. Potter E. Fazelian S. Ardehali S.H. Daneshzad E. Dehghani S. Coenzyme Q10 supplementation and oxidative stress parameters: A systematic review and meta-analysis of clinical trials. Eur. J. Clin. Pharmacol. 2020 76 11 1483 1499 10.1007/s00228‑020‑02919‑8 32583356
    [Google Scholar]
  50. Sedaghat A. Samadi M. Shirvani H. Sepandi M. Tahmasebi W. Coenzyme Q10 supplementation and oxidative stress parameters: An updated systematic review and meta-analysis of randomized controlled clinical trials. Asian J. Sports Med. 2022 13 3 e131308 10.5812/asjsm‑131308
    [Google Scholar]
  51. Silvestris E. Lovero D. Palmirotta R. Nutrition and female fertility: An interdependent correlation. Front. Endocrinol. (Lausanne) 2019 10 346 10.3389/fendo.2019.00346 31231310
    [Google Scholar]
  52. Ben-Meir A. Yahalomi S. Moshe B. Shufaro Y. Reubinoff B. Saada A. Coenzyme Q–dependent mitochondrial respiratory chain activity in granulosa cells is reduced with aging. Fertil. Steril. 2015 104 3 724 727 10.1016/j.fertnstert.2015.05.023 26049051
    [Google Scholar]
  53. Özcan P. Fıçıcıoğlu C. Kizilkale O. Yesiladali M. Tok O.E. Ozkan F. Esrefoglu M. Can Coenzyme Q10 supplementation protect the ovarian reserve against oxidative damage? J. Assist. Reprod. Genet. 2016 33 9 1223 1230 10.1007/s10815‑016‑0751‑z 27255570
    [Google Scholar]
  54. Xu Y. Nisenblat V. Lu C. Li R. Qiao J. Zhen X. Wang S. Pretreatment with coenzyme Q10 improves ovarian response and embryo quality in low-prognosis young women with decreased ovarian reserve: a randomized controlled trial. Reprod. Biol. Endocrinol. 2018 16 1 29 10.1186/s12958‑018‑0343‑0 29587861
    [Google Scholar]
  55. Abdollahi S. Ghasemzadeh A. Farzadi L. Q10 co-enzyme effect on fetus implantation in ART cycles. Adv. Bio. Sci. Clin. Med 2016 8 2 10.7575/aiac.abcmed.v.8n.2p.17
    [Google Scholar]
  56. Izhar R. Husain S. Tahir M.A. Husain S. Effect of administrating coenzyme q10 with clomiphene citrate on ovulation induction in polycystic ovary syndrome cases with resistance to clomiphene citrate: A randomized controlled trial. J. Reprod. Infertil. 2022 23 3 177 183 10.18502/jri.v23i3.10008 36415489
    [Google Scholar]
  57. Sijilmassi O. Folic acid deficiency and vision: A review. Graefes Arch. Clin. Exp. Ophthalmol. 2019 257 8 1573 1580 10.1007/s00417‑019‑04304‑3 30919078
    [Google Scholar]
  58. Talaulikar V. Arulkumaran S. Folic acid in pregnancy. Obstetrics, Gynaecol. Reprod. Med. 2013 23 9 286 288 10.1016/j.ogrm.2013.06.007
    [Google Scholar]
  59. Greenberg J.A. Bell S.J. Guan Y. Yu Y.H. Folic Acid supplementation and pregnancy: more than just neural tube defect prevention. Rev. Obstet. Gynecol. 2011 4 2 52 59 22102928
    [Google Scholar]
  60. Bahmani F. Karamali M. Shakeri H. Asemi Z. The effects of folate supplementation on inflammatory factors and biomarkers of oxidative stress in overweight and obese women with polycystic ovary syndrome: A randomized, double‐blind, placebo ‐controlled clinical trial. Clin. Endocrinol. (Oxf.) 2014 81 4 582 587 10.1111/cen.12451 24628390
    [Google Scholar]
  61. Wotherspoon F. Laight D.W. Turner C. Meeking D.R. Allard S.E. Munday L.J. Shaw K.M. Cummings M.H. The effect of oral folic acid upon plasma homocysteine, endothelial function and oxidative stress in patients with type 1 diabetes and microalbuminuria. Int. J. Clin. Pract. 2008 62 4 569 574 10.1111/j.1742‑1241.2007.01658.x 18248393
    [Google Scholar]
  62. Chiu Y.H. Chavarro J.E. Souter I. Diet and female fertility: Doctor, what should I eat? Fertil. Steril. 2018 110 4 560 569 10.1016/j.fertnstert.2018.05.027 30196938
    [Google Scholar]
  63. Gaskins A.J. Afeiche M.C. Wright D.L. Toth T.L. Williams P.L. Gillman M.W. Hauser R. Chavarro J.E. Dietary folate and reproductive success among women undergoing assisted reproduction. Obstet. Gynecol. 2014 124 4 801 809 10.1097/AOG.0000000000000477 25198264
    [Google Scholar]
  64. Tremellen K. Pearce K. Nutrition, Fertility, and Human Reproductive Function. CRC Press 2015 10.1201/b18190
    [Google Scholar]
  65. Skoracka K. Ratajczak A.E. Rychter A.M. Female fertility and the nutritional approach: The most essential aspects. Adv Nutr. 2021 12 6 2372 10.1093/advances/nmab068
    [Google Scholar]
  66. Szymański W. Kazdepka-Ziemińska A. Effect of homocysteine concentration in follicular fluid on a degree of oocyte maturity. Ginekol. Pol. 2003 74 10 1392 1396 14669450
    [Google Scholar]
  67. Forges T. Monnier-Barbarino P. Alberto J.M. Guéant-Rodriguez R.M. Daval J.L. Guéant J.L. Impact of folate and homocysteine metabolism on human reproductive health. Hum. Reprod. Update 2007 13 3 225 238 10.1093/humupd/dml063 17307774
    [Google Scholar]
  68. Grodnitskaya E.E. Kurtser M.A. Homocysteine metabolism in polycystic ovary syndrome. Gynecol. Endocrinol. 2012 28 3 186 189 10.3109/09513590.2011.589927 21793705
    [Google Scholar]
  69. Kazerooni T. Asadi N. Dehbashi S. Zolghadri J. Effect of folic acid in women with and without insulin resistance who have hyperhomocysteinemic polycystic ovary syndrome. Int. J. Gynaecol. Obstet. 2008 101 2 156 160 10.1016/j.ijgo.2007.10.024 18313674
    [Google Scholar]
  70. Bikle D.D. Vitamin D: Newer concepts of its metabolism and function at the basic and clinical level. J. Endocr. Soc. 2020 4 2 bvz038 10.1210/jendso/bvz038 32051922
    [Google Scholar]
  71. Manson J.E. Cook N.R. Lee I.M. Christen W. Bassuk S.S. Mora S. Gibson H. Gordon D. Copeland T. D’Agostino D. Friedenberg G. Ridge C. Bubes V. Giovannucci E.L. Willett W.C. Buring J.E. Vitamin D supplements and prevention of cancer and cardiovascular disease. N. Engl. J. Med. 2019 380 1 33 44 10.1056/NEJMoa1809944 30415629
    [Google Scholar]
  72. Valko M. Leibfritz D. Moncol J. Cronin M.T.D. Mazur M. Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007 39 1 44 84 10.1016/j.biocel.2006.07.001 16978905
    [Google Scholar]
  73. Gandhi M. Elfeky O. Ertugrul H. Chela H.K. Daglilar E. Scurvy: rediscovering a forgotten disease. Diseases 2023 11 2 78 10.3390/diseases11020078 37366866
    [Google Scholar]
  74. Manokaran K. Bhat P. Nayak D. Baskaran R. Paramasivam P. Ahmed S.F. Priya K. Ranganath Pai K.S. Balaji V.E. Oxidative stress and female reproductive disorder. Asian Pac. J. Reprod. 2022 11 3 107 116 10.4103/2305‑0500.346088
    [Google Scholar]
  75. Asemi Z. Samimi M. Tabassi Z. Shakeri H. Esmaillzadeh A. Vitamin D supplementation affects serum high-sensitivity C-reactive protein, insulin resistance, and biomarkers of oxidative stress in pregnant women. J. Nutr. 2013 143 9 1432 1438 10.3945/jn.113.177550 23884390
    [Google Scholar]
  76. Scholten S. Sergeev I. Birger C. Song Q. Effects of vitamin D and quercetin, alone and in combination, on cardiorespiratory fitness and muscle function in physically active male adults. Open Access J. Sports Med. 2015 6 229 239 10.2147/OAJSM.S83159 26244032
    [Google Scholar]
  77. Ciepiela P. Dulęba A.J. Kowaleczko E. Chełstowski K. Kurzawa R. Vitamin D as a follicular marker of human oocyte quality and a serum marker of in vitro fertilization outcome. J. Assist. Reprod. Genet. 2018 35 7 1265 1276 10.1007/s10815‑018‑1179‑4 29774457
    [Google Scholar]
  78. Masjedi F. Keshtgar S. Zal F. Talaei-Khozani T. Sameti S. Fallahi S. Kazeroni M. Effects of vitamin D on steroidogenesis, reactive oxygen species production, and enzymatic antioxidant defense in human granulosa cells of normal and polycystic ovaries. J. Steroid Biochem. Mol. Biol. 2020 197 105521 10.1016/j.jsbmb.2019.105521 31705961
    [Google Scholar]
  79. Moridi I. Chen A. Tal O. Tal R. The association between vitamin D and anti-müllerian hormone: A systematic review and meta-analysis. Nutrients 2020 12 6 1567 10.3390/nu12061567 32481491
    [Google Scholar]
  80. Dresen E. Lee Z.Y. Hill A. Notz Q. Patel J.J. Stoppe C. History of scurvy and use of vitamin C in critical illness: A narrative review. Nutr. Clin. Pract. 2023 38 1 46 54 10.1002/ncp.10914 36156315
    [Google Scholar]
  81. Darlow B.A. Graham P. Rojas‐Reyes M.X. Vitamin A supplementation to prevent mortality and short‐and long‐term morbidity in very low birth weight infants. Cochrane Database Syst Rev 2016 16 8 CD000501 10.1002/14651858.CD000501.pub4
    [Google Scholar]
  82. Carazo A. Macáková K. Matoušová K. Krčmová L.K. Protti M. Mladěnka P. Vitamin A update: Forms, sources, kinetics, detection, function, deficiency, therapeutic use and toxicity. Nutrients 2021 13 5 1703 10.3390/nu13051703 34069881
    [Google Scholar]
  83. Meléndez-Martínez A.J. An overview of carotenoids, apocarotenoids, and vitamin A in agro‐food, nutrition, health, and disease. Mol. Nutr. Food Res. 2019 63 15 1801045 10.1002/mnfr.201801045 31189216
    [Google Scholar]
  84. Clagett-Dame M. Knutson D. Vitamin A in reproduction and development. Nutrients 2011 3 4 385 428 10.3390/nu3040385 22254103
    [Google Scholar]
  85. Panti A.A. Shehu C.E. Saidu Y. Tunau K.A. Nwobodo E.I. Jimoh A. Bilbis L.S. Umar A.B. Hassan M. Oxidative stress and outcome of antioxidant supplementation in patients with polycystic ovarian syndrome (PCOS). Int. J. Reprod. Contracept. Obstet. Gynecol. 2018 7 5 1667 10.18203/2320‑1770.ijrcog20181892
    [Google Scholar]
  86. Yang J. Zhang Y. Na X. Zhao A. β-Carotene supplementation and risk of cardiovascular disease: A systematic review and meta-analysis of randomized controlled trials. Nutrients 2022 14 6 1284 10.3390/nu14061284 35334942
    [Google Scholar]
  87. Zaeemzadeh N. Jahanian Sadatmahalleh S. Ziaei S. Kazemnejad A. Movahedinejad M. Mottaghi A. Mohamadzadeh N. Comparison of dietary micronutrient intake in PCOS patients with and without metabolic syndrome. J. Ovarian Res. 2021 14 1 10 10.1186/s13048‑020‑00746‑0 33422126
    [Google Scholar]
  88. Roshanzadeh G. Jahanian S. Moini A. Rostami F. Mottaghi A. The relationship between dietary micronutrients and endometriosis: A case-control study. Int J Reprod Biomed. 2021 21 4 333 10.18502/ijrm.v21i4.13272.
    [Google Scholar]
  89. Pehlivan F.E. Vitamin C: An antioxidant agent. Vitamin C 2017 2 23 35
    [Google Scholar]
  90. Hill A. Wendt S. Benstoem C. Neubauer C. Meybohm P. Langlois P. Adhikari N.K.J. Heyland D.K. Stoppe C. Vitamin C to improve organ dysfunction in cardiac surgery patients: Review and pragmatic approach. Nutrients 2018 10 8 974 10.3390/nu10080974 30060468
    [Google Scholar]
  91. Gęgotek A. Skrzydlewska E. Antioxidative and anti-inflammatory activity of ascorbic acid. Antioxidants 2022 11 10 1993 10.3390/antiox11101993 36290716
    [Google Scholar]
  92. Rowe S. Carr A.C. Global vitamin C status and prevalence of deficiency: A cause for concern? Nutrients 2020 12 7 2008 10.3390/nu12072008 32640674
    [Google Scholar]
  93. Pouraghajan K. Mohamadpour M. The potential effects of magnesium, chromium, vitamin C, and metformin on inflammatory, hormonal, and metabolic factors of women with polycystic ovary syndrome. 2023 10.21203/rs.3.rs‑3402313/v1
    [Google Scholar]
  94. Markowska A. Antoszczak M. Markowska J. Huczyński A. Role of vitamin C in selected malignant neoplasms in women. Nutrients 2022 14 4 882 10.3390/nu14040882 35215535
    [Google Scholar]
  95. Gökçay H. Köse H. Ağaç T. Solmaz M. Brief psychotic episode after vitamin C overdose due to fear of getting COVID-19. Psychiatr. Ann. 2022 52 10 442 444 10.3928/00485713‑20220927‑01
    [Google Scholar]
  96. Galli F. Bonomini M. Bartolini D. Zatini L. Reboldi G. Marcantonini G. Gentile G. Sirolli V. Di Pietro N. Vitamin E (alpha-tocopherol) metabolism and nutrition in chronic kidney disease. Antioxidants 2022 11 5 989 10.3390/antiox11050989 35624853
    [Google Scholar]
  97. Blaner W.S. Shmarakov I.O. Traber M.G. Vitamin A and vitamin E: will the real antioxidant please stand up? Annu. Rev. Nutr. 2021 41 1 105 131 10.1146/annurev‑nutr‑082018‑124228 34115520
    [Google Scholar]
  98. Niki E. Evidence for beneficial effects of vitamin E. Korean J. Intern. Med. (Korean. Assoc. Intern. Med.) 2015 30 5 571 579 10.3904/kjim.2015.30.5.571 26354050
    [Google Scholar]
  99. Chappell L.C. Seed P.T. Briley A.L. Kelly F.J. Lee R. Hunt B.J. Parmar K. Bewley S.J. Shennan A.H. Steer P.J. Poston L. Effect of antioxidants on the occurrence of pre-eclampsia in women at increased risk: a randomised trial. Lancet 1999 354 9181 810 816 10.1016/S0140‑6736(99)80010‑5 10485722
    [Google Scholar]
  100. Izadi A. Shirazi S. Taghizadeh S. Gargari B.P. Independent and additive effects of coenzyme Q10 and vitamin E on cardiometabolic outcomes and visceral adiposity in women with polycystic ovary syndrome. Arch. Med. Res. 2019 50 2 1 10 10.1016/j.arcmed.2019.04.004 31349945
    [Google Scholar]
  101. Jamilian M. Shojaei A. Samimi M. Afshar Ebrahimi F. Aghadavod E. Karamali M. Taghizadeh M. Jamilian H. Alaeinasab S. Jafarnejad S. Asemi Z. The effects of omega-3 and vitamin E co-supplementation on parameters of mental health and gene expression related to insulin and inflammation in subjects with polycystic ovary syndrome. J. Affect. Disord. 2018 229 41 47 10.1016/j.jad.2017.12.049 29306057
    [Google Scholar]
  102. Jansen E. Viezeliene D. Beekhof P.K. Gremmer E.R Effects of higher doses of vitamin E on toxicity and inflammation. European J. Nutr. Food saf 2018 8 2 47 58 10.9734/EJNFS/2018/39438
    [Google Scholar]
  103. Stover P.J. Vitamin B12 and older adults. Curr. Opin. Clin. Nutr. Metab. Care 2010 13 1 24 27 10.1097/MCO.0b013e328333d157 19904199
    [Google Scholar]
  104. Bito T. Misaki T. Yabuta Y. Ishikawa T. Kawano T. Watanabe F. Vitamin B12 deficiency results in severe oxidative stress, leading to memory retention impairment in Caenorhabditis elegans. Redox Biol. 2017 11 21 29 10.1016/j.redox.2016.10.013 27840283
    [Google Scholar]
  105. Birch C.S. Brasch N.E. McCaddon A. Williams J.H.H. A novel role for vitamin B12: Cobalamins are intracellular antioxidants in vitro. Free Radic. Biol. Med. 2009 47 2 184 188 10.1016/j.freeradbiomed.2009.04.023 19409980
    [Google Scholar]
  106. Karamshetty V. Acharya J.D. Ghaskadbi S. Goel P. Mathematical modeling of glutathione status in type 2 diabetics with vitamin B12 deficiency. Front. Cell Dev. Biol. 2016 4 16 10.3389/fcell.2016.00016 27047940
    [Google Scholar]
  107. Schaefer E. Nock D. The impact of preconceptional multiple-micronutrient supplementation on female fertility. Clin Med Insights Womens Health. 2019 12 1179562X19843868 10.1177/1179562X19843868
    [Google Scholar]
  108. Ibeh N. Charles O. Nwadinigbo O. Manafa P.O. Relationship between vitamin B12 deficiency and infertility on women attending Obstetrics and Gynaecological clinic at a Tertiary Hospital in South East Nigeria. J. Medical. Laboratory. Science. 2019 29 3 1 7
    [Google Scholar]
  109. Kilicdag E.B. Bagis T. Tarim E. Aslan E. Erkanli S. Simsek E. Haydardedeoglu B. Kuscu E. Administration of B-group vitamins reduces circulating homocysteine in polycystic ovarian syndrome patients treated with metformin: a randomized trial. Hum. Reprod. 2005 20 6 1521 1528 10.1093/humrep/deh825 15790610
    [Google Scholar]
  110. Schink M. Konturek P.C. Herbert S.L. Renner S.P. Burghaus S. Blum S. Fasching P.A. Neurath M.F. Zopf Y. Different nutrient intake and prevalence of gastrointestinal comorbidities in women with endometriosis. J. Physiol. Pharmacol. 2019 70 2 31443088
    [Google Scholar]
  111. Morales-Gutierrez J. Díaz-Cortés S. Montoya-Giraldo M.A. Zuluaga A.F. Toxicity induced by multiple high doses of vitamin B 12 during pernicious anemia treatment: A case report. Clin. Toxicol. (Phila.) 2020 58 2 129 131 10.1080/15563650.2019.1606432 31018715
    [Google Scholar]
  112. Tisato F. Marzano C. Porchia M. Pellei M. Santini C. Copper in diseases and treatments, and copper‐based anticancer strategies. Med. Res. Rev. 2010 30 4 708 749 10.1002/med.20174 19626597
    [Google Scholar]
  113. Prohaska J.R. Neurochemical roles of copper as antioxidant or prooxidant. Metals and oxidative damage in neurological disorders. Springer 1997 57 75 10.1007/978‑1‑4899‑0197‑2_4
    [Google Scholar]
  114. Skalnaya M.G. Tinkov A.A. Lobanova Y.N. Chang J.S. Skalny A.V. Serum levels of copper, iron, and manganese in women with pregnancy, miscarriage, and primary infertility. J. Trace Elem. Med. Biol. 2019 56 124 130 10.1016/j.jtemb.2019.08.009 31466044
    [Google Scholar]
  115. Zhao H. Mei K. Hu Q. Wu Y. Xu Y. Qinling Yu P. Deng Y. Zhu W. Yan Z. Liu X. Circulating copper levels and the risk of cardio-cerebrovascular diseases and cardiovascular and all-cause mortality: A systematic review and meta-analysis of longitudinal studies. Environ. Pollut. 2024 340 Pt 2 122711 10.1016/j.envpol.2023.122711 37852312
    [Google Scholar]
  116. Chasapis C.T. Loutsidou A.C. Spiliopoulou C.A. Stefanidou M.E. Zinc and human health: An update. Arch. Toxicol. 2012 86 4 521 534 10.1007/s00204‑011‑0775‑1 22071549
    [Google Scholar]
  117. Prasad A.S. Bao B. Beck F.W.J. Kucuk O. Sarkar F.H. Antioxidant effect of zinc in humans. Free Radic. Biol. Med. 2004 37 8 1182 1190 10.1016/j.freeradbiomed.2004.07.007 15451058
    [Google Scholar]
  118. Nasiadek M. Stragierowicz J. Klimczak M. Kilanowicz A. The role of zinc in selected female reproductive system disorders. Nutrients 2020 12 8 2464 10.3390/nu12082464 32824334
    [Google Scholar]
  119. Jamilian M. Foroozanfard F. Bahmani F. Talaee R. Monavari M. Asemi Z. Effects of zinc supplementation on endocrine outcomes in women with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial. Biol. Trace Elem. Res. 2016 170 2 271 278 10.1007/s12011‑015‑0480‑7 26315303
    [Google Scholar]
  120. Afshar Ebrahimi F. Foroozanfard F. Aghadavod E. Bahmani F. Asemi Z. The effects of magnesium and zinc co-supplementation on biomarkers of inflammation and oxidative stress, and gene expression related to inflammation in polycystic ovary syndrome: A randomized controlled clinical trial. Biol. Trace Elem. Res. 2018 184 2 300 307 10.1007/s12011‑017‑1198‑5 29127547
    [Google Scholar]
  121. Zekavat O.R. Karimi M.Y. Amanat A. Alipour F. A randomised controlled trial of oral zinc sulphate for primary dysmenorrhoea in adolescent females. Aust. N. Z. J. Obstet. Gynaecol. 2015 55 4 369 373 10.1111/ajo.12367 26132140
    [Google Scholar]
  122. Kurokawa S. Berry M.J. Role of the essential metalloid in health. Interrelations between essential metal ions and human diseases. Springer 2013
    [Google Scholar]
  123. Mistry H.D. Broughton Pipkin F. Redman C.W.G. Poston L. Selenium in reproductive health. Am. J. Obstet. Gynecol. 2012 206 1 21 30 10.1016/j.ajog.2011.07.034 21963101
    [Google Scholar]
  124. Sun L. Wang F. Wu Z. Ma L. Baumrucker C. Bu D. Comparison of selenium source in preventing oxidative stress in bovine mammary epithelial cells. Animals 2020 10 5 842 10.3390/ani10050842 32414143
    [Google Scholar]
  125. Pieczyńska J. Grajeta H. The role of selenium in human conception and pregnancy. J. Trace Elem. Med. Biol. 2015 29 31 38 10.1016/j.jtemb.2014.07.003 25175508
    [Google Scholar]
  126. Razavi M. Jamilian M. Kashan Z.F. Heidar Z. Mohseni M. Ghandi Y. Bagherian T. Asemi Z. Selenium supplementation and the effects on reproductive outcomes, biomarkers of inflammation, and oxidative stress in women with polycystic ovary syndrome. Horm. Metab. Res. 2016 48 3 185 190 10.1055/s‑0035‑1559604 26267328
    [Google Scholar]
  127. Tan Q. Huang Y. Liu X. Liu L. Lo K. Chen J. Feng Y. A U-shaped relationship between selenium concentrations and all-cause or cardiovascular mortality in patients with hypertension. Front. Cardiovasc. Med. 2021 8 671618 10.3389/fcvm.2021.671618 34395551
    [Google Scholar]
  128. Zhang Y. Liu J. Li X. Zhou G. Sang Y. Zhang M. Gao L. Xue J. Zhao M. Yu H. Zhou X. Dietary selenium excess affected spermatogenesis via DNA damage and telomere-related cell senescence and apoptosis in mice. Food Chem. Toxicol. 2023 171 113556 10.1016/j.fct.2022.113556 36502996
    [Google Scholar]
  129. Ferracioli-Oda E. Qawasmi A. Bloch M.H. Meta-analysis: Melatonin for the treatment of primary sleep disorders. PLoS One 2013 8 5 e63773 10.1371/journal.pone.0063773 23691095
    [Google Scholar]
  130. Toklu H. DENİZ M. Yüksel M. The protective effect of melatonin and amlodipine against cerebral ischemia/reperfusion-induced oxidative brain injury in rats. Marmara Medical J. 2009 22 1 34
    [Google Scholar]
  131. Tan D.X. Manchester L.C. Liu X. Rosales-Corral S.A. Acuna-Castroviejo D. Reiter R.J. Mitochondria and chloroplasts as the original sites of melatonin synthesis: A hypothesis related to melatonin’s primary function and evolution in eukaryotes. J. Pineal Res. 2013 54 2 127 138 10.1111/jpi.12026 23137057
    [Google Scholar]
  132. Espino J. Macedo M. Lozano G. Ortiz Á. Rodríguez C. Rodríguez A.B. Bejarano I. Impact of melatonin supplementation in women with unexplained infertility undergoing fertility treatment. Antioxidants 2019 8 9 338 10.3390/antiox8090338 31450726
    [Google Scholar]
  133. Mokhtari F. Akbari Asbagh F. Azmoodeh O. Bakhtiyari M. Almasi-Hashiani A. Effects of melatonin administration on chemical pregnancy rates of polycystic ovary syndrome patients undergoing intrauterine insemination: A randomized clinical trial. Int. J. Fertil. Steril. 2019 13 3 225 229 31310077
    [Google Scholar]
  134. Jamilian M. Foroozanfard F. Mirhosseini N. Kavossian E. Aghadavod E. Bahmani F. Ostadmohammadi V. Kia M. Eftekhar T. Ayati E. Mahdavinia M. Asemi Z. Effects of melatonin supplementation on hormonal, inflammatory, genetic, and oxidative stress parameters in women with polycystic ovary syndrome. Front. Endocrinol. (Lausanne) 2019 10 273 10.3389/fendo.2019.00273 31139144
    [Google Scholar]
  135. Akter S. Banu J. Ishrat S. Rani C. Jahan S. Nazneen S. Jahan N. Melatonin enhances ovarian response in infertile women with polycystic ovary syndrome: A randomized controlled trial. Bangladesh. J. of Medical. Science 2023 22 4 850 858 10.3329/bjms.v22i4.67124
    [Google Scholar]
  136. Kocyigit A. Guler E.M. Karatas E. Caglar H. Bulut H. Dose-dependent proliferative and cytotoxic effects of melatonin on human epidermoid carcinoma and normal skin fibroblast cells. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2018 829-830 50 60 10.1016/j.mrgentox.2018.04.002 29704993
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002357565250604075932
Loading
/content/journals/cdm/10.2174/0113892002357565250604075932
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: oxidative stress ; female infertility ; reactive oxygen species ; Antioxidants
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test