Skip to content
2000
image of Prediction of Pharmacokinetics of Valeric Acid: Alternative Tool to Minimize Animal Studies

Abstract

Background

The use of computer-aided toxicity and Pharmacokinetic (PK) prediction studies are of significant interest to pharmaceutical industries as a complementary approach to traditional experimental methods in predicting potential drug candidates.

Methods

In the present study, pharmacokinetic properties (ADME), drug-likeness, and toxicity profiles of valeric acid were examined using SwissADME and ADMETlab web tools.

Results

The drug-likeness prediction results revealed that valeric acid adheres to the Lipinski rule, Pfizer rule, and GlaxoSmithKline (GSK) rule. From a pharmacokinetic perspective, valeric acid is anticipated to have the best absorption profile including cell permeability and bioavailability. Plasma Protein Binding (PPB) and Blood–Brain Barrier (BBB) permeability may have a positive effect on Central Nervous System modulating (CNS). There is a minimal chance of it being a substrate for cytochrome P2D6 (CYP). Except for a “very slight risk” for eye corrosion and eye irritation, none of the well-known toxicities in valeric acid were anticipated, which was compatible with wet-lab data. The molecule possesses no environmental hazard as analyzed with common indicators such as bio-concentration factor and LC for fathead minnow and daphnia magna. The toxicity parameters identified valeric acid as nontoxic to androgen receptors, antioxidant response element, mitochondrial membrane receptor, heat shock element, and tumor suppressor protein (p53), except Peroxisome Proliferator-Activated Receptor- gamma (PPAR-γ) was found to be medium toxicity. However, no toxicophores were found out of seven parameters.

Conclusion

Overall, the ADMETLab evaluated that valeric acid has favorable pharmacokinetic and drug-likeness profiles, making it a promising drug candidate for new drug development.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002352975250310045810
2025-03-19
2025-09-15
Loading full text...

Full text loading...

References

  1. Kumari B. Kumari U. Singh D.K. Husain G.M. Patel D.K. Shakya A. Singh R.B. Modi G.P. Singh G.K. Molecular targets of valeric acid: A bioactive natural product for endocrine, metabolic, and immunological disorders. Endocr. Metab. Immune Disord. Drug Targets 2024 24 13 1506 1517 10.2174/0118715303262653231120043819 38375842
    [Google Scholar]
  2. Waring M.J. Arrowsmith J. Leach A.R. Leeson P.D. Mandrell S. Owen R.M. Pairaudeau G. Pennie W.D. Pickett S.D. Wang J. Wallace O. Weir A. An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat. Rev. Drug Discov. 2015 14 7 475 486 10.1038/nrd4609 26091267
    [Google Scholar]
  3. Lagorce D. Bouslama L. Becot J. Miteva M.A. Villoutreix B.O. FAF-Drugs4: Free ADME-tox filtering computations for chemical biology and early stages drug discovery. Bioinformatics 2017 33 22 3658 3660 10.1093/bioinformatics/btx491 28961788
    [Google Scholar]
  4. Xiong G. Wu Z. Yi J. Fu L. Yang Z. Hsieh C. Yin M. Zeng X. Wu C. Lu A. Chen X. Hou T. Cao D. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res. 2021 49 W1 W5 W14 10.1093/nar/gkab255 33893803
    [Google Scholar]
  5. Yang H. Lou C. Sun L. Li J. Cai Y. Wang Z. Li W. Liu G. Tang Y. admetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties. Bioinformatics 2019 35 6 1067 1069 10.1093/bioinformatics/bty707 30165565
    [Google Scholar]
  6. Pires D.E.V. Blundell T.L. Ascher D.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem. 2015 58 9 4066 4072 10.1021/acs.jmedchem.5b00104 25860834
    [Google Scholar]
  7. Banerjee P. Eckert A.O. Schrey A.K. Preissner R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018 46 W1 W257 W263 10.1093/nar/gky318 29718510
    [Google Scholar]
  8. Daina A. Michielin O. Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017 7 1 42717 10.1038/srep42717 28256516
    [Google Scholar]
  9. Mannhold R. Kubinyi H. Timmerman H. Folkers G. Höltje H.D. Vacca J. Methods and principles in medicinal chemistry. Mol Model. Basic Principles and Applications. 2001 5 23 36 10.1002/3527601481
    [Google Scholar]
  10. Ritchie T.J. Macdonald S.J.F. How drug-like are ‘ugly’ drugs: Do drug-likeness metrics predict ADME behaviour in humans? Drug Discov. Today 2014 19 4 489 495 10.1016/j.drudis.2014.01.007 24462956
    [Google Scholar]
  11. Lovering F. Bikker J. Humblet C. Escape from flatland: Increasing saturation as an approach to improving clinical success. J. Med. Chem. 2009 52 21 6752 6756 10.1021/jm901241e 19827778
    [Google Scholar]
  12. Kombo D.C. Tallapragada K. Jain R. Chewning J. Mazurov A.A. Speake J.D. Hauser T.A. Toler S. 3D molecular descriptors important for clinical success. J. Chem. Inf. Model. 2013 53 2 327 342 10.1021/ci300445e 23244494
    [Google Scholar]
  13. Ahmad I. Kuznetsov AE. Pirzada A.S. Alsharif K.F. Daglia M. Khan H. Computational pharmacology and computational chemistry of 4-hydroxyisoleucine: Physicochemical, pharmacokinetic, and DFT-based approaches. Front Chem. 2023 11 1145974 10.3389/fchem.2023.1145974 37123881
    [Google Scholar]
  14. Lipinski C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today. Technol. 2004 1 4 337 341 10.1016/j.ddtec.2004.11.007 24981612
    [Google Scholar]
  15. Bitew M. Desalegn T. Demissie T.B. Belayneh A. Endale M. Eswaramoorthy R. Pharmacokinetics and drug-likeness of antidiabetic flavonoids: Molecular docking and DFT study. PLoS One 2021 16 12 e0260853 10.1371/journal.pone.0260853 34890431
    [Google Scholar]
  16. Bolz S.N. Adasme M.F. Schroeder M. Toward an understanding of pan-assay interference compounds and promiscuity: A structural perspective on binding modes. J. Chem. Inf. Model. 2021 61 5 2248 2262 10.1021/acs.jcim.0c01227 33899463
    [Google Scholar]
  17. Huth J.R. Mendoza R. Olejniczak E.T. Johnson R.W. Cothron D.A. Liu Y. Lerner C.G. Chen J. Hajduk P.J. ALARM NMR: A rapid and robust experimental method to detect reactive false positives in biochemical screens. J. Am. Chem. Soc. 2005 127 1 217 224 10.1021/ja0455547 15631471
    [Google Scholar]
  18. Agrawal A. Johnson S.L. Jacobsen J.A. Miller M.T. Chen L.H. Pellecchia M. Cohen S.M. Chelator fragment libraries for targeting metalloproteinases. ChemMedChem 2010 5 2 195 199 10.1002/cmdc.200900516 20058293
    [Google Scholar]
  19. Yang Z.Y. Yang Z.J. Lu A.P. Hou T.J. Cao D.S. Scopy: An integrated negative design python library for desirable HTS/VS database design. Brief. Bioinform. 2021 22 3 bbaa194 10.1093/bib/bbaa194 32892221
    [Google Scholar]
  20. Murador D.C. De Souza Mesquita L.M. Neves B.V. Braga A.R.C. Martins P.L.G. Zepka L.Q. De Rosso V.V. Bioaccessibility and cellular uptake by Caco-2 cells of carotenoids and chlorophylls from orange peels: A comparison between conventional and ionic liquid mediated extractions. Food Chem. 2021 339 127818 10.1016/j.foodchem.2020.127818 32854038
    [Google Scholar]
  21. Hidalgo I.J. Assessing the absorption of new pharmaceuticals. Curr. Top. Med. Chem. 2001 1 5 385 401 10.2174/1568026013395010 11899104
    [Google Scholar]
  22. Artursson P. Palm K. Luthman K. Caco-2 monolayers in experimental and theoretical predictions of drug transport1PII of original article: S0169-409X(96)00415-2. The article was originally published in Advanced Drug Delivery Reviews 22 (1996) 67–84.1. Adv. Drug Deliv. Rev. 2001 46 1-3 27 43 10.1016/S0169‑409X(00)00128‑9 11259831
    [Google Scholar]
  23. Ding X. Hu X. Chen Y. Xie J. Ying M. Wang Y. Yu Q. Differentiated Caco-2 cell models in food-intestine interaction study: Current applications and future trends. Trends Food Sci. Technol. 2021 107 455 465 10.1016/j.tifs.2020.11.015
    [Google Scholar]
  24. Bokulić A. Padovan J. DARIJA, STUPIN-POLANČEC, D.S.; Milić, A. Isolation of MDCK cells with low expression of mdr1 gene and their use inmembrane permeability screening. Acta Pharm. 2022 72 2 275 288 10.2478/acph‑2022‑0003 36651516
    [Google Scholar]
  25. Daina A. Zoete V. A boiled‐egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem 2016 11 11 1117 1121 10.1002/cmdc.201600182 27218427
    [Google Scholar]
  26. Telbisz Á. Ambrus C. Mózner O. Szabó E. Várady G. Bakos É. Sarkadi B. Özvegy-Laczka C. Interactions of potential anti-COVID-19 compounds with multispecific ABC and OATP drug transporters. Pharmaceutics 2021 13 1 81 10.3390/pharmaceutics13010081 33435273
    [Google Scholar]
  27. Yamazaki S. Costales C. Lazzaro S. Eatemadpour S. Kimoto E. Varma M.V. Physiologically‐based pharmacokinetic modeling approach to predict rifampin‐mediated intestinal P‐glycoprotein induction. CPT Pharmaco. Syst. Pharmacol. 2019 8 9 634 642 10.1002/psp4.12458 31420942
    [Google Scholar]
  28. Bolleddula J. Ke A. Yang H. Prakash C. PBPK modeling to predict drug‐drug interactions of ivosidenib as a perpetrator in cancer patients and qualification of the Simcyp platform for CYP3A4 induction. CPT Pharmac. Syst. Pharmacol. 2021 10 6 577 588 10.1002/psp4.12619 33822485
    [Google Scholar]
  29. Lang J. Vincent L. Chenel M. Ogungbenro K. Galetin A. Impact of hepatic CYP3A4 ontogeny functions on drug–drug interaction risk in pediatric physiologically‐based pharmacokinetic/pharmacodynamic modeling: Critical literature review and ivabradine case study. Clin. Pharmacol. Ther. 2021 109 6 1618 1630 10.1002/cpt.2134 33283268
    [Google Scholar]
  30. Sleep D. Cameron J. Evans L.R. Albumin as a versatile platform for drug half-life extension. Biochim. Biophys. Acta, Gen. Subj. 2013 1830 12 5526 5534 10.1016/j.bbagen.2013.04.023 23639804
    [Google Scholar]
  31. Blowes D. Ptacek C. Jambor J. Weisener C. The geochemistry of acid mine. Environ. Geochem. 2005 9 149
    [Google Scholar]
  32. Gramatica P. Papa E. QSAR modeling of bioconcentration factor by theoretical molecular descriptors. QSAR Comb. Sci. 2003 22 3 374 385 10.1002/qsar.200390027
    [Google Scholar]
  33. Keshavarz M.H. Shirazi Z. Kiani Sheikhabadi P. Risk assessment of organic aromatic compounds to Tetrahymena pyriformis in environmental protection by a simple QSAR model. Process Saf. Environ. Prot. 2021 150 137 147 10.1016/j.psep.2021.04.011
    [Google Scholar]
  34. Luccio-Camelo D.C. Prins G.S. Disruption of androgen receptor signaling in males by environmental chemicals. J. Steroid Biochem. Mol. Biol. 2011 127 1-2 74 82 10.1016/j.jsbmb.2011.04.004 21515368
    [Google Scholar]
  35. Tsakovska I. Pajeva I. Alov P. Worth A. Recent advances in the molecular modeling of estrogen receptor-mediated toxicity. Adv. Protein Chem. Struct. Biol. 2011 85 217 251 10.1016/B978‑0‑12‑386485‑7.00006‑5 21920325
    [Google Scholar]
  36. Custer L. Sweder K. The role of genetic toxicology in drug discovery and optimization. Curr. Drug Metab. 2008 9 9 978 985 10.2174/138920008786485191 18991595
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002352975250310045810
Loading
/content/journals/cdm/10.2174/0113892002352975250310045810
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: pharmacokinetics ; computational chemistry ; drug-likeliness ; Valeric acid
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test