Skip to content
2000
Volume 26, Issue 1
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

Background

The use of computer-aided toxicity and Pharmacokinetic (PK) prediction studies are of significant interest to pharmaceutical industries as a complementary approach to traditional experimental methods in predicting potential drug candidates.

Methods

In the present study, pharmacokinetic properties (ADME), drug-likeness, and toxicity profiles of valeric acid were examined using SwissADME and ADMETlab web tools.

Results

The drug-likeness prediction results revealed that valeric acid adheres to the Lipinski rule, Pfizer rule, and GlaxoSmithKline (GSK) rule. From a pharmacokinetic perspective, valeric acid is anticipated to have the best absorption profile including cell permeability and bioavailability. Plasma Protein Binding (PPB) and Blood–Brain Barrier (BBB) permeability may have a positive effect on Central Nervous System modulating (CNS). There is a minimal chance of it being a substrate for cytochrome P2D6 (CYP). Except for a “very slight risk” for eye corrosion and eye irritation, none of the well-known toxicities in valeric acid were anticipated, which was compatible with wet-lab data. The molecule possesses no environmental hazard as analyzed with common indicators such as bio-concentration factor and LC for fathead minnow and daphnia magna. The toxicity parameters identified valeric acid as nontoxic to androgen receptors, antioxidant response element, mitochondrial membrane receptor, heat shock element, and tumor suppressor protein (p53), except Peroxisome Proliferator-Activated Receptor- gamma (PPAR-γ) was found to be medium toxicity. However, no toxicophores were found out of seven parameters.

Conclusion

Overall, the ADMETLab evaluated that valeric acid has favorable pharmacokinetic and drug-likeness profiles, making it a promising drug candidate for new drug development.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002352975250310045810
2025-03-19
2025-12-25
Loading full text...

Full text loading...

References

  1. KumariB. KumariU. SinghD.K. HusainG.M. PatelD.K. ShakyaA. SinghR.B. ModiG.P. SinghG.K. Molecular targets of valeric acid: A bioactive natural product for endocrine, metabolic, and immunological disorders.Endocr. Metab. Immune Disord. Drug Targets202424131506151710.2174/011871530326265323112004381938375842
    [Google Scholar]
  2. WaringM.J. ArrowsmithJ. LeachA.R. LeesonP.D. MandrellS. OwenR.M. PairaudeauG. PennieW.D. PickettS.D. WangJ. WallaceO. WeirA. An analysis of the attrition of drug candidates from four major pharmaceutical companies.Nat. Rev. Drug Discov.201514747548610.1038/nrd460926091267
    [Google Scholar]
  3. LagorceD. BouslamaL. BecotJ. MitevaM.A. VilloutreixB.O. FAFDrugs4: Free ADME-tox filtering computations for chemical biology and early stages drug discovery.Bioinformatics201733223658366010.1093/bioinformatics/btx49128961788
    [Google Scholar]
  4. XiongG. WuZ. YiJ. FuL. YangZ. HsiehC. YinM. ZengX. WuC. LuA. ChenX. HouT. CaoD. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties.Nucleic Acids Res.202149W1W5W1410.1093/nar/gkab25533893803
    [Google Scholar]
  5. YangH. LouC. SunL. LiJ. CaiY. WangZ. LiW. LiuG. TangY. admetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties.Bioinformatics20193561067106910.1093/bioinformatics/bty70730165565
    [Google Scholar]
  6. PiresD.E.V. BlundellT.L. AscherD.B. pkCSM: Predicting smallmolecule pharmacokinetic and toxicity properties using graph-based signatures.J. Med. Chem.20155894066407210.1021/acs.jmedchem.5b0010425860834
    [Google Scholar]
  7. BanerjeeP. EckertA.O. SchreyA.K. PreissnerR. ProTox-II: A webserver for the prediction of toxicity of chemicals.Nucleic Acids Res.201846W1W257W26310.1093/nar/gky31829718510
    [Google Scholar]
  8. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep4271728256516
    [Google Scholar]
  9. MannholdR. KubinyiH. TimmermanH. FolkersG. HöltjeH.D. VaccaJ. Methods and principles in medicinal chemistry. Mol Model. Basic Principles and Applications.20015233610.1002/3527601481
    [Google Scholar]
  10. RitchieT.J. MacdonaldS.J.F. How drug-like are ‘ugly’ drugs: Do druglikeness metrics predict ADME behaviour in humans?Drug Discov. Today201419448949510.1016/j.drudis.2014.01.00724462956
    [Google Scholar]
  11. LoveringF. BikkerJ. HumbletC. Escape from flatland: Increasing saturation as an approach to improving clinical success.J. Med. Chem.200952216752675610.1021/jm901241e19827778
    [Google Scholar]
  12. KomboD.C. TallapragadaK. JainR. ChewningJ. MazurovA.A. SpeakeJ.D. HauserT.A. TolerS. 3D molecular descriptors important for clinical success.J. Chem. Inf. Model.201353232734210.1021/ci300445e23244494
    [Google Scholar]
  13. AhmadI. KuznetsovAE. PirzadaA.S. AlsharifK.F. DagliaM. KhanH. Computational pharmacology and computational chemistry of 4-hydroxyisoleucine: Physicochemical, pharmacokinetic, and DFT-based approaches.Front Chem.202311114597410.3389/fchem.2023.114597437123881
    [Google Scholar]
  14. LipinskiC.A. Lead- and drug-like compounds: The rule-of-five revolution.Drug Discov. Today. Technol.20041433734110.1016/j.ddtec.2004.11.00724981612
    [Google Scholar]
  15. BitewM. DesalegnT. DemissieT.B. BelaynehA. EndaleM. EswaramoorthyR. Pharmacokinetics and drug-likeness of antidiabetic flavonoids: Molecular docking and DFT study.PLoS One20211612e026085310.1371/journal.pone.026085334890431
    [Google Scholar]
  16. BolzS.N. AdasmeM.F. SchroederM. Toward an understanding of pan-assay interference compounds and promiscuity: A structural perspective on binding modes.J. Chem. Inf. Model.20216152248226210.1021/acs.jcim.0c0122733899463
    [Google Scholar]
  17. HuthJ.R. MendozaR. OlejniczakE.T. JohnsonR.W. CothronD.A. LiuY. LernerC.G. ChenJ. HajdukP.J. ALARM NMR: A rapid and robust experimental method to detect reactive false positives in biochemical screens.J. Am. Chem. Soc.2005127121722410.1021/ja045554715631471
    [Google Scholar]
  18. AgrawalA. JohnsonS.L. JacobsenJ.A. MillerM.T. ChenL.H. PellecchiaM. CohenS.M. Chelator fragment libraries for targeting metalloproteinases.ChemMedChem20105219519910.1002/cmdc.20090051620058293
    [Google Scholar]
  19. YangZ.Y. YangZ.J. LuA.P. HouT.J. CaoD.S. Scopy: An integrated negative design python library for desirable HTS/VS database design.Brief. Bioinform.2021223bbaa19410.1093/bib/bbaa19432892221
    [Google Scholar]
  20. MuradorD.C. De Souza MesquitaL.M. NevesB.V. BragaA.R.C. MartinsP.L.G. ZepkaL.Q. De RossoV.V. Bioaccessibility and cellular uptake by Caco-2 cells of carotenoids and chlorophylls from orange peels: A comparison between conventional and ionic liquid mediated extractions.Food Chem.202133912781810.1016/j.foodchem.2020.12781832854038
    [Google Scholar]
  21. HidalgoI.J. Assessing the absorption of new pharmaceuticals.Curr. Top. Med. Chem.20011538540110.2174/156802601339501011899104
    [Google Scholar]
  22. ArturssonP. PalmK. LuthmanK. Caco-2 monolayers in experimental and theoretical predictions of drug transport1PII of original article: S0169-409X(96)00415-2. The article was originally published in Advanced Drug Delivery Reviews 22 (1996) 67–84.1.Adv. Drug Deliv. Rev.2001461-3274310.1016/S0169‑409X(00)00128‑911259831
    [Google Scholar]
  23. DingX. HuX. ChenY. XieJ. YingM. WangY. YuQ. Differentiated Caco-2 cell models in food-intestine interaction study: Current applications and future trends.Trends Food Sci. Technol.202110745546510.1016/j.tifs.2020.11.015
    [Google Scholar]
  24. BokulićA. PadovanJ. DARIJA, STUPIN-POLANČEC, D.S.; Milić, A. Isolation of MDCK cells with low expression of mdr1 gene and their use inmembrane permeability screening.Acta Pharm.202272227528810.2478/acph‑2022‑000336651516
    [Google Scholar]
  25. DainaA. ZoeteV. A boiled-egg to predict gastrointestinal absorption and brain penetration of small molecules.ChemMedChem201611111117112110.1002/cmdc.20160018227218427
    [Google Scholar]
  26. TelbiszÁ. AmbrusC. MóznerO. SzabóE. VáradyG. BakosÉ. SarkadiB. Özvegy-LaczkaC. Interactions of potential anti-COVID-19 compounds with multispecific ABC and OATP drug transporters.Pharmaceutics20211318110.3390/pharmaceutics1301008133435273
    [Google Scholar]
  27. YamazakiS. CostalesC. LazzaroS. EatemadpourS. KimotoE. VarmaM.V. Physiologically-based pharmacokinetic modeling approach to predict rifampin-mediated intestinal P-glycoprotein induction.CPT Pharmaco. Syst. Pharmacol.20198963464210.1002/psp4.1245831420942
    [Google Scholar]
  28. BolleddulaJ. KeA. YangH. PrakashC. PBPK modeling to predict drug-drug interactions of ivosidenib as a perpetrator in cancer patients and qualification of the Simcyp platform for CYP3A4 induction.CPT Pharmac. Syst. Pharmacol.202110657758810.1002/psp4.1261933822485
    [Google Scholar]
  29. LangJ. VincentL. ChenelM. OgungbenroK. GaletinA. Impact of hepatic CYP3A4 ontogeny functions on drug-drug interaction risk in pediatric physiologically-based pharmacokinetic/pharmacodynamic modeling: Critical literature review and ivabradine case study.Clin. Pharmacol. Ther.202110961618163010.1002/cpt.213433283268
    [Google Scholar]
  30. SleepD. CameronJ. EvansL.R. Albumin as a versatile platform for drug half-life extension.Biochim. Biophys. Acta, Gen. Subj.20131830125526553410.1016/j.bbagen.2013.04.02323639804
    [Google Scholar]
  31. BlowesD. PtacekC. JamborJ. WeisenerC. The geochemistry of acid mine.Environ. Geochem.20059149
    [Google Scholar]
  32. GramaticaP. PapaE. QSAR modeling of bioconcentration factor by theoretical molecular descriptors.QSAR Comb. Sci.200322337438510.1002/qsar.200390027
    [Google Scholar]
  33. KeshavarzM.H. ShiraziZ. Kiani SheikhabadiP. Risk assessment of organic aromatic compounds to Tetrahymena pyriformis in environmental protection by a simple QSAR model.Process Saf. Environ. Prot.202115013714710.1016/j.psep.2021.04.011
    [Google Scholar]
  34. Luccio-CameloD.C. PrinsG.S. Disruption of androgen receptor signaling in males by environmental chemicals.J. Steroid Biochem. Mol. Biol.20111271-2748210.1016/j.jsbmb.2011.04.00421515368
    [Google Scholar]
  35. TsakovskaI. PajevaI. AlovP. WorthA. Recent advances in the molecular modeling of estrogen receptor-mediated toxicity.Adv. Protein Chem. Struct. Biol.20118521725110.1016/B978‑0‑12‑386485‑7.00006‑521920325
    [Google Scholar]
  36. CusterL. SwederK. The role of genetic toxicology in drug discovery and optimization.Curr. Drug Metab.20089997898510.2174/13892000878648519118991595
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002352975250310045810
Loading
/content/journals/cdm/10.2174/0113892002352975250310045810
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test