Skip to content
2000
Volume 26, Issue 1
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

Background

Vincosamide, an indole alkaloid extracted from , exhibits a range of pharmacological activities, such as anti-tumor, antibacterial, and anti-inflammatory properties. However, despite its promising therapeutic applications, there is a notable gap in research focused on the metabolic pathways of vincosamide.

Objectives

This study aims to investigate the metabolism of vincosamide both and in rats, and to elucidate its metabolic pathways.

Methods

Samples of liver microsomal incubation, plasma, bile, urine, and feces following vincosamide administration were analyzed by ultra-high performance liquid chromatography-quadrupole-Exactive Orbitrap-high resolution mass spectrometry (UHPLC-Q-Exactive Orbitrap HRMS). The collected data were analyzed using Compound Discovery 3.2 software and the molecular network method. The metabolites identified through these methodologies were subsequently validated using Xcalibur 4.1 software, which provided information on retention times, parent ions, and characteristic fragment ions.

Results

A total of 37 metabolites were identified, including 8 and 32 (3 in plasma, 7 in bile, 22 in urine, and 17 in feces). While the metabolism of vincosamide differs and in rats, the type of metabolic reaction that occurs is well-defined. The predominant metabolic pathways are oxidation, reduction, deglycosylation, hydration, glucuronidation, methylation, sulfation, glycine conjugation, cysteine conjugation, taurine conjugation, and complex reactions.

Conclusion

This study elucidates the metabolism of vincosamide and in rats, thereby expanding the metabolite profile of vincosamide. These findings provide a foundation for the potential development of new drugs based on vincosamide.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002351614250401153450
2025-04-16
2025-12-25
Loading full text...

Full text loading...

References

  1. State administration of traditional chinese medicine (SACM).Chinese Herbs.19996456
    [Google Scholar]
  2. FanX.H. WangD.L. LvF.F. YangY. LiS.P. ZhaoX.S. WeiJ.H. Simultaneous and rapid quantification of multi-compounds in nauclea officinalis based on UPLC-DAD.Microchem. J.202419911023610.1016/j.microc.2024.110236
    [Google Scholar]
  3. ZhuF. ChenJ. WangH. JiaX. WangS. ZhangZ. ZhaiX. XuJ. TanW. NingQ. GuJ. Analysis of the chemical constituents and rats metabolites after oral administration of Nauclea officinalis by ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20151007546610.1016/j.jchromb.2015.10.03226571455
    [Google Scholar]
  4. MaY.L. YuJ.Q. Review of nauclea officinalis pierre. Ex petard.China. J. Tradit. Chin. Med. Pharm.20173230793082
    [Google Scholar]
  5. ChenJ.M. LiaoJ.H. GaoJ.W. ZhangP. GaoG.H. SunL.X. Study on chemical components of aqueous extract from raw Nauclea officinalis by UPLC-QTOF-MS/MS.Chin. J. Exp. Tradit. Med. Formulae.201824495610.13422/j.cnki.Syfjx.20181517
    [Google Scholar]
  6. DawenX.I.E. LiY. ZhaoL. DingG. YuanS. XuJ. ZhuH. XiaoW. Study on chemical constituents from leaves of Naudea officinalis.Zhongguo Zhong Yao. Za. Zhi.20113681037103910.4268/cjcmm2011082021809580
    [Google Scholar]
  7. BumN.E. TaiweG.S. MotoF.C.O. NgoupayeG.T. NkantchouaG.C.N. PelankenM.M. RakotonirinaS.V. RakotonirinaA. Anticonvulsant, anxiolytic, and sedative properties of the roots of Nauclea latifolia Smith in mice.Epilepsy Behav.200915443444010.1016/j.yebeh.2009.05.01419560975
    [Google Scholar]
  8. LiD. ChenJ. YeJ. ZhaiX. SongJ. JiangC. WangJ. ZhangH. JiaX. ZhuF. Anti-inflammatory effect of the six compounds isolated from Nauclea officinalis Pierrc ex Pitard, and molecular mechanism of strictosamide via suppressing the NF-κB and MAPK signaling pathway in LPS-induced RAW 264.7 macrophages.J. Ethnopharmacol.2017196667410.1016/j.jep.2016.12.00727989509
    [Google Scholar]
  9. MesiaK. CimangaR.K. DhoogheL. CosP. ApersS. TottéJ. TonaG.L. PietersL. VlietinckA.J. MaesL. Antimalarial activity and toxicity evaluation of a quantified Nauclea pobeguinii extract.J. Ethnopharmacol.20101311101610.1016/j.jep.2010.05.00820470876
    [Google Scholar]
  10. LiewS.Y. MukhtarM.R. HadiA.H.A. AwangK. MustafaM.R. ZaimaK. MoritaH. LitaudonM. Naucline, a new indole alkaloid from the bark of Nauclea officinalis.Molecules20121744028403610.3390/molecules1704402822469596
    [Google Scholar]
  11. ZhuM.Y. GongZ.S. FengH.P. ZhangQ.Y. LiuK. LinB. ZhangM.N. LinH.F. LiM.S. Vincosamide has a function for inhibiting malignant behaviors of hepatocellular carcinoma cells.World J. Oncol.202213527228810.14740/wjon151436406198
    [Google Scholar]
  12. WanJ.M. GuoQ. Preliminary study on antitumor effects of glycosides from Camptotheca Acuminata in vivo.J. Wuhan Inst. Technol201110039091
    [Google Scholar]
  13. FormagioA.S.N. VolobuffC.R.F. KassuyaC.A.L. CardosoC.A.L. do Carmo VieiraM. PereiraZ.V. BagatinM.C. de Freitas GauzeG. Psychotria leiocarpa extract and vincosamide reduce dhemically-Induced inflammation in mice and inhibit the acetylcholinesterase activity.Inflammation20194251561157410.1007/s10753‑019‑01018‑w31102122
    [Google Scholar]
  14. MaiS.Y. WangY.R. LiY.H. TanY.F. ZhangX.G. ZhangJ.Q. LiJ.Y. Effects of chemical constituents of Nauclea officinalis on reactive oxygen species and permeability of HUVEC cells.World Chin. Med.202015014750
    [Google Scholar]
  15. PanQ.M. LiY.H. ZhangJ.J. LiY. MaS.G. YuS.S. Monoterpenoid indole alkaloids isolated from the stems and twigs of Strychnos cathayensis.Phytochemistry202220311335310.1016/j.phytochem.2022.11335336007664
    [Google Scholar]
  16. AderibigbeS.A. IdowuS.O. OlaniyiA.A. WrightC.W. FatokunA.A. Bioactivity and cytotoxicity profiling of vincosamide and strictosamide, anthelmintic epimers from Sarcocephalus latifolius (Smith) Bruce leaf.J. Ethnopharmacol.202126511314210.1016/j.jep.2020.11314232697959
    [Google Scholar]
  17. PengZ.C. HeJ. PanX.G. ZhangJ. WangY.M. YeX.S. XiaC.Y. LianW.W. YanY. HeX.L. ZhangW.K. XuJ.K. Secoiridoid dimers and their biogenetic precursors from the fruits of Cornus officinalis with potential therapeutic effects on type 2 diabetes.Bioorg. Chem.202111710539910.1016/j.bioorg.2021.10539934688131
    [Google Scholar]
  18. YuP. ChenZ. LiuY. GuZ. WangX. ZhangY. MaY. DongM. TianZ. TianZ. Bioactivity-guided separation of anti-cholinesterase alkaloids from Uncaria rhynchophlly (Miq.) Miq. Ex havil based on HSCCC coupled with molecular docking.Molecules2022276201310.3390/molecules2706201335335376
    [Google Scholar]
  19. CheraghiM. NamdariM. DaraeeH. NegahdariB. Cardioprotective effect of magnetic hydrogel nanocomposite loaded N,α-L-rhamnopyranosyl vincosamide isolated from Moringa oleifera leaves against doxorubicin-induced cardiac toxicity in rats: in vitro and in vivo studies.J. Microencapsul.201734433534110.1080/02652048.2017.131195528406043
    [Google Scholar]
  20. MouraD.V.M. AmesF.Q. CorrêaJ.G.S. PeixotoM.A. AmorimA.M.A. PominiA.M. Carvalhod.J.E. RuizA.L.T.G. Bersani-AmadoC.A. SantinS.M.O. Cytotoxicity and anti-inflammatory effects of the extract, fractions and alkaloids from Palicourea minutiflora (Rubiaceae).Nat. Prod. Res.202135224715471910.1080/14786419.2019.171070431916461
    [Google Scholar]
  21. HuangX. LiY. SuY. ChaiX. YanS. Monoterpene indole alkaloids and monoterpene diglycosides from the roots of Triosteum pinnatifidum.Phytochem. Lett.20147303410.1016/j.phytol.2013.09.006
    [Google Scholar]
  22. KumarA. ChowdhuryS.R. JatteK.K. ChakrabartiT. MajumderH.K. JhaT. MukhopadhyayS. Anthocephaline, a new indole alkaloid and cadambine, a potent inhibitor of DNA topoisomerase IB of Leishmania donovani (LdTOP1LS), isolated from Anthocephalus cadamba.Nat. Prod. Commun.20151021934578X150100022110.1177/1934578X150100022125920266
    [Google Scholar]
  23. MishraD.P. KhanM.A. YadavD.K. RawatA.K. SinghR.K. AhamadT. HussainM.K. SaquibM. KhanM.F. Monoterpene indole alkaloids from anthocephalus cadamba fruits exhibiting anticancer activity in human lung cancer cell line H1299.ChemistrySelect20183298468847210.1002/slct.201801475
    [Google Scholar]
  24. ChenZ. TianZ. ZhangY. FengX. LiY. JiangH. Monoterpene indole alkaloids in Uncaria rhynchophlly (Miq.) Jacks chinensis and their chemotaxonomic significance.Biochem. Syst. Ecol.20209110405710.1016/j.bse.2020.104057
    [Google Scholar]
  25. JiaA. HuangX.Q. RuG.H. WuY.H. MingG.X. LiY.H. Simultaneous determination of six components in different parts of nauclea officinalis by HPLC-MS/MS method.Zhong Yao Cai2024470239840210.13863/j.issn1001‑4454.2024.02.022
    [Google Scholar]
  26. YinR. ChenJ. ZhaoY. JiaX. ZhangZ. FengL. WangH. WangJ. ZhuF. Simultaneous determination of six alkaloid components in rat plasma and its application to pharmacokinetic study of Danmu preparations by an ultra fast liquid chromatography–electrospray ionization-tandem mass spectrometry.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2015983-984101710.1016/j.jchromb.2014.12.02625612771
    [Google Scholar]
  27. DongF. WangS. YangA. LiQ. WangY. DaiL. TaoY. WeiX. ZhangJ. Systematic screening and characterization of cardamonin metabolites using UHPLC-Q-Exactive Orbitrap MS after oral administration to rats.Arab. J. Chem.202013128768878210.1016/j.arabjc.2020.10.007
    [Google Scholar]
  28. WangJ. QinF. WangH. WangL. LiC. SunL. Exploring the gut microbiota mediated biotransformation of Senecio scandens Buch.-Ham.: Insights from metabolite spectrum with UHPLC-Q-Orbitrap HRMS and bioinformatics analysis of gut microbiota metabolites.J. Pharm. Biomed. Anal.202424711624110.1016/j.jpba.2024.11624138838440
    [Google Scholar]
  29. ZhaoL. WangH. YuanN. YangG. GaoJ. SunL. Identification of the Metabolites of Scutebarbatine A in Rat Plasma, Bile, Urine, and feces by Using Ultra-high-performance Liquid Chromatography Coupled with Q Exactive Hybrid Quadrupole-orbitrap High-resolution Mass Spectrometry, Curr Drug Metab.2022231303710.2174/138920022366622012612125335081887
    [Google Scholar]
  30. DengG. LiuW. MaC. RongX. ZhangY. WangY. WuC. CaoN. DingW. GuanH. ChengX. WangC. In vivo and in vitro metabolism and pharmacokinetics of cholinesterase inhibitor deoxyvasicine from aerial parts of Peganum harmala Linn in rats via UPLC-ESI-QTOF-MS and UPLC-ESI-MS/MS.J. Ethnopharmacol.201923628830110.1016/j.jep.2019.03.02030872168
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002351614250401153450
Loading
/content/journals/cdm/10.2174/0113892002351614250401153450
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test