Skip to content
2000
image of Rapid and Comprehensive Identification of Vincosamide Metabolites in vitro and in vivo in Rats by Ultra-High Performance Liquid Chromatography-Quadrupole-Exactive Orbitrap-High Resolution Mass Spectrometry

Abstract

Background

Vincosamide, an indole alkaloid extracted from , exhibits a range of pharmacological activities, such as anti-tumor, antibacterial, and anti-inflammatory properties. However, despite its promising therapeutic applications, there is a notable gap in research focused on the metabolic pathways of vincosamide.

Objective

This study aims to investigate the metabolism of vincosamide both and in rats, and to elucidate its metabolic pathways.

Methods

Samples of liver microsomal incubation, plasma, bile, urine, and feces following vincosamide administration were analyzed by ultra-high performance liquid chromatography-quadrupole-Exactive Orbitrap-high resolution mass spectrometry (UHPLC-Q-Exactive Orbitrap HRMS). The collected data were analyzed using Compound Discovery 3.2 software and the molecular network method. The metabolites identified through these methodologies were subsequently validated using Xcalibur 4.1 software, which provided information on retention times, parent ions, and characteristic fragment ions.

Results

A total of 37 metabolites were identified, including 8 and 32 (3 in plasma, 7 in bile, 22 in urine, and 17 in feces). While the metabolism of vincosamide differs and in rats, the type of metabolic reaction that occurs is well-defined. The predominant metabolic pathways are oxidation, reduction, deglycosylation, hydration, glucuronidation, methylation, sulfation, glycine conjugation, cysteine conjugation, taurine conjugation, and complex reactions.

Conclusion

This study elucidates the metabolism of vincosamide and in rats, thereby expanding the metabolite profile of vincosamide. These findings provide a foundation for the potential development of new drugs based on vincosamide.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002351614250401153450
2025-04-16
2025-09-15
Loading full text...

Full text loading...

References

  1. State administration of traditional chinese medicine (SACM). Chinese Herbs. 1999 6 456
    [Google Scholar]
  2. Fan X.H. Wang D.L. Lv F.F. Yang Y. Li S.P. Zhao X.S. Wei J.H. Simultaneous and rapid quantification of multi-compounds in nauclea officinalis based on UPLC-DAD. Microchem. J. 2024 199 110236 10.1016/j.microc.2024.110236
    [Google Scholar]
  3. Zhu F. Chen J. Wang H. Jia X. Wang S. Zhang Z. Zhai X. Xu J. Tan W. Ning Q. Gu J. Analysis of the chemical constituents and rats metabolites after oral administration of Nauclea officinalis by ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2015 1007 54 66 10.1016/j.jchromb.2015.10.032 26571455
    [Google Scholar]
  4. Ma Y.L. Yu J.Q. Review of nauclea officinalis pierre. Ex petard. Zhonghua Zhongyiyao Zazhi 2017 32 3079 3082
    [Google Scholar]
  5. Chen J.M. Liao J.H. Gao J.W. Zhang P. Gao G.H. Sun L.X. Study on chemical components of aqueous extract from raw Nauclea officinalis by UPLC-QTOF-MS/MS. Zhongguo Shiyan Fangjixue Zazhi 2018 24 49 56 10.13422/j.cnki.Syfjx.20181517
    [Google Scholar]
  6. Dawen X.I.E. Li Y. Zhao L. Ding G. Yuan S. Xu J. Zhu H. Xiao W. Study on chemical constituents from leaves of Naudea officinalis. Zhongguo Zhongyao Zazhi 2011 36 8 1037 1039 10.4268/cjcmm20110820 21809580
    [Google Scholar]
  7. Bum N.E. Taiwe G.S. Moto F.C.O. Ngoupaye G.T. Nkantchoua G.C.N. Pelanken M.M. Rakotonirina S.V. Rakotonirina A. Anticonvulsant, anxiolytic, and sedative properties of the roots of Nauclea latifolia Smith in mice. Epilepsy Behav. 2009 15 4 434 440 10.1016/j.yebeh.2009.05.014 19560975
    [Google Scholar]
  8. Li D. Chen J. Ye J. Zhai X. Song J. Jiang C. Wang J. Zhang H. Jia X. Zhu F. Anti-inflammatory effect of the six compounds isolated from Nauclea officinalis Pierrc ex Pitard, and molecular mechanism of strictosamide via suppressing the NF-κB and MAPK signaling pathway in LPS-induced RAW 264.7 macrophages. J. Ethnopharmacol. 2017 196 66 74 10.1016/j.jep.2016.12.007 27989509
    [Google Scholar]
  9. Mesia K. Cimanga R.K. Dhooghe L. Cos P. Apers S. Totté J. Tona G.L. Pieters L. Vlietinck A.J. Maes L. Antimalarial activity and toxicity evaluation of a quantified Nauclea pobeguinii extract. J. Ethnopharmacol. 2010 131 1 10 16 10.1016/j.jep.2010.05.008 20470876
    [Google Scholar]
  10. Liew S.Y. Mukhtar M.R. Hadi A.H.A. Awang K. Mustafa M.R. Zaima K. Morita H. Litaudon M. Naucline, a new indole alkaloid from the bark of Nauclea officinalis. Molecules 2012 17 4 4028 4036 10.3390/molecules17044028 22469596
    [Google Scholar]
  11. Zhu M.Y. Gong Z.S. Feng H.P. Zhang Q.Y. Liu K. Lin B. Zhang M.N. Lin H.F. Li M.S. Vincosamide has a function for inhibiting malignant behaviors of hepatocellular carcinoma cells. World J. Oncol. 2022 13 5 272 288 10.14740/wjon1514 36406198
    [Google Scholar]
  12. Wan J.M. Guo Q. Preliminary study on antitumor effects of glycosides from Camptotheca Acuminata in vivo. J. Wuhan Inst. Technol 2011 10 03 90 91
    [Google Scholar]
  13. Formagio A.S.N. Volobuff C.R.F. Kassuya C.A.L. Cardoso C.A.L. do Carmo Vieira M. Pereira Z.V. Bagatin M.C. de Freitas Gauze G. Psychotria leiocarpa extract and vincosamide reduce dhemically-Induced inflammation in mice and inhibit the acetylcholinesterase activity. Inflammation 2019 42 5 1561 1574 10.1007/s10753‑019‑01018‑w 31102122
    [Google Scholar]
  14. Mai S.Y. Wang Y.R. Li Y.H. Tan Y.F. Zhang X.G. Zhang J.Q. Li J.Y. Effects of chemical constituents of Nauclea officinalis on reactive oxygen species and permeability of HUVEC cells. World Chin. Med. 2020 15 01 47 50
    [Google Scholar]
  15. Pan Q.M. Li Y.H. Zhang J.J. Li Y. Ma S.G. Yu S.S. Monoterpenoid indole alkaloids isolated from the stems and twigs of Strychnos cathayensis. Phytochemistry 2022 203 113353 10.1016/j.phytochem.2022.113353 36007664
    [Google Scholar]
  16. Aderibigbe S.A. Idowu S.O. Olaniyi A.A. Wright C.W. Fatokun A.A. Bioactivity and cytotoxicity profiling of vincosamide and strictosamide, anthelmintic epimers from Sarcocephalus latifolius (Smith) Bruce leaf. J. Ethnopharmacol. 2021 265 113142 10.1016/j.jep.2020.113142 32697959
    [Google Scholar]
  17. Peng Z.C. He J. Pan X.G. Zhang J. Wang Y.M. Ye X.S. Xia C.Y. Lian W.W. Yan Y. He X.L. Zhang W.K. Xu J.K. Secoiridoid dimers and their biogenetic precursors from the fruits of Cornus officinalis with potential therapeutic effects on type 2 diabetes. Bioorg. Chem. 2021 117 105399 10.1016/j.bioorg.2021.105399 34688131
    [Google Scholar]
  18. Yu P. Chen Z. Liu Y. Gu Z. Wang X. Zhang Y. Ma Y. Dong M. Tian Z. Tian Z. Bioactivity-guided separation of anti-cholinesterase alkaloids from Uncaria rhynchophlly (Miq.) Miq. Ex havil based on HSCCC coupled with molecular docking. Molecules 2022 27 6 2013 10.3390/molecules27062013 35335376
    [Google Scholar]
  19. Cheraghi M. Namdari M. Daraee H. Negahdari B. Cardioprotective effect of magnetic hydrogel nanocomposite loaded N,α-L-rhamnopyranosyl vincosamide isolated from Moringa oleifera leaves against doxorubicin-induced cardiac toxicity in rats: in vitro and in vivo studies. J. Microencapsul. 2017 34 4 335 341 10.1080/02652048.2017.1311955 28406043
    [Google Scholar]
  20. Moura D.V.M. Ames F.Q. Corrêa J.G.S. Peixoto M.A. Amorim A.M.A. Pomini A.M. Carvalho J.E. Ruiz A.L.T.G. Bersani-Amado C.A. Santin S.M.O. Cytotoxicity and anti-inflammatory effects of the extract, fractions and alkaloids from Palicourea minutiflora (Rubiaceae). Nat. Prod. Res. 2021 35 22 4715 4719 10.1080/14786419.2019.1710704 31916461
    [Google Scholar]
  21. Huang X. Li Y. Su Y. Chai X. Yan S. Monoterpene indole alkaloids and monoterpene diglycosides from the roots of Triosteum pinnatifidum. Phytochem. Lett. 2014 7 30 34 10.1016/j.phytol.2013.09.006
    [Google Scholar]
  22. Kumar A. Chowdhury S.R. Jatte K.K. Chakrabarti T. Majumder H.K. Jha T. Mukhopadhyay S. Anthocephaline, a new indole alkaloid and cadambine, a potent inhibitor of DNA topoisomerase IB of Leishmania donovani (LdTOP1LS), isolated from Anthocephalus cadamba. Nat. Prod. Commun., 2015 10 2 1934578X1501000221 10.1177/1934578X1501000221 25920266
  23. Mishra D.P. Khan M.A. Yadav D.K. Rawat A.K. Singh R.K. Ahamad T. Hussain M.K. Saquib M. Khan M.F. Monoterpene indole alkaloids from anthocephalus cadamba fruits exhibiting anticancer activity in human lung cancer cell line H1299. ChemistrySelect 2018 3 29 8468 8472 10.1002/slct.201801475
    [Google Scholar]
  24. Chen Z. Tian Z. Zhang Y. Feng X. Li Y. Jiang H. Monoterpene indole alkaloids in Uncaria rhynchophlly (Miq.) Jacks chinensis and their chemotaxonomic significance. Biochem. Syst. Ecol. 2020 91 104057 10.1016/j.bse.2020.104057
    [Google Scholar]
  25. Jia A. Huang X.Q. Ru G.H. Wu Y.H. Ming G.X. Li Y.H. Simultaneous determination of six components in different parts of nauclea officinalis by HPLC-MS/MS method. Zhong Yao Cai 2024 47 02 398 402 10.13863/j.issn1001‑4454.2024.02.022
    [Google Scholar]
  26. Yin R. Chen J. Zhao Y. Jia X. Zhang Z. Feng L. Wang H. Wang J. Zhu F. Simultaneous determination of six alkaloid components in rat plasma and its application to pharmacokinetic study of Danmu preparations by an ultra fast liquid chromatography–electrospray ionization-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2015 983-984 10 17 10.1016/j.jchromb.2014.12.026 25612771
    [Google Scholar]
  27. Dong F. Wang S. Yang A. Li Q. Wang Y. Dai L. Tao Y. Wei X. Zhang J. Systematic screening and characterization of cardamonin metabolites using UHPLC-Q-Exactive Orbitrap MS after oral administration to rats. Arab. J. Chem. 2020 13 12 8768 8782 10.1016/j.arabjc.2020.10.007
    [Google Scholar]
  28. Wang J. Qin F. Wang H. Wang L. Li C. Sun L. Exploring the gut microbiota mediated biotransformation of Senecio scandens Buch.-Ham.: Insights from metabolite spectrum with UHPLC-Q-Orbitrap HRMS and bioinformatics analysis of gut microbiota metabolites. J. Pharm. Biomed. Anal. 2024 247 116241 10.1016/j.jpba.2024.116241 38838440
    [Google Scholar]
  29. Zhao L. Wang H. Yuan N. Yang G. Gao J. Sun L. Identification of the Metabolites of Scutebarbatine A in Rat Plasma, Bile, Urine, and feces by Using Ultra-high-performance Liquid Chromatography Coupled with Q Exactive Hybrid Quadrupole-orbitrap High-resolution Mass Spectrometry. Curr. Drug Metab. 2022 23 1 30 37 10.2174/1389200223666220126121253 35081887
    [Google Scholar]
  30. Deng G. Liu W. Ma C. Rong X. Zhang Y. Wang Y. Wu C. Cao N. Ding W. Guan H. Cheng X. Wang C. In vivo and in vitro metabolism and pharmacokinetics of cholinesterase inhibitor deoxyvasicine from aerial parts of Peganum harmala Linn in rats via UPLC-ESI-QTOF-MS and UPLC-ESI-MS/MS. J. Ethnopharmacol. 2019 236 288 301 10.1016/j.jep.2019.03.020 30872168
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002351614250401153450
Loading
/content/journals/cdm/10.2174/0113892002351614250401153450
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test