Skip to content
2000
Volume 25, Issue 9
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

Quercetin (QE), a particular flavonoid, is well known for its medicinal effects, including anti-oxidant, hypoglycemic, and anti-inflammatory effects. In this review, the findings of QE effects on diabetes STZ-induced, alloxan-induced, and its complications have been summarized with a particular focus on , and clinical trials. Consequently, QE mediates several mechanisms, including ameliorating tumor necrosis factor (TNF)-α, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), interleukin (IL)-1β, IL-8, and IL-10 expression, increasing insulin glucose uptake to inhibit insulin resistance. Moreover, QE stimulates insulin secretion and attenuates insulin resistance through various pathways, namely transient K channel, motivating peroxisome proliferator-activated receptor expression, increasing glucose transporter-4, and decreasing inducible nitric oxide synthase in skeletal muscle. QE has protective effects on the complications caused by diabetes, such as polycystic ovary syndrome, high-fat diet-induced obesity, diabetic-induced hepatic damage, vascular inflammation, nephropathy, and neuropathy.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002339410250108031621
2025-01-28
2025-10-13
Loading full text...

Full text loading...

References

  1. HuizingaM.M. RothmanR.L. Addressing the diabetes pandemic: A comprehensive approach.Indian J. Med. Res.20061245481484
    [Google Scholar]
  2. ShawJ.E. SicreeR.A. ZimmetP.Z. Global estimates of the prevalence of diabetes for 2010 and 2030.Diabetes Res. Clin. Pract.201087141410.1016/j.diabres.2009.10.00719896746
    [Google Scholar]
  3. TziomalosK. AthyrosV.G. Diabetic nephropathy: New risk factors and improvements in diagnosis.Rev. Diabet. Stud.2015121-211011810.1900/RDS.2015.12.11026676664
    [Google Scholar]
  4. NuckolsT.K. KeelerE. AndersonL.J. GreenJ. MortonS.C. DoyleB.J. ShettyK. ArifkhanovaA. BoothM. ShanmanR. ShekelleP. Economic evaluation of quality improvement interventions designed to improve glycemic control in diabetes: A systematic review and weighted regression analysis.Diabetes Care201841598599310.2337/dc17‑149529678865
    [Google Scholar]
  5. WatsonP.C.N. MoulinD. Watt-WatsonJ. GordonA. EisenhofferJ. Controlled-release oxycodone relieves neuropathic pain: A randomized controlled trial in painful diabetic neuropathy.Pain20031051717810.1016/S0304‑3959(03)00160‑X14499422
    [Google Scholar]
  6. VinayagamR. XuB. Antidiabetic properties of dietary flavonoids: A cellular mechanism review.Nutr. Metab.20151216010.1186/s12986‑015‑0057‑726705405
    [Google Scholar]
  7. BootsA.W. HaenenG.R.M.M. BastA. Health effects of quercetin: From antioxidant to nutraceutical.Eur. J. Pharmacol.20085852-332533710.1016/j.ejphar.2008.03.00818417116
    [Google Scholar]
  8. FarhadiF. KhamenehB. IranshahiM. IranshahyM. Antibacterial activity of flavonoids and their structure–activity relationship: An update review.Phytother. Res.2019331134010.1002/ptr.620830346068
    [Google Scholar]
  9. GuptaA. BirhmanK. RahejaI. SharmaS.K. KarH.K. Quercetin: A wonder bioflavonoid with therapeutic potential in disease management.Asian Pac. J. Trop. Dis.20166324825210.1016/S2222‑1808(15)61024‑6
    [Google Scholar]
  10. LarsonA.J. SymonsJ.D. JaliliT. Therapeutic potential of quercetin to decrease blood pressure: Review of efficacy and mechanisms.Adv. Nutr.201231394610.3945/an.111.00127122332099
    [Google Scholar]
  11. LiR. YaoG-M. YanH-L. WangL. WangL. Effects of quercetin on diabetic retinopathy and its association with NLRP3 inflammasome and autophagy.Int. J. Ophthalmol.2021141424910.18240/ijo.2021.01.0633469482
    [Google Scholar]
  12. OršolićN. GajskiG. Garaj-VrhovacV. ĐikićD. PrskaloZ.Š. SirovinaD. DNA-protective effects of quercetin or naringenin in alloxan-induced diabetic mice.Eur. J. Pharmacol.20116561-311011810.1016/j.ejphar.2011.01.02121277296
    [Google Scholar]
  13. AlamM.M. MeerzaD. NaseemI. Protective effect of quercetin on hyperglycemia, oxidative stress and DNA damage in alloxan induced type 2 diabetic mice.Life Sci.2014109181410.1016/j.lfs.2014.06.00524946265
    [Google Scholar]
  14. AshrafizadehM. AhmadiZ. FarkhondehT. SamarghandianS. Autophagy as a molecular target of quercetin underlying its protective effects in human diseases.Arch. Physiol. Biochem.2022128120020810.1080/13813455.2019.167145831564166
    [Google Scholar]
  15. HenaganT.M. CefaluW.T. RibnickyD.M. NolandR.C. DunvilleK. CampbellW.W. StewartL.K. ForneyL.A. GettysT.W. ChangJ.S. MorrisonC.D. In vivo effects of dietary quercetin and quercetin-rich red onion extract on skeletal muscle mitochondria, metabolism, and insulin sensitivity.Genes Nutr.2015101210.1007/s12263‑014‑0451‑125542303
    [Google Scholar]
  16. KaulK. TarrJ.M. AhmadS.I. KohnerE.M. ChibberR. Introduction to diabetes mellitus.Diabetes: An old disease, a new insightSpringer2013111
    [Google Scholar]
  17. Baradaran RahimiV. AskariV.R. MousaviS.H. Ellagic acid dose and time-dependently abrogates d-galactose-induced animal model of aging: Investigating the role of PPAR-γ.Life Sci.201923211659510.1016/j.lfs.2019.11659531238053
    [Google Scholar]
  18. RahimiV.B. AskariV.R. MousaviS.H. Ellagic acid reveals promising anti-aging effects against d-galactose-induced aging on human neuroblastoma cell line, SH-SY5Y: A mechanistic study.Biomed. Pharmacother.20181081712172410.1016/j.biopha.2018.10.02430372874
    [Google Scholar]
  19. ChoiK. KimY.B. Molecular mechanism of insulin resistance in obesity and type 2 diabetes.Korean J. Intern. Med.201025211912910.3904/kjim.2010.25.2.11920526383
    [Google Scholar]
  20. BurrowsN.R. LiY. GeissL.S. Incidence of treatment for end-stage renal disease among individuals with diabetes in the U.S. continues to decline.Diabetes Care2010331737710.2337/dc09‑034320040673
    [Google Scholar]
  21. GrossJ.L. de AzevedoM.J. SilveiroS.P. CananiL.H. CaramoriM.L. ZelmanovitzT. Diabetic nephropathy: Diagnosis, prevention, and treatment.Diabetes Care200528116417610.2337/diacare.28.1.16415616252
    [Google Scholar]
  22. LehmannR. SchleicherE.D. Molecular mechanism of diabetic nephropathy.Clin. Chim. Acta20002971-213514410.1016/S0009‑8981(00)00240‑010841915
    [Google Scholar]
  23. ZhangQ. SongW. ZhaoB. XieJ. SunQ. ShiX. YanB. TianG. LiangX. Quercetin attenuates diabetic peripheral neuropathy by correcting mitochondrial abnormality via activation of AMPK/PGC-1α pathway in vivo and in vitro.Front. Neurosci.20211563617210.3389/fnins.2021.63617233746703
    [Google Scholar]
  24. SrinivasanP. VijayakumarS. KothandaramanS. PalaniM. Anti-diabetic activity of quercetin extracted from Phyllanthus emblica L. fruit: In silico and in vivo approaches.J. Pharm. Anal.20188210911810.1016/j.jpha.2017.10.00529736297
    [Google Scholar]
  25. LenzenS. The mechanisms of alloxan- and streptozotocin-induced diabetes.Diabetologia200851221622610.1007/s00125‑007‑0886‑718087688
    [Google Scholar]
  26. SandersR.A. RauscherF.M. WatkinsJ.B.III Effects of quercetin on antioxidant defense in streptozotocin-induced diabetic rats.J. Biochem. Mol. Toxicol.200115314314910.1002/jbt.1111424224
    [Google Scholar]
  27. JiaoY. WilliamsA. WeiN. Quercetin ameliorated insulin resistance via regulating METTL3-mediated N6-methyladenosine modification of PRKD2 mRNA in skeletal muscle and C2C12 myocyte cell line.Nutr. Metab. Cardiovasc. Dis.202232112655266810.1016/j.numecd.2022.06.01936058761
    [Google Scholar]
  28. AnjaneyuluM. ChopraK. Quercetin, an anti-oxidant bioflavonoid, attenuates diabetic nephropathy in rats.Clin. Exp. Pharmacol. Physiol.200431424424810.1111/j.1440‑1681.2004.03982.x15053821
    [Google Scholar]
  29. AnjaneyuluM. ChopraK. Quercetin, a bioflavonoid, attenuates thermal hyperalgesia in a mouse model of diabetic neuropathic pain.Prog. Neuropsychopharmacol. Biol. Psychiatry20032761001100510.1016/S0278‑5846(03)00160‑X14499317
    [Google Scholar]
  30. AnjaneyuluM. ChopraK. KaurI. Antidepressant activity of quercetin, a bioflavonoid, in streptozotocin-induced diabetic mice.J. Med. Food20036439139510.1089/10966200377251997614977450
    [Google Scholar]
  31. VessalM. HemmatiM. VaseiM. Antidiabetic effects of quercetin in streptozocin-induced diabetic rats.Comp. Biochem. Physiol. C Toxicol. Pharmacol.2003135335736410.1016/S1532‑0456(03)00140‑612927910
    [Google Scholar]
  32. da PurificaçãoN.R.C. GarciaV.B. FrezF.C.V. SehaberC.C. LimaK.R.D.A. de Oliveira LimaM.F. de Carvalho VasconcelosR. de AraujoA.A. de Araújo JúniorR.F. LacchiniS. de OliveiraF. PerlesJ.V.C.M. ZanoniJ.N. de Sousa LopesM.L.D. ClebisN.K. Combined use of systemic quercetin, glutamine and alpha-tocopherol attenuates myocardial fibrosis in diabetic rats.Biomed. Pharmacother.202215111313110.1016/j.biopha.2022.11313135643067
    [Google Scholar]
  33. ChenB. HeT. XingY. CaoT. Effects of quercetin on the expression of MCP-1, MMP-9 and VEGF in rats with diabetic retinopathy.Exp. Ther. Med.20171466022602610.3892/etm.2017.527529285153
    [Google Scholar]
  34. WangS. DuS. WangW. ZhangF. Therapeutic investigation of quercetin nanomedicine in a zebrafish model of diabetic retinopathy.Biomed. Pharmacother.202013011057310.1016/j.biopha.2020.11057332745912
    [Google Scholar]
  35. TangL. LiK. ZhangY. LiH. LiA. XuY. WeiB. Quercetin liposomes ameliorate streptozotocin-induced diabetic nephropathy in diabetic rats.Sci. Rep.2020101244010.1038/s41598‑020‑59411‑732051470
    [Google Scholar]
  36. HuT. LuX.Y. ShiJ.J. LiuX.Q. ChenQ.B. WangQ. ChenY.B. ZhangS.J. Quercetin protects against diabetic encephalopathy via SIRT1/NLRP3 pathway in db/db mice.J. Cell. Mol. Med.20202463449345910.1111/jcmm.1502632000299
    [Google Scholar]
  37. ShettyA.K. RashmiR. RajanM.G.R. SambaiahK. SalimathP.V. Antidiabetic influence of quercetin in streptozotocin-induced diabetic rats.Nutr. Res.200424537338110.1016/j.nutres.2003.11.010
    [Google Scholar]
  38. OršolićN. BašićI. Honey bee products and their polyphenolic compounds in treatment of diabetes.Recent Progress in Medicinal Plants, Volume 22: Phytopharmacology and Therapeutic Values IVStudium Press2008443540
    [Google Scholar]
  39. DastaniM. RahimiH.R. AskariV.R. JaafariM.R. JarahiL. YadollahiA. RahimiV.B. Three months of combination therapy with nano-curcumin reduces the inflammation and lipoprotein (a) in type 2 diabetic patients with mild to moderate coronary artery disease: Evidence of a randomized, double-blinded, placebo-controlled clinical trial.Biofactors202349110811810.1002/biof.187435674733
    [Google Scholar]
  40. ShaW. HuF. XiY. ChuY. BuS. Mechanism of ferroptosis and its role in type 2 diabetes mellitus.J. Diabetes Res.2021202110.1155/2021/9999612
    [Google Scholar]
  41. GoldnerM.G. GomoriG. Studies on the mechanism of alloxan diabetes.Endocrinology194435424124810.1210/endo‑35‑4‑241
    [Google Scholar]
  42. FederiukI.F. CaseyH.M. QuinnM.J. WoodM.D. WardW.K. Induction of type-1 diabetes mellitus in laboratory rats by use of alloxan: Route of administration, pitfalls, and insulin treatment.Comp. Med.200454325225715253270
    [Google Scholar]
  43. Shaw DunnJ. McletchieN.G.B. Experimental alloxan diabetes in the rat.Lancet1943242626538438710.1016/S0140‑6736(00)87397‑3
    [Google Scholar]
  44. IghodaroO.M. AdeosunA.M. AkinloyeO.A. Alloxan-induced diabetes, a common model for evaluating the glycemic-control potential of therapeutic compounds and plants extracts in experimental studies.Medicina201753636537410.1016/j.medici.2018.02.00129548636
    [Google Scholar]
  45. JörnsA. MundayR. TiedgeM. LenzenS. Comparative toxicity of alloxan, N-alkylalloxans and ninhydrin to isolated pancreatic islets in vitro.J. Endocrinol.1997155228329310.1677/joe.0.15502839415063
    [Google Scholar]
  46. DongJ. ZhangX. ZhangL. BianH.X. XuN. BaoB. LiuJ. Quercetin reduces obesity-associated ATM infiltration and inflammation in mice: A mechanism including AMPKα1/SIRT1.J. Lipid Res.201455336337410.1194/jlr.M03878624465016
    [Google Scholar]
  47. EhtiatiS. AlizadehM. FarhadiF. KhalatbariK. AjiboyeB.O. Baradaran RahimiV. AskariV.R. Promising influences of caffeic acid and caffeic acid phenethyl ester against natural and chemical toxins: A comprehensive and mechanistic review.J. Funct. Foods202310710563710.1016/j.jff.2023.105637
    [Google Scholar]
  48. TaherzadehD. Baradaran RahimiV. AmiriH. EhtiatiS. YahyazadehR. HashemyS.I. AskariV.R. Acetyl-11-Keto-β-Boswellic acid (AKBA) prevents lipopolysaccharide-induced inflammation and cytotoxicity on H9C2 cells.Evidence-based Complement. Altern. Med.20222022
    [Google Scholar]
  49. RahimiV.B. Momeni-MoghaddamM.A. ChiniM.G. SavianoA. MaioneF. BifulcoG. Rahmanian-DevinP. JebalbarezyA. AskariV.R. Carnosol attenuates LPS-induced inflammation of cardiomyoblasts by inhibiting NF-κB: A mechanistic in vitro and in silico study.Evidence-based Complement. Altern. Med.: eCAM20222022
    [Google Scholar]
  50. DaiX. DingY. ZhangZ. CaiX. BaoL. LiY. Quercetin but not quercitrin ameliorates tumor necrosis factor-alpha-induced insulin resistance in C2C12 skeletal muscle cells.Biol. Pharm. Bull.201336578879510.1248/bpb.b12‑0094723439570
    [Google Scholar]
  51. AnhêG.F. OkamotoM.M. KinoteA. SollonC. Lellis-SantosC. AnhêF.F. LimaG.A. HirabaraS.M. VellosoL.A. BordinS. MachadoU.F. Quercetin decreases inflammatory response and increases insulin action in skeletal muscle of ob/ob mice and in L6 myotubes.Eur. J. Pharmacol.20126891-328529310.1016/j.ejphar.2012.06.00722713545
    [Google Scholar]
  52. GholoobiA. AskariV.R. NaghediniaH. AhmadiM. VakiliV. Baradaran RahimiV. Colchicine effectively attenuates inflammatory biomarker high-sensitivity C-reactive protein (hs-CRP) in patients with non-ST-segment elevation myocardial infarction: A randomised, double-blind, placebo-controlled clinical trial.Inflammopharmacology20212951379138710.1007/s10787‑021‑00865‑034420187
    [Google Scholar]
  53. ColeJ.B. FlorezJ.C. Genetics of diabetes mellitus and diabetes complications.Nat. Rev. Nephrol.202016737739010.1038/s41581‑020‑0278‑532398868
    [Google Scholar]
  54. Baradaran RahimiV. RajabianA. RajabiH. Mohammadi VosoughE. MirkarimiH.R. HasanpourM. IranshahiM. RakhshandehH. AskariV.R. The effects of hydro-ethanolic extract of Capparis spinosa (C. spinosa) on lipopolysaccharide (LPS)-induced inflammation and cognitive impairment: Evidence from in vivo and in vitro studies.J. Ethnopharmacol.202025611270610.1016/j.jep.2020.11270632109547
    [Google Scholar]
  55. GhadiriM. Baradaran RahimiV. MoradiE. HasanpourM. ClarkC.C.T. IranshahiM. RakhshandehH. AskariV.R. Standardised pomegranate peel extract lavage prevents postoperative peritoneal adhesion by regulating TGF-β and VEGF levels.Inflammopharmacology202129385586810.1007/s10787‑021‑00819‑633993390
    [Google Scholar]
  56. RoohbakhshY. Baradaran RahimiV. SilakhoriS. RajabiH. Rahmanian-DevinP. Samzadeh-KermaniA. RakhshandehH. HasanpourM. IranshahiM. MousaviS.H. AskariV.R. Evaluation of the effects of peritoneal lavage with rosmarinus officinalis extract against the prevention of postsurgical-induced peritoneal adhesion.Planta Med.202086640541410.1055/a‑1118‑391832097974
    [Google Scholar]
  57. SherifI.O. Uroprotective mechanism of quercetin against cyclophosphamide-induced urotoxicity: Effect on oxidative stress and inflammatory markers.J. Cell. Biochem.201811997441744810.1002/jcb.2705329775228
    [Google Scholar]
  58. ShiG.J. LiY. CaoQ.H. WuH.X. TangX.Y. GaoX.H. YuJ.Q. ChenZ. YangY. In vitro and in vivo evidence that quercetin protects against diabetes and its complications: A systematic review of the literature.Biomed. Pharmacother.20191091085109910.1016/j.biopha.2018.10.13030551359
    [Google Scholar]
  59. KeaneK.N. CruzatV.F. CarlessiR. De BittencourtP.I.H. NewsholmeP. Molecular events linking oxidative stress and inflammation to insulin resistance and β-cell dysfunction.Oxid. Med. Cell. Longev.2015201510.1155/2015/181643
    [Google Scholar]
  60. IskenderH. DokumaciogluE. SenT.M. InceI. KanbayY. SaralS. The effect of hesperidin and quercetin on oxidative stress, NF-κB and SIRT1 levels in a STZ-induced experimental diabetes model.Biomed. Pharmacother.20179050050810.1016/j.biopha.2017.03.10228395272
    [Google Scholar]
  61. XuH. ZhouY. LiuY. PingJ. ShouQ. ChenF. RuoR. Metformin improves hepatic IRS2/PI3K/Akt signaling in insulin-resistant rats of NASH and cirrhosis.J. Endocrinol.2016229213314410.1530/JOE‑15‑040926941037
    [Google Scholar]
  62. ZhenY.Z. LiN.R. HeH.W. ZhaoS.S. ZhangG.L. HaoX.F. ShaoR.G. Protective effect of bicyclol against bile duct ligation-induced hepatic fibrosis in rats.World J. Gastroenterol.201521237155716410.3748/wjg.v21.i23.715526109801
    [Google Scholar]
  63. KhodarahmiA. EshaghianA. SafariF. MoradiA. Quercetin mitigates hepatic insulin resistance in rats with bile duct ligation through modulation of the STAT3/SOCS3/IRS1 signaling pathway.J. Food Sci.201984103045305310.1111/1750‑3841.1479331529802
    [Google Scholar]
  64. VidyashankarS. Sandeep VarmaR. PatkiP.S. Quercetin ameliorate insulin resistance and up-regulates cellular antioxidants during oleic acid induced hepatic steatosis in HepG2 cells.Toxicol. In Vitro 201327294595310.1016/j.tiv.2013.01.01423348005
    [Google Scholar]
  65. DewanjeeS. DasS. DasA.K. BhattacharjeeN. DihingiaA. DuaT.K. KalitaJ. MannaP. Molecular mechanism of diabetic neuropathy and its pharmacotherapeutic targets.Eur. J. Pharmacol.201883347252310.1016/j.ejphar.2018.06.03429966615
    [Google Scholar]
  66. Baradaran RahimiV. AskariV.R. HosseiniM. YousefsaniB.S. SadeghniaH.R. Anticonvulsant activity of Viola tricolor against seizures induced by pentylenetetrazol and maximal electroshock in mice.Iran. J. Med. Sci.201944322022631182888
    [Google Scholar]
  67. KandhareA.D. RaygudeK.S. Shiva KumarV. RajmaneA.R. VisnagriA. GhuleA.E. GhoshP. BadoleS.L. BodhankarS.L. Ameliorative effects quercetin against impaired motor nerve function, inflammatory mediators and apoptosis in neonatal streptozotocin-induced diabetic neuropathy in rats.Biomed. Aging Pathol.20122417318610.1016/j.biomag.2012.10.002
    [Google Scholar]
  68. Figueroa-PérezM.G. Pérez-RamírezI.F. Enciso-MorenoJ.A. Gallegos-CoronaM.A. SalgadoL.M. Reynoso-CamachoR. Diabetic nephropathy is ameliorated with peppermint ( Mentha piperita ) infusions prepared from salicylic acid-elicited plants.J. Funct. Foods201843556110.1016/j.jff.2018.01.029
    [Google Scholar]
  69. KhangholiS. MajidF.A.A. BerwaryN.J.A. AhmadF. Abd AzizR.B. The mechanisms of inhibition of advanced glycation end products formation through polyphenols in hyperglycemic condition.Planta Med.20168201/023245
    [Google Scholar]
  70. KanwarY.S. WadaJ. SunL. XieP. WallnerE.I. ChenS. ChughS. DaneshF.R. Diabetic nephropathy: Mechanisms of renal disease progression.Exp. Biol. Med.2008233141110.3181/0705‑MR‑13418156300
    [Google Scholar]
  71. Navarro-GonzálezJ.F. Mora-FernándezC. de FuentesM.M. García-PérezJ. Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy.Nat. Rev. Nephrol.20117632734010.1038/nrneph.2011.5121537349
    [Google Scholar]
  72. AnsariP. ChoudhuryS.T. SeidelV. RahmanA.B. AzizM.A. RichiA.E. RahmanA. JafrinU.H. HannanJ.M.A. Abdel-WahabY.H.A. Therapeutic potential of quercetin in the management of type-2 diabetes mellitus.Life2022128114610.3390/life1208114636013325
    [Google Scholar]
  73. ChenP. ChenJ. ZhengQ. ChenW. WangY. XuX. Pioglitazone, extract of compound Danshen dripping pill, and quercetin ameliorate diabetic nephropathy in diabetic rats.J. Endocrinol. Invest.201336642242723211366
    [Google Scholar]
  74. GomesI.B.S. PortoM.L. SantosM.C.L.F.S. CampagnaroB.P. PereiraT.M.C. MeyrellesS.S. VasquezE.C. Renoprotective, anti-oxidative and anti-apoptotic effects of oral low-dose quercetin in the C57BL/6J model of diabetic nephropathy.Lipids Health Dis.201413118410.1186/1476‑511X‑13‑18425481305
    [Google Scholar]
  75. TongF. LiuS. YanB. LiX. RuanS. YangS. Quercetin nanoparticle complex attenuated diabetic nephropathy via regulating the expression level of ICAM-1 on endothelium.Int. J. Nanomedicine2017127799781310.2147/IJN.S14697829123394
    [Google Scholar]
  76. LiZ. DengH. GuoX. YanS. LuC. ZhaoZ. FengX. LiQ. WangJ. ZengJ. MaX. Effective dose/duration of natural flavonoid quercetin for treatment of diabetic nephropathy: A systematic review and meta-analysis of rodent data.Phytomedicine202210515434810.1016/j.phymed.2022.15434835908521
    [Google Scholar]
  77. HagdeP. PingleP. MouryaA. KattaC.B. SrivastavaS. SharmaR. SinghK.K. SodhiR.K. MadanJ. Therapeutic potential of quercetin in diabetic foot ulcer: Mechanistic insight, challenges, nanotechnology driven strategies and future prospects.J. Drug Deliv. Sci. Technol.20227410357510.1016/j.jddst.2022.103575
    [Google Scholar]
  78. ChaturvediS. AgrawalS. GargA. RastogiV. Potential of nanoencapsulated quercetin topical formulations in the management of diabetic foot ulcer.Rev. Bras. Farmacogn.202233348450110.1007/s43450‑022‑00345‑8
    [Google Scholar]
  79. GallelliG. CioneE. SerraR. LeoA. CitraroR. MatricardiP. Di MeoC. BiscegliaF. CaroleoM.C. BasileS. GallelliL. Nano-hydrogel embedded with quercetin and oleic acid as a new formulation in the treatment of diabetic foot ulcer: A pilot study.Int. Wound J.202017248549010.1111/iwj.1329931876118
    [Google Scholar]
  80. AbidH.M.U. HanifM. MahmoodK. AzizM. AbbasG. LatifH. Wound-healing and antibacterial activity of the quercetin–4-formyl phenyl boronic acid complex against bacterial pathogens of diabetic foot ulcer.ACS Omega2022728244152442210.1021/acsomega.2c0181935874257
    [Google Scholar]
  81. BoulotP. Chabbert-BuffetN. d’ErcoleC. FloriotM. FontaineP. FournierA. GilletJ.Y. GinH. Grandperret-VauthierS. GeudjA.M. GuionnetB. Hauguel-de-MouzonS. HieronimusS. HoffetM. JullienD. LamotteM.F. LejeuneV. LepercqJ. LorenziF. MaresP. MitonA. PenfornisA. PfisterB. RenardE. RodierM. RothP. SeryG.A. TimsitJ. ValatA.S. VambergueA. Verier-MineO. Diabetes and Pregnancy Group, France French multicentric survey of outcome of pregnancy in women with pregestational diabetes.Diabetes Care200326112990299310.2337/diacare.26.11.299014578228
    [Google Scholar]
  82. RakhshandehH. Rajabi KhasevanH. SavianoA. MahdinezhadM.R. Baradaran RahimiV. EhtiatiS. EtemadL. Ebrahimzadeh-bideskanA. MaioneF. AskariV.R. Protective effect of Portulaca oleracea on streptozotocin-induced type I diabetes-associated reproductive system dysfunction and inflammation.Molecules20222718607510.3390/molecules2718607536144807
    [Google Scholar]
  83. van der WoudeH. ter VeldM.G.R. JacobsN. van der SaagP.T. MurkA.J. RietjensI.M.C.M. The stimulation of cell proliferation by quercetin is mediated by the estrogen receptor.Mol. Nutr. Food Res.200549876377110.1002/mnfr.20050003615937998
    [Google Scholar]
  84. BoloukiA. ZalF. Mostafavi-pourZ. BakhtariA. Protective effects of quercetin on uterine receptivity markers and blastocyst implantation rate in diabetic pregnant mice.Taiwan. J. Obstet. Gynecol.202059692793410.1016/j.tjog.2020.09.03833218414
    [Google Scholar]
  85. DongB. ShiZ. DongY. ChenJ. WuZ.X. WuW. ChenZ.S. HanC. Quercetin ameliorates oxidative stress‑induced cell apoptosis of seminal vesicles via activating Nrf2 in type 1 diabetic rats.Biomed. Pharmacother.202215111310810.1016/j.biopha.2022.11310835594707
    [Google Scholar]
  86. KanterM. AktasC. ErbogaM. Protective effects of quercetin against apoptosis and oxidative stress in streptozotocin-induced diabetic rat testis.Food Chem. Toxicol.2012503-471972510.1016/j.fct.2011.11.05122166789
    [Google Scholar]
  87. RizviS.I. MishraN. Anti-oxidant effect of quercetin on type 2 diabetic erythrocytes.J. Food Biochem.200933340441510.1111/j.1745‑4514.2009.00228.x
    [Google Scholar]
  88. EcklandD. DanhofM. Clinical pharmacokinetics of pioglitazone.Exp. Clin. Endocrinol. Diabetes2000108Sup. 223424210.1055/s‑2000‑8525
    [Google Scholar]
  89. HusseinJ. El-NaggarM.E. Synthesis of an environmentally quercetin nanoemulsion to ameliorate diabetic-induced cardiotoxicity.Biocatal. Agric. Biotechnol.20213310198310.1016/j.bcab.2021.101983
    [Google Scholar]
  90. WangZ. ZhaiD. ZhangD. BaiL. YaoR. YuJ. ChengW. YuC. Quercetin decreases insulin resistance in a polycystic ovary syndrome rat model by improving inflammatory microenvironment.Reprod. Sci.201724568269010.1177/193371911666721827634381
    [Google Scholar]
  91. ChengX. HuangJ. LiH. ZhaoD. LiuZ. ZhuL. ZhangZ. PengW. Quercetin: A promising therapy for diabetic encephalopathy through inhibition of hippocampal ferroptosis.Phytomedicine202412615488710.1016/j.phymed.2023.15488738377720
    [Google Scholar]
  92. ZahediM. GhiasvandR. FeiziA. AsgariG. DarvishL. Does quercetin improve cardiovascular risk factors and inflammatory biomarkers in women with type 2 diabetes: A double-blind randomized controlled clinical trial.Int. J. Prev. Med.20134777778524049596
    [Google Scholar]
  93. RezvanN. MoiniA. JananiL. MohammadK. SaedisomeoliaA. NourbakhshM. Gorgani-FiruzjaeeS. MazaheriounM. Hosseinzadeh-AttarM.J. Effects of quercetin on adiponectin-mediated insulin sensitivity in polycystic ovary syndrome: A randomized placebo-controlled double-blind clinical trial.Horm. Metab. Res.201749211512127824398
    [Google Scholar]
  94. NoshadiN. BonyadianA. HojatiA. Abbasalizad-FarhangiM. HeidariM. DarziM. Seyedhosseini-GhahehH. khajehM. Pourteymour Fard TabriziF. VajdiM. AskariG. The effect of quercetin supplementation on the components of metabolic syndrome in adults: A systematic review and dose–response meta-analysis of randomized controlled trials.J. Funct. Foods202411610617510.1016/j.jff.2024.106175
    [Google Scholar]
  95. MAZLOOMZ. The effect of quercetin supplementation on oxidative stress, glycemic control, lipid profile and insulin resistance in type 2 diabetes: A randomized clinical trial.J. Health Sci. Surveillance Syst.201421814
    [Google Scholar]
  96. MirzaM.A. MahmoodS. HillesA.R. AliA. KhanM.Z. ZaidiS.A.A. IqbalZ. GeY. Quercetin as a therapeutic product: Evaluation of its pharmacological action and clinical applications—a review.Pharmaceuticals20231611163110.3390/ph1611163138004496
    [Google Scholar]
  97. ZuelchM.L. RadtkeM.D. HoltR.R. BasuA. Burton-FreemanB. FerruzziM.G. LiZ. ShayN.F. Shukitt-HaleB. KeenC.L. SteinbergF.M. HackmanR.M. Perspective: Challenges and future directions in clinical research with nuts and berries.Adv. Nutr.20231451005102810.1016/j.advnut.2023.07.01037536565
    [Google Scholar]
  98. SalehiB. MachinL. MonzoteL. Sharifi-RadJ. EzzatS.M. SalemM.A. MerghanyR.M. El MahdyN.M. KılıçC.S. SytarO. Sharifi-RadM. SharopovF. MartinsN. MartorellM. ChoW.C. Therapeutic potential of quercetin: New insights and perspectives for human health.ACS Omega2020520118491187210.1021/acsomega.0c0181832478277
    [Google Scholar]
  99. AghababaeiF. HadidiM. Recent advances in potential health benefits of quercetin.Pharmaceuticals2023167102010.3390/ph1607102037513932
    [Google Scholar]
  100. ZhangL. XuL.Y. TangF. LiuD. ZhaoX.L. ZhangJ.N. XiaJ. WuJ.J. YangY. PengC. AoH. New perspectives on the therapeutic potential of quercetin in non-communicable diseases: Targeting Nrf2 to counteract oxidative stress and inflammation.J. Pharm. Anal.202414610093010.1016/j.jpha.2023.12.02039005843
    [Google Scholar]
  101. SpeiskyH. ShahidiF. Costa de CamargoA. FuentesJ. Revisiting the oxidation of flavonoids: Loss, conservation or enhancement of their antioxidant properties.Antioxidants202211113310.3390/antiox1101013335052636
    [Google Scholar]
  102. SobhyR. KhalifaI. RahamanA. ZengX-A. NawazA. WalayatN. Handbook of Dietary Flavonoids. XiaoJ. ChamSpringer International Publishing2023133
    [Google Scholar]
  103. LakhanpalP. RaiD.K. Quercetin: A versatile flavonoid.Int. J. Med. Update.2007222237
    [Google Scholar]
  104. BatihaG.E.S. BeshbishyA.M. IkramM. MullaZ.S. El-HackM.E.A. TahaA.E. AlgammalA.M. ElewaY.H.A. The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: Quercetin.Foods20209337410.3390/foods903037432210182
    [Google Scholar]
  105. MaaidenE.E. UllahN. EzzariaiA. MazarA. BoukcimH. HirichA. NasserB. QarahN. KouisniL. KharrassiY.E. Comparing antioxidant and cytoprotective effects: Quercetin glycoside vs. aglycone from Ephedra alata.Phytomed. Plus20244310060310.1016/j.phyplu.2024.100603
    [Google Scholar]
  106. GuoB. ChouF. HuangL. YinF. FangJ. WangJ.B. JiaZ. Recent insights into oxidative metabolism of quercetin: Catabolic profiles, degradation pathways, catalyzing metalloenzymes and molecular mechanisms.Crit. Rev. Food Sci. Nutr.20246451312133910.1080/10408398.2022.211545636037033
    [Google Scholar]
  107. AguirreL. AriasN. Teresa MacarullaM. GraciaA. PortilloP. Beneficial effects of quercetin on obesity and diabetes.Open Nutraceuticals J.201141
    [Google Scholar]
  108. MoonY.J. WangL. DiCenzoR. MorrisM.E. Quercetin pharmacokinetics in humans.Biopharm. Drug Dispos.200829420521710.1002/bdd.60518241083
    [Google Scholar]
  109. HaiY. ZhangY. LiangY. MaX. QiX. XiaoJ. XueW. LuoY. YueT. Advance on the absorption, metabolism, and efficacy exertion of quercetin and its important derivatives.Food Front.20201442043410.1002/fft2.50
    [Google Scholar]
  110. RichG. BuchweitzM. WinterboneM. KroonP. WildeP. Towards an understanding of the low bioavailability of quercetin: A study of its interaction with intestinal lipids.Nutrients20179211110.3390/nu902011128165426
    [Google Scholar]
  111. KandemirK. TomasM. McClementsD.J. CapanogluE. Recent advances on the improvement of quercetin bioavailability.Trends Food Sci. Technol.202211919220010.1016/j.tifs.2021.11.032
    [Google Scholar]
  112. ErlundI. KosonenT. AlfthanG. MäenpääJ. PerttunenK. KenraaliJ. ParantainenJ. AroA. Pharmacokinetics of quercetin from quercetin aglycone and rutin in healthy volunteers.Eur. J. Clin. Pharmacol.200056854555310.1007/s00228000019711151743
    [Google Scholar]
  113. AdditivesF. Evaluation of certain food additives: Sixty-third report of the joint FAO/WHO expert committee on food additives.2005Available from: https://www.who.int/publications/i/item/9241209283
  114. CancerI.A.R.o. Some chemicals that cause tumours of the kidney or urinary bladder in rodents and some other substances.IARC Monogr. Eval. Carcinog. Risks Hum.199973131182
    [Google Scholar]
  115. HarwoodM. Danielewska-NikielB. BorzellecaJ.F. FlammG.W. WilliamsG.M. LinesT.C. A critical review of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic properties.Food Chem. Toxicol.200745112179220510.1016/j.fct.2007.05.01517698276
    [Google Scholar]
  116. SharmaA. KashyapD. SakK. TuliH.S. SharmaA.K. Therapeutic charm of quercetin and its derivatives: A review of research and patents.Pharm. Pat. Anal.201871153210.4155/ppa‑2017‑003029227203
    [Google Scholar]
  117. SharmaS. SahniJ. AliJ. BabootaS. Patent perspective for potential antioxidant compounds-rutin and quercetin.Recent Pat. Nanomed.201331626810.2174/18779123112029990002
    [Google Scholar]
  118. YanL. Vaghari-TabariM. MalakotiF. MoeinS. QujeqD. YousefiB. AsemiZ. Quercetin: An effective polyphenol in alleviating diabetes and diabetic complications.Crit. Rev. Food Sci. Nutr.202363289163918610.1080/10408398.2022.206782535468007
    [Google Scholar]
  119. FanaroG.B. MarquesM.R. CalazaK.C. BritoR. PessoniA.M. MendonçaH.R. LemosD.E.A. de Brito AlvesJ.L. de SouzaE.L. Cavalcanti NetoM.P. New insights on dietary polyphenols for the management of oxidative stress and neuroinflammation in diabetic retinopathy.Antioxidants2023126123710.3390/antiox1206123737371967
    [Google Scholar]
  120. AlamS. SarkerM.M.R. SultanaT.N. ChowdhuryM.N.R. RashidM.A. ChaityN.I. ZhaoC. XiaoJ. HafezE.E. KhanS.A. MohamedI.N. Antidiabetic phytochemicals from medicinal plants: Prospective candidates for new drug discovery and development.Front. Endocrinol.20221380071410.3389/fendo.2022.80071435282429
    [Google Scholar]
  121. KantV. JangirB.L. SharmaM. KumarV. JoshiV.G. Topical application of quercetin improves wound repair and regeneration in diabetic rats.Immunopharmacol. Immunotoxicol.202143553655310.1080/08923973.2021.195075834278923
    [Google Scholar]
  122. WadhwaK. KadianV. PuriV. BhardwajB.Y. SharmaA. PahwaR. RaoR. GuptaM. SinghI. New insights into quercetin nanoformulations for topical delivery.Phytomed. Plus20222210025710.1016/j.phyplu.2022.100257
    [Google Scholar]
  123. BoseS. DuY. TakhistovP. Michniak-KohnB. Formulation optimization and topical delivery of quercetin from solid lipid based nanosystems.Int. J. Pharm.20134411-2566610.1016/j.ijpharm.2012.12.01323262430
    [Google Scholar]
  124. JainS. JainA.K. PohekarM. ThankiK. Novel self-emulsifying formulation of quercetin for improved in vivo antioxidant potential: Implications for drug-induced cardiotoxicity and nephrotoxicity.Free Radic. Biol. Med.20136511713010.1016/j.freeradbiomed.2013.05.04123792276
    [Google Scholar]
  125. SherE.K. Džidić-KrivićA. KarahmetA. Beća-ZećoM. FarhatE.K. SoftićA. SherF. Novel therapeutical approaches based on neurobiological and genetic strategies for diabetic polyneuropathy – A review.Diabetes Metab. Syndr.2023171110290110.1016/j.dsx.2023.10290137951098
    [Google Scholar]
  126. FengX. BuF. HuangL. XuW. WangW. WuQ. Preclinical evidence of the effect of quercetin on diabetic nephropathy: A meta-analysis of animal studies.Eur. J. Pharmacol.202292117486810.1016/j.ejphar.2022.17486835248552
    [Google Scholar]
  127. KambojS. MukhijaM. MongaJ. SinglaR. ChaudharyJ. Mechanistic investigation of Quercetin in the management of complications of diabetes mellitus by network pharmacology.J. Mol. Chem.202441684684
    [Google Scholar]
  128. TomouE.M. PapakyriakopoulouP. SaitaniE.M. ValsamiG. PippaN. SkaltsaH. Recent advances in nanoformulations for quercetin delivery.Pharmaceutics2023156165610.3390/pharmaceutics1506165637376104
    [Google Scholar]
  129. CasagrandeR. GeorgettiS.R. VerriW.A.Jr BorinM.F. LopezR.F.V. FonsecaM.J.V. In vitro evaluation of quercetin cutaneous absorption from topical formulations and its functional stability by antioxidant activity.Int. J. Pharm.2007328218319010.1016/j.ijpharm.2006.08.00616959452
    [Google Scholar]
  130. HatahetT. MorilleM. HommossA. DorandeuC. MüllerR.H. BéguS. Dermal quercetin smartCrystals®: Formulation development, antioxidant activity and cellular safety.Eur. J. Pharm. Biopharm.2016102516310.1016/j.ejpb.2016.03.00426948977
    [Google Scholar]
  131. ChellianJ. MakK.K. ChellappanD.K. KrishnappaP. PichikaM.R. Quercetin and metformin synergistically reverse endothelial dysfunction in the isolated aorta of streptozotocin-nicotinamide- induced diabetic rats.Sci. Rep.20221212139310.1038/s41598‑022‑25739‑536496468
    [Google Scholar]
  132. DhanyaR. AryaA.D. NishaP. JayamurthyP. Quercetin, a lead compound against type 2 diabetes ameliorates glucose uptake via AMPK pathway in skeletal muscle cell line.Front. Pharmacol.2017833610.3389/fphar.2017.0033628642704
    [Google Scholar]
  133. LiuY. LiY. XuL. ShiJ. YuX. WangX. LiX. JiangH. YangT. YinX. DuL. LuQ. Quercetin attenuates podocyte apoptosis of diabetic nephropathy through targeting EGFR signaling.Front. Pharmacol.20221279277710.3389/fphar.2021.79277735069207
    [Google Scholar]
  134. ChenP. ShiQ. XuX. WangY. ChenW. WangH. Quercetin suppresses NF-κB and MCP-1 expression in a high glucose-induced human mesangial cell proliferation model.Int. J. Mol. Med.201230111912522469745
    [Google Scholar]
  135. HaddadP.S. EidH.M. NacharA. ThongF. SweeneyG. The molecular basis of the antidiabetic action of quercetin in cultured skeletal muscle cells and hepatocytes.Pharmacogn. Mag.20151141748110.4103/0973‑1296.14970825709214
    [Google Scholar]
  136. KittlM. BeyreisM. TumurkhuuM. FürstJ. HelmK. PitschmannA. GaisbergerM. GlaslS. RitterM. JakabM. Quercetin stimulates insulin secretion and reduces the viability of rat INS-1 beta-cells.Cell. Physiol. Biochem.201639127829310.1159/00044562327336168
    [Google Scholar]
  137. LiX. WangR. ZhouN. WangX. LiuQ. BaiY. BaiY. LiuZ. YangH. ZouJ. WangH. ShiT. Quercetin improves insulin resistance and hepatic lipid accumulation in vitro in a NAFLD cell model.Biomed. Rep.201311717610.3892/br.2012.2724648896
    [Google Scholar]
  138. LiuH. GuanH. TanX. JiangY. LiF. Sun-WaterhouseD. LiD. Enhanced alleviation of insulin resistance via the IRS-1/Akt/FOXO1 pathway by combining quercetin and EGCG and involving miR-27a-3p and miR-96–5p.Free Radic. Biol. Med.202218110511710.1016/j.freeradbiomed.2022.02.00235124182
    [Google Scholar]
  139. LuQ. HaoM. WuW. ZhangN. IsaacA.T. YinJ. ZhuX. DuL. YinX. Antidiabetic cataract effects of GbE, rutin and quercetin are mediated by the inhibition of oxidative stress and polyol pathway.Acta Biochim. Pol.2017651354110.18388/abp.2016_138729281744
    [Google Scholar]
  140. ZhangW. WangY. YangZ. QiuJ. MaJ. ZhaoZ. BaoT. Antioxidant treatment with quercetin ameliorates erectile dysfunction in streptozotocin-induced diabetic rats.J. Biosci. Bioeng.2011112321521810.1016/j.jbiosc.2011.05.01321664865
    [Google Scholar]
  141. AbdelmoatyM.A. IbrahimM.A. AhmedN.S. AbdelazizM.A. Confirmatory studies on the antioxidant and antidiabetic effect of quercetin in rats.Indian J. Clin. Biochem.201025218819210.1007/s12291‑010‑0034‑x23105908
    [Google Scholar]
  142. XieJ. SongW. LiangX. ZhangQ. ShiY. LiuW. ShiX. Protective effect of quercetin on streptozotocin-induced diabetic peripheral neuropathy rats through modulating gut microbiota and reactive oxygen species level.Biomed. Pharmacother.202012711014710.1016/j.biopha.2020.11014732559841
    [Google Scholar]
  143. Sehaber-SierakowskiC.C. Vieira-FrezF.C. Hermes-UlianaC. MartinsH.A. BossolaniG.D.P. LimaM.M. BlegniskiF.P. GuarnierF.A. BaracatM.M. PerlesJ.V.C.M. ZanoniJ.N. Protective effects of quercetin-loaded microcapsules on the enteric nervous system of diabetic rats.Auton. Neurosci.202123010275910.1016/j.autneu.2020.10275933341532
    [Google Scholar]
  144. MaheshT. MenonV.P. Quercetin allievates oxidative stress in streptozotocin-induced diabetic rats.Phytother. Res.200418212312710.1002/ptr.137415022163
    [Google Scholar]
  145. FerreiraP.E.B. LopesC.R.P. AlvesA.M.P. AlvesÉ.P.B. LindenD.R. ZanoniJ.N. ButtowN.C. Diabetic neuropathy: An evaluation of the use of quercetin in the cecum of rats.World J. Gastroenterol.201319386416642610.3748/wjg.v19.i38.641624151360
    [Google Scholar]
  146. KumarB. GuptaS.K. NagT.C. SrivastavaS. SaxenaR. JhaK.A. SrinivasanB.P. Retinal neuroprotective effects of quercetin in streptozotocin-induced diabetic rats.Exp. Eye Res.201412519320210.1016/j.exer.2014.06.00924952278
    [Google Scholar]
  147. NabiR.K. AbdullahM.A. Effect of quercetin on the biochemical parameters of the alloxan induced diabetes in male rats.Magallat al-Basrat Li-l-Abhat al-Baytariyyat2019182
    [Google Scholar]
  148. VelescuB.S. AnuţaV. AldeaA. JingaM. CobeleschiP.C. ZbarceaC.E. UivarosiV. Evaluation of protective effects of quercetin and vanadyl sulphate in alloxan induced diabetes model.Farmacia2017652200206
    [Google Scholar]
  149. ElbeH. VardiN. EsrefogluM. AtesB. YologluS. TaskapanC. Amelioration of streptozotocin-induced diabetic nephropathy by melatonin, quercetin, and resveratrol in rats.Hum. Exp. Toxicol.201534110011310.1177/096032711453199524812155
    [Google Scholar]
  150. TanY. TamC.C. RolstonM. AlvesP. ChenL. MengS. HongH. ChangS.K.C. YokoyamaW. Quercetin ameliorates insulin resistance and restores gut microbiome in mice on high-fat diets.Antioxidants2021108125110.3390/antiox1008125134439499
    [Google Scholar]
  151. AriasN. MacarullaM.T. AguirreL. Martínez-CastañoM.G. PortilloM.P. Quercetin can reduce insulin resistance without decreasing adipose tissue and skeletal muscle fat accumulation.Genes Nutr.20149136110.1007/s12263‑013‑0361‑724338341
    [Google Scholar]
  152. KimJ.H. KangM.J. ChoiH.N. JeongS.M. LeeY.M. KimJ.I. Quercetin attenuates fasting and postprandial hyperglycemia in animal models of diabetes mellitus.Nutr. Res. Pract.20115210711110.4162/nrp.2011.5.2.10721556223
    [Google Scholar]
  153. NeisyA. ZalF. SeghatoleslamA. AlaeeS. Amelioration by quercetin of insulin resistance and uterine GLUT4 and ERα gene expression in rats with polycystic ovary syndrome (PCOS).Reprod. Fertil. Dev.2019312315323
    [Google Scholar]
  154. ShaikhomarO.A. BahattabO.S. Physiological effect of quercetin as a natural flavonoid to be used as hypoglycemic agent in diabetes mellitus type II rats.Saudi J Biomed Res202161101710.36348/sjbr.2021.v06i01.003
    [Google Scholar]
  155. LeiD. ChengchengL. XuanQ. YibingC. LeiW. HaoY. XizhiL. YuanL. XiaoxingY. QianL. Quercetin inhibited mesangial cell proliferation of early diabetic nephropathy through the Hippo pathway.Pharmacol. Res.201914610432010.1016/j.phrs.2019.10432031220559
    [Google Scholar]
  156. JiangX. YuJ. WangX. GeJ. LiN. Quercetin improves lipid metabolism via SCAP-SREBP2-LDLr signaling pathway in early stage diabetic nephropathy.Diabetes Metab. Syndr. Obes.20191282783910.2147/DMSO.S19545631239739
    [Google Scholar]
  157. ChoiH.N. JeongS.M. HuhG.H. KimJ.I. Quercetin ameliorates insulin sensitivity and liver steatosis partly by increasing adiponectin expression in ob/ob mice.Food Sci. Biotechnol.201524127327910.1007/s10068‑015‑0036‑9
    [Google Scholar]
  158. LaiP.B. ZhangL. YangL.Y. Quercetin ameliorates diabetic nephropathy by reducing the expressions of transforming growth factor-β1 and connective tissue growth factor in streptozotocin-induced diabetic rats.Ren. Fail.2012341838710.3109/0886022X.2011.62356422011322
    [Google Scholar]
  159. YangR. LiL. YuanH. LiuH. GongY. ZouL. LiS. WangZ. ShiL. JiaT. ZhaoS. WuB. YiZ. GaoY. LiG. XuH. LiuS. ZhangC. LiG. LiangS. Quercetin relieved diabetic neuropathic pain by inhibiting upregulated P2X 4 receptor in dorsal root ganglia.J. Cell. Physiol.201923432756276410.1002/jcp.2709130145789
    [Google Scholar]
  160. ChenX-L. ChaiG-R. LiuS. YangH-W. Quercetin protects against diabetic retinopathy in rats by inducing heme oxygenase-1 expression.Neural Regen. Res.20211671344135010.4103/1673‑5374.30102733318415
    [Google Scholar]
  161. MahmoudM.F. HassanN.A. El BassossyH.M. FahmyA. Quercetin protects against diabetes-induced exaggerated vasoconstriction in rats: Effect on low grade inflammation.PLoS One201385e6378410.1371/journal.pone.006378423717483
    [Google Scholar]
  162. LuQ. JiX.J. ZhouY.X. YaoX.Q. LiuY.Q. ZhangF. YinX.X. Quercetin inhibits the mTORC1/p70S6K signaling-mediated renal tubular epithelial–mesenchymal transition and renal fibrosis in diabetic nephropathy.Pharmacol. Res.20159923724710.1016/j.phrs.2015.06.00626151815
    [Google Scholar]
  163. NarenjkarJ. RoghaniM. AlambeygiH. SedaghatiF. The effect of the flavonoid quercetin on pain sensation in diabetic rats.Basic Clin. Neurosci.20112351
    [Google Scholar]
  164. HenaganT.M. LenardN.R. GettysT.W. StewartL.K. Dietary quercetin supplementation in mice increases skeletal muscle PGC1α expression, improves mitochondrial function and attenuates insulin resistance in a time-specific manner.PLoS One201492e8936510.1371/journal.pone.008936524586721
    [Google Scholar]
  165. KushwahA. GuptaG. Quercetin ameliorates insulin resistance concomitant early cardiovascular changes in experimental rats.Acta Pol. Pharm.201875497798710.32383/appdr/80887
    [Google Scholar]
  166. UmatheS. DixitP. VaghasiyaJ. JainN. Influence of quercetin on diabetes-induced alteration in CYP3A activity and bioavailability of pioglitazone in rats.Am. J. Infect. Dis.20095211812510.3844/ajidsp.2009.118.125
    [Google Scholar]
  167. YaoZ. GuY. ZhangQ. LiuL. MengG. WuH. XiaY. BaoX. ShiH. SunS. WangX. ZhouM. JiaQ. WuY. SongK. GaoW. GuoC. NiuK. Estimated daily quercetin intake and association with the prevalence of type 2 diabetes mellitus in Chinese adults.Eur. J. Nutr.201958281983010.1007/s00394‑018‑1713‑229754250
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002339410250108031621
Loading
/content/journals/cdm/10.2174/0113892002339410250108031621
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): diabetes; flavonoid; inflammation; insulin; oxidative stress; Quercetin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test