Skip to content
2000
Volume 4, Issue 1
  • ISSN: 2542-579X
  • E-ISSN: 2542-5803

Abstract

Denture Stomatitis (DS) is a chronic atrophic candidiasis and is the most prevalent chronic inflammatory condition of the oral mucosa that serves as the foundation of dentures. The persistence of DS is determined by the species, other microbes, the immune state of the host, and other factors. Patients who have other risk factors, such as inadequate oral hygiene, long-term denture usage, a diet rich in carbohydrates, and decreased salivary flow, are more prone to experience this. The application of conventional antifungals is not always successful in combating DS. The available literature related to the epidemiology and pathophysiology of denture stomatitis, the risk factors, and treatment options available for DS have been examined with special emphasis on phytoactive molecules using Pubmed and Google Scholar platforms. Moreover, the plant/phytoactive molecules (clove, cinnamon, curcumin, thyme, ) molecule-derived products were also looked at for analyzing the market popularity of herbal products. Therefore, age old plant-based herbal molecules have been revisited by researchers in pursuit of developing an effective solution to DS, and clove, cinnamon, thyme, curcumin, and have been reviewed in the present article. An update on the herbal formulations in the form of ointment, mouthwash, toothpaste, , that are either in the market or in trials has also been presented in the article. A systematic and comprehensive review of the scientific literature related to the five aforementioned plant extracts and their active molecules has been presented here. The review gives a detailed insight into the pharmacological properties other than DS also. Moreover, the review also highlighted the gaps which need more strategic and scientific attention for the quick translation of information into therapy of clinical relevance.

Loading

Article metrics loading...

/content/journals/cdent/10.2174/012542579X317149241202064449
2025-01-01
2025-12-26
Loading full text...

Full text loading...

References

  1. SivaramakrishnanG. SridharanK. Alternatives to antifungal therapy for denture stomatitis: A systematic review and meta-analysis.Saudi J. Oral Sci.2017426710.4103/sjos.SJOralSci_22_17
    [Google Scholar]
  2. RibeiroA.B. de AraújoC.B. SilvaL.E.V. Fazan-JuniorR. SalgadoH.C. RibeiroA.B. FortesC.V. BuenoF.L. de OliveiraV.C. de F O ParanhosH. WatanabeE. da Silva-LovatoC.H. Hygiene protocols for the treatment of denture-related stomatitis: Local and systemic parameters analysis - A randomized, double-blind trial protocol.Trials201920166110.1186/s13063‑019‑3854‑x31783777
    [Google Scholar]
  3. AlamenB.M. NajiG.A. AlsmaelM.A. The effect of virgin coconut oil addition on the hardness and wettability of acrylic based denture soft lining material.J. Res. Med. Dent. Sci.2020896106
    [Google Scholar]
  4. NavabiN. ShakibaeiP. HassaniA.R. Management of denture stomatitis: An overview.Acta Marisiensis Ser. Med.2023691232910.2478/amma‑2023‑0007
    [Google Scholar]
  5. WangL.L. LiuX.H. YangL.M. LiX.X. Clinical analysis of denture-related oral mucosal lesions in 185 patients with removable denture.Shanghai Kou Qiang Yi Xue2020291858832524128
    [Google Scholar]
  6. KamleshR.D. SivaswamyV. Prevalence of clinical and laboratory errors in complete denture wearers: A retrospective study.Vinay Sivaswamy.2020177323331
    [Google Scholar]
  7. de SouzaP.T.R. Gonçalves-WilhelmsenN.C.V. RosaR.T. CorreiaC.F.K.N. PereiraT.M. KitaharaA.B.P. IgnácioS.A. Azevedo-AlanisL.R. RosaE.A.R. Oral colonization and virulence factors of Candida spp. in babies with cleft palate.Cleft Palate Craniofac. J.20225981056106310.1177/1055665621103043734259068
    [Google Scholar]
  8. Dorocka-BobkowskaB. Zozulinska-ZiolkiewiczD. Wierusz-WysockaB. HedzelekW. Szumala-KakolA. Budtz-JörgensenE. Candida-associated denture stomatitis in type 2 diabetes mellitus.Diabetes Res. Clin. Pract.2010901818610.1016/j.diabres.2010.06.01520638146
    [Google Scholar]
  9. RathiS. VermaA. Resilient liners in prosthetic dentistry: An update.Int J Appl Dent Sci.2018433438
    [Google Scholar]
  10. ChladekG. ŻmudzkiJ. KasperskiJ. Long-term soft denture lining materials.Materials (Basel)2014785816584210.3390/ma708581628788163
    [Google Scholar]
  11. GhorabS. Comparative study between two different types of soft liners used for patients with maxillary obturators.Egypt. Dent. J.20186421805181210.21608/edj.2018.78438
    [Google Scholar]
  12. AbuhajarE. AliK. ZulfiqarG. Al AnsariK. RajaH.Z. BishtiS. AnweigiL. Management of chronic atrophic candidiasis (denture stomatitis) - A narrative review.Int. J. Environ. Res. Public Health2023204302910.3390/ijerph2004302936833718
    [Google Scholar]
  13. KawanishiN. HoshiN. AdachiT. IchigayaN. KimotoK. Positive effects of saliva on oral candidiasis: Basic research on the analysis of salivary properties.J. Clin. Med.202110481210.3390/jcm1004081233671369
    [Google Scholar]
  14. BrantesM.F. AzevedoR.S. Rozza-de-MenezesR.E. PóvoaH.C. TucciR. GouvêaA.F. Takahama-JrA. Analysis of risk factors for maxillary denture-related oral mucosal lesions: A cross-sectional study.Med. Oral Patol. Oral Cir. Bucal2019243e305e31310.4317/medoral.2282631011141
    [Google Scholar]
  15. NavabiN. GholamhoseinianA. BaghaeiB. HashemipourM.A. Risk factors associated with denture stomatitis in healthy subjects attending a dental school in southeast iran.Sultan Qaboos Univ. Med. J.201313457458010.12816/000331824273669
    [Google Scholar]
  16. Turgut CankayaZ. YurdakosA. Gokalp KalabayP. The association between denture care and oral hygiene habits, oral hygiene knowledge and periodontal status of geriatric patients wearing removable partial dentures.Eur. Oral Res.202054191510.26650/eor.2020004832518905
    [Google Scholar]
  17. de SouzaR.F. KhiyaniM.F. ChavesC.A.L. FeineJ. BarbeauJ. FuentesR. BorieE. CrizostomoL.C. Silva-LovatoC.H. RompreP. EmamiE. Improving practice guidelines for the treatment of denture-related erythematous stomatitis: A study protocol for a randomized controlled trial.Trials201718121110.1186/s13063‑017‑1947‑y28476133
    [Google Scholar]
  18. EvrenB.A. UludamarA. IşeriU. OzkanY.K. The association between socioeconomic status, oral hygiene practice, denture stomatitis and oral status in elderly people living different residential homes.Arch. Gerontol. Geriatr.201153325225710.1016/j.archger.2010.12.01621269712
    [Google Scholar]
  19. CakanU. YuzbasiogluE. KurtH. KaraH.B. TurunçR. AkbulutA. AydinK.C. Assessment of hygiene habits and attitudes among removable partial denture wearers in a university hospital.Niger. J. Clin. Pract.201518451151510.4103/1119‑3077.15422425966724
    [Google Scholar]
  20. Ercalik-YalcinkayaS. ÖzcanM. Association between oral mucosal lesions and hygiene habits in a population of removable prosthesis wearers.J. Prosthodont.201524427127810.1111/jopr.1220825231090
    [Google Scholar]
  21. GeiballaG.H. AbubakrN.H. IbrahimY.E. Patients’ satisfaction and maintenance of fixed partial denture.Eur. J. Dent.201610225025310.4103/1305‑7456.17831327095906
    [Google Scholar]
  22. AmanpourS. Akbari JavarM. SarhadinejadZ. DoustmohammadiM. MoghadariM. SarhadynejadZ. A systematic review of medicinal plants and herbal products’ effectiveness in oral health and dental cure with health promotion approach.J. Educ. Health Promot.202312130610.4103/jehp.jehp_1297_2238023092
    [Google Scholar]
  23. ReinhardtL.C. NascenteP.S. RibeiroJ.S. GuimarãesV.B.S. EtgesA. LundR.G. Sensitivity to antifungals by Candida spp samples isolated from cases of chronic atrophic candidiasis (CAC).Braz. J. Biol.202080226627210.1590/1519‑6984.19045431291399
    [Google Scholar]
  24. SpampinatoC. LeonardiD. Candida infections, causes, targets, and resistance mechanisms: traditional and alternative antifungal agents.BioMed Res. Int.2013201311310.1155/2013/20423723878798
    [Google Scholar]
  25. de SennaA.M. VieiraM.M.F. Machado-de-SenaR.M. BertolinA.O. NúñezS.C. RibeiroM.S. Photodynamic inactivation of Candida ssp. on denture stomatitis. A clinical trial involving palatal mucosa and prosthesis disinfection.Photodiagn. Photodyn. Ther.20182221221610.1016/j.pdpdt.2018.04.00829678677
    [Google Scholar]
  26. QiuJ. RozaM.P. ColliK.G. DalbenY.R. MaifredeS.B. ValiattiT.B. NovoV.M. CayôR. Grão-VellosoT.R. GonçalvesS.S. Candida-associated denture stomatitis: Clinical, epidemiological, and microbiological features.Braz. J. Microbiol.202354284184810.1007/s42770‑023‑00952‑036940013
    [Google Scholar]
  27. GhannoumM. RoilidesE. KatragkouA. PetraitisV. WalshT.J. The role of echinocandins in Candida biofilm–related vascular catheter infections: in vitro and in vivo model systems.Clin. Infect. Dis.201561Suppl. 6S618S62110.1093/cid/civ81526567279
    [Google Scholar]
  28. PereiraR MendesJ de FS Antifungal activity, antibiofilm, synergism and molecular docking of Allium sativum essential oil against clinical isolates of C. albicans.Res. Soc. Dev.20211012e313101220457
    [Google Scholar]
  29. IbaB. FalegbeR.K. IortyomC. NwaohabuenyiT.E. AsaY.I. IbeobiA.C. Denture stomatitis.Orapuh Literature Reviews.202111310
    [Google Scholar]
  30. FinkelJ.S. MitchellA.P. Genetic control of Candida albicans biofilm development.Nat. Rev. Microbiol.20119210911810.1038/nrmicro247521189476
    [Google Scholar]
  31. NettJ. LincolnL. MarchilloK. MasseyR. HoloydaK. HoffB. VanHandelM. AndesD. Putative role of β-1,3 glucans in Candida albicans biofilm resistance.Antimicrob. Agents Chemother.200751251052010.1128/AAC.01056‑0617130296
    [Google Scholar]
  32. NobileC.J. JohnsonA.D. Candida albicans biofilms and human disease.Annu. Rev. Microbiol.2015691719210.1146/annurev‑micro‑091014‑10433026488273
    [Google Scholar]
  33. BertoliniM.M. XuH. SobueT. NobileC.J. Del Bel CuryA.A. Dongari-BagtzoglouA. Candida –streptococcal mucosal biofilms display distinct structural and virulence characteristics depending on growth conditions and hyphal morphotypes.Mol. Oral Microbiol.201530430732210.1111/omi.1209525754666
    [Google Scholar]
  34. XieZ. ThompsonA. SobueT. KashlevaH. XuH. VasilakosJ. Dongari-BagtzoglouA. Candida albicans biofilms do not trigger reactive oxygen species and evade neutrophil killing.J. Infect. Dis.2012206121936194510.1093/infdis/jis60723033146
    [Google Scholar]
  35. RobbinsN. UppuluriP. NettJ. RajendranR. RamageG. Lopez-RibotJ.L. AndesD. CowenL.E. Hsp90 governs dispersion and drug resistance of fungal biofilms.PLoS Pathog.201179e100225710.1371/journal.ppat.100225721931556
    [Google Scholar]
  36. LyonsK.M. CannonR.D. BeumerJ. BakrM.M. LoveR.M. The role of biofilms and material surface characteristics in microbial adhesion to maxillary obturator materials: A literature review.Cleft Palate Craniofac. J.202057448749810.1177/105566561988255531665902
    [Google Scholar]
  37. DavidopoulouS. DizaE. SakellariD. MenexesG. KalfasS. Salivary concentration of free LL-37 in edentulism, chronic periodontitis and healthy periodontium.Arch. Oral Biol.201358893093410.1016/j.archoralbio.2013.01.00323778112
    [Google Scholar]
  38. SartawiS.Y. Abu-HammadS. SalimA. Al-OmoushS. Denture stomatitis revisited: A summary of systematic reviews in the past decade and two case reports of papillary hyperplasia of unusual locations.Int. J. Dent.202120211810.1155/2021/7338143
    [Google Scholar]
  39. PerićM. RajkovićK. Milić LemićA. ŽivkovićR. Arsić ArsenijevićV. Development and validation of mathematical models for testing antifungal activity of different essential oils against Candida species.Arch. Oral Biol.20199825826410.1016/j.archoralbio.2018.11.02930530237
    [Google Scholar]
  40. FeltonD.A. Edentulism and comorbid factors.J. Prosthodont.2009182889610.1111/j.1532‑849X.2009.00437.x19254297
    [Google Scholar]
  41. ZissisA. YannikakisS. HarrisonA. Comparison of denture stomatitis prevalence in 2 population groups.Int. J. Prosthodont.200619662162517165305
    [Google Scholar]
  42. CamposE.N. ClementeL.M. PizzioloP.G. OliveiraV.C. MacedoA.P. WatanabeE. Silva-LovatoC.H. RibeiroA.B. Relation between the risk factors for the severity of denture stomatitis and quality of life of complete edentulous individuals: A cross-sectional study.J. Appl. Oral Sci.202331e2023019210.1590/1678‑7757‑2023‑019238126577
    [Google Scholar]
  43. SreedeviM. RameshA. DwarakanathC. Periodontal status in smokers and nonsmokers: A clinical, microbiological, and histopathological study.Int. J. Dent.2012201211010.1155/2012/57159022505904
    [Google Scholar]
  44. ZimmermannH. ZimmermannN. HagenfeldD. VeileA. KimT.S. BecherH. Is frequency of tooth brushing a risk factor for periodontitis? A systematic review and meta‐analysis.Community Dent. Oral Epidemiol.201543211612710.1111/cdoe.1212625255820
    [Google Scholar]
  45. Navarrete-ReyesA.P. Negrete-NajarJ.P. Cojuc-KonigsbergG. Gómez-CamachoJ. Juárez-CarrilloY. López-MosquedaL.G. Rangel-TapiaR. Ríos-NavaJ.A. Ruiz-ManríquezC.A. Sandoval-ValdezD.A. Torres-PérezA.C. García-LaraJ.M.A. Soto-Perez-de-CelisE. Chavarri-GuerraY. Oral health in older adults with cancer.Geriatrics Gerontol. Aging202317e023001610.53886/gga.e0230016
    [Google Scholar]
  46. BukhariM.A. AlgahtaniM.A. AlsuwailemF.A. AlogaielR.M. AlmubarakS.H. AlqahtaniS.S. AlabdullatifR.A. AlghimlasR.Y. AlotaibiN.F. QahtaniA.R.A. AlkathiriN.K. Epidemiology, etiology, and treatment of denture stomatitis.Int. J. Community Med. Public Health20229298110.18203/2394‑6040.ijcmph20220003
    [Google Scholar]
  47. KaomongkolgitR. WongviriyaA. DaroonpanP. ChansamatR. TantanapornkulW. PalasukJ. Denture stomatitis and its predisposing factors in denture wearers.J. Int. Dent. Med. Res.201710189
    [Google Scholar]
  48. RamezaniA. MollaeiM. Yazdani CharatiJ. TavakolianH. MesgaraniA. MolaniaT. Prevalence of denture stomatitis in patients using denture in Sari City, Iran, in 2020-2021.Iranian J. Health Sci.202311213113610.32598/ijhs.11.2.934.1
    [Google Scholar]
  49. Al-kafajiR.R.A. Diagnostic study on denture stomatitis, and its treatment.Int. J. Dent. Res.20235168
    [Google Scholar]
  50. EmamiE. TarafH. de GrandmontP. GauthierG. de KoninckL. LamarcheC. de SouzaR.F. The association of denture stomatitis and partial removable dental prostheses: A systematic review.Int. J. Prosthodont.201225211311922371829
    [Google Scholar]
  51. ReichartP.A. Oral mucosal lesions in a representative cross‐sectional study of aging Germans.Community Dent. Oral Epidemiol.200028539039810.1034/j.1600‑0528.2000.028005390.x11014516
    [Google Scholar]
  52. ThilakumaraI.P. JayatilakeJ.A.M.S. PallegamaR.W. EllepolaA.N.B. Denture‐induced stomatitis and associated factors in a group of patients attending a university dental hospital in Sri Lanka.J. Investig. Clin. Dent.201782e1221110.1111/jicd.1221126991538
    [Google Scholar]
  53. GendreauL. LoewyZ.G. Epidemiology and etiology of denture stomatitis.J. Prosthodont.201120425126010.1111/j.1532‑849X.2011.00698.x21463383
    [Google Scholar]
  54. VilaT. SultanA.S. Montelongo-JaureguiD. Jabra-RizkM.A. Oral Candidiasis: A disease of opportunity.J. Fungi (Basel)2020611510.3390/jof601001531963180
    [Google Scholar]
  55. JacobsenI.D. HubeB. Candida albicans morphology: Still in focus.Expert Rev. Anti Infect. Ther.201715432733010.1080/14787210.2017.129052428152317
    [Google Scholar]
  56. MoyesD.L. RunglallM. MurcianoC. ShenC. NayarD. ThavarajS. KohliA. IslamA. Mora-MontesH. ChallacombeS.J. NaglikJ.R. A biphasic innate immune MAPK response discriminates between the yeast and hyphal forms of Candida albicans in epithelial cells.Cell Host Microbe20108322523510.1016/j.chom.2010.08.00220833374
    [Google Scholar]
  57. ChengS.C. van de VeerdonkF.L. LenardonM. StoffelsM. PlantingaT. SmeekensS. RizzettoL. MukaremeraL. PreechasuthK. CavalieriD. KannegantiT.D. van der MeerJ.W.M. KullbergB.J. JoostenL.A.B. GowN.A.R. NeteaM.G. The dectin-1/inflammasome pathway is responsible for the induction of protective T-helper 17 responses that discriminate between yeasts and hyphae of Candida albicans.J. Leukoc. Biol.201190235736610.1189/jlb.121070221531876
    [Google Scholar]
  58. HeilmannC.J. SorgoA.G. SiliakusA.R. DekkerH.L. BrulS. de KosterC.G. de KoningL.J. KlisF.M. Hyphal induction in the human fungal pathogen Candida albicans reveals a characteristic wall protein profile.Microbiology (Reading)201115782297230710.1099/mic.0.049395‑021602216
    [Google Scholar]
  59. KumamotoC.A. Molecular mechanisms of mechanosensing and their roles in fungal contact sensing.Nat. Rev. Microbiol.20086966767310.1038/nrmicro196018679170
    [Google Scholar]
  60. de GrootP.W.J. BaderO. de BoerA.D. WeigM. ChauhanN. Adhesins in human fungal pathogens: Glue with plenty of stick.Eukaryot. Cell201312447048110.1128/EC.00364‑1223397570
    [Google Scholar]
  61. GrangerB.L. Insight into the antiadhesive effect of yeast wall protein 1 of Candida albicans.Eukaryot. Cell201211679580510.1128/EC.00026‑1222505336
    [Google Scholar]
  62. MoyesD.L. MurcianoC. RunglallM. IslamA. ThavarajS. NaglikJ.R. Candida albicans yeast and hyphae are discriminated by MAPK signaling in vaginal epithelial cells.PLoS One2011611e2658010.1371/journal.pone.002658022087232
    [Google Scholar]
  63. NaglikJ.R. RichardsonJ.P. MoyesD.L. Candida albicans pathogenicity and epithelial immunity.PLoS Pathog.2014108e100425710.1371/journal.ppat.100425725121985
    [Google Scholar]
  64. MoyesD.L. RichardsonJ.P. NaglikJ.R. Candida albicans- epithelial interactions and pathogenicity mechanisms: Scratching the surface.Virulence20156433834610.1080/21505594.2015.101298125714110
    [Google Scholar]
  65. DalleF. WächtlerB. L’OllivierC. HollandG. BannertN. WilsonD. LabruèreC. BonninA. HubeB. Cellular interactions of Candida albicans with human oral epithelial cells and enterocytes.Cell. Microbiol.201012224827110.1111/j.1462‑5822.2009.01394.x19863559
    [Google Scholar]
  66. MoyesD.L. WilsonD. RichardsonJ.P. MogaveroS. TangS.X. WerneckeJ. HöfsS. GratacapR.L. RobbinsJ. RunglallM. MurcianoC. BlagojevicM. ThavarajS. FörsterT.M. HebeckerB. KasperL. VizcayG. IancuS.I. KichikN. HäderA. KurzaiO. LuoT. KrügerT. KniemeyerO. CotaE. BaderO. WheelerR.T. GutsmannT. HubeB. NaglikJ.R. Candidalysin is a fungal peptide toxin critical for mucosal infection.Nature20165327597646810.1038/nature1762527027296
    [Google Scholar]
  67. RichardsonJ.P. MogaveroS. MoyesD.L. BlagojevicM. KrügerT. VermaA.H. ColemanB.M. De La Cruz DiazJ. SchulzD. PondeN.O. CarranoG. KniemeyerO. WilsonD. BaderO. EnoiuS.I. HoJ. KichikN. GaffenS.L. HubeB. NaglikJ.R. Processing of Candida albicans Ece1p is critical for candidalysin maturation and fungal virulence.MBio201891e02178-1710.1128/mBio.02178‑1729362237
    [Google Scholar]
  68. SwidergallM. KhalajiM. SolisN.V. MoyesD.L. DrummondR.A. HubeB. LionakisM.S. MurdochC. FillerS.G. NaglikJ.R. Candidalysin is required for neutrophil recruitment and virulence during systemic Candida albicans infection.J. Infect. Dis.201922091477148810.1093/infdis/jiz32231401652
    [Google Scholar]
  69. HoJ. YangX. NikouS.A. KichikN. DonkinA. PondeN.O. RichardsonJ.P. GratacapR.L. ArchambaultL.S. ZwirnerC.P. MurcianoC. Henley-SmithR. ThavarajS. TynanC.J. GaffenS.L. HubeB. WheelerR.T. MoyesD.L. NaglikJ.R. Candidalysin activates innate epithelial immune responses via epidermal growth factor receptor.Nat. Commun.2019101229710.1038/s41467‑019‑09915‑231127085
    [Google Scholar]
  70. WächtlerB. WilsonD. HaedickeK. DalleF. HubeB. From attachment to damage: Defined genes of Candida albicans mediate adhesion, invasion and damage during interaction with oral epithelial cells.PLoS One201162e1704610.1371/journal.pone.001704621407800
    [Google Scholar]
  71. LiuY. ShettyA.C. SchwartzJ.A. BradfordL.L. XuW. PhanQ.T. KumariP. MahurkarA. MitchellA.P. RavelJ. FraserC.M. FillerS.G. BrunoV.M. New signaling pathways govern the host response to C. albicans infection in various niches.Genome Res.201525567968910.1101/gr.187427.11425858952
    [Google Scholar]
  72. MurcianoC. MoyesD.L. RunglallM. ToboutiP. IslamA. HoyerL.L. NaglikJ.R. Evaluation of the role of Candida albicans agglutinin-like sequence (Als) proteins in human oral epithelial cell interactions.PLoS One201273e3336210.1371/journal.pone.003336222428031
    [Google Scholar]
  73. SolisN.V. SwidergallM. BrunoV.M. GaffenS.L. FillerS.G. The aryl hydrocarbon receptor governs epithelial cell invasion during oropharyngeal candidiasis.MBio201782e00025-1710.1128/mBio.00025‑1728325761
    [Google Scholar]
  74. WächtlerB. CitiuloF. JablonowskiN. FörsterS. DalleF. SchallerM. WilsonD. HubeB. Candida albicans-epithelial interactions: dissecting the roles of active penetration, induced endocytosis and host factors on the infection process.PLoS One201275e3695210.1371/journal.pone.003695222606314
    [Google Scholar]
  75. SchönherrF.A. SparberF. KirchnerF.R. GuiducciE. Trautwein-WeidnerK. GladiatorA. SertourN. HetzelU. LeG.T.T. PavelkaN. d’EnfertC. BougnouxM-E. CortiC.F. LeibundGut-LandmannS. The intraspecies diversity of C. albicans triggers qualitatively and temporally distinct host responses that determine the balance between commensalism and pathogenicity.Mucosal Immunol.20171051335135010.1038/mi.2017.228176789
    [Google Scholar]
  76. GasparotoT.H. de OliveiraC.E. VieiraN.A. PortoV.C. GasparotoC.T. CampanelliA.P. LaraV.S. The pattern recognition receptors expressed on neutrophils and the associated cytokine profile from different aged patients with Candida-related denture stomatitis.Exp. Gerontol.201247974174810.1016/j.exger.2012.07.00322796226
    [Google Scholar]
  77. LenardonM.D. SoodP. DorfmuellerH.C. BrownA.J.P. GowN.A.R. Scalar nanostructure of the Candida albicans cell wall; a molecular, cellular and ultrastructural analysis and interpretation.Cell Surf.2020610004710.1016/j.tcsw.2020.10004733294751
    [Google Scholar]
  78. PappasP.G. LionakisM.S. ArendrupM.C. Ostrosky-ZeichnerL. KullbergB.J. Invasive candidiasis.Nat. Rev. Dis. Primers2018411802610.1038/nrdp.2018.2629749387
    [Google Scholar]
  79. FaotF. CavalcantiY.W. e BertoliniM.M. PintoL.R. da SilvaW.J. Del Bel CuryA.A. Efficacy of citric acid denture cleanser on the Candida albicansbiofilm formed on poly(methyl methacrylate): effects on residual biofilm and recolonization process.BMC Oral Health20141417710.1186/1472‑6831‑14‑7724957210
    [Google Scholar]
  80. NikouS.A. KichikN. BrownR. PondeN. HoJ. NaglikJ. RichardsonJ. Candida albicans interactions with mucosal surfaces during health and disease.Pathogens2019825310.3390/pathogens802005331013590
    [Google Scholar]
  81. VermaA.H. RichardsonJ.P. ZhouC. ColemanB.M. MoyesD.L. HoJ. HupplerA.R. RamaniK. McGeachyM.J. MufazalovI.A. WaismanA. KaneL.P. BiswasP.S. HubeB. NaglikJ.R. GaffenS.L. Oral epithelial cells orchestrate innate type 17 responses to Candida albicans through the virulence factor candidalysin.Sci. Immunol.2017217eaam883410.1126/sciimmunol.aam883429101209
    [Google Scholar]
  82. TangS.X. MoyesD.L. RichardsonJ.P. BlagojevicM. NaglikJ.R. Epithelial discrimination of commensal and pathogenic Candida albicans.Oral Dis.201622Suppl 111411910.1111/odi.1239526843519
    [Google Scholar]
  83. MoyesD.L. ShenC. MurcianoC. RunglallM. RichardsonJ.P. ArnoM. Aldecoa-OtaloraE. NaglikJ.R. Protection against epithelial damage during Candida albicans infection is mediated by PI3K/Akt and mammalian target of rapamycin signaling.J. Infect. Dis.2014209111816182610.1093/infdis/jit82424357630
    [Google Scholar]
  84. WilsonD. NaglikJ.R. HubeB. The missing link between Candida albicans hyphal morphogenesis and host cell damage.PLoS Pathog.20161210e100586710.1371/journal.ppat.100586727764260
    [Google Scholar]
  85. GumaM. StepniakD. ShakedH. SpehlmannM.E. ShenoudaS. CheroutreH. Vicente-SuarezI. EckmannL. KagnoffM.F. KarinM. Constitutive intestinal NF-κB does not trigger destructive inflammation unless accompanied by MAPK activation.J. Exp. Med.201120891889190010.1084/jem.2011024221825016
    [Google Scholar]
  86. Pukkila-WorleyR. AusubelF.M. MylonakisE. Candida albicans infection of Caenorhabditis elegans induces antifungal immune defenses.PLoS Pathog.201176e100207410.1371/journal.ppat.100207421731485
    [Google Scholar]
  87. ContiH.R. ShenF. NayyarN. StocumE. SunJ.N. LindemannM.J. HoA.W. HaiJ.H. YuJ.J. JungJ.W. FillerS.G. Masso-WelchP. EdgertonM. GaffenS.L. Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis.J. Exp. Med.2009206229931110.1084/jem.2008146319204111
    [Google Scholar]
  88. O’DonnellL.E. RobertsonD. NileC.J. CrossL.J. RiggioM. SherriffA. BradshawD. LambertM. MalcolmJ. BuijsM.J. ZauraE. CrielaardW. BrandtB.W. RamageG. The oral microbiome of denture wearers is influenced by levels of natural dentition.PLoS One2015109e013771710.1371/journal.pone.013771726368937
    [Google Scholar]
  89. ChengS.C. JoostenL.A.B. NeteaM.G. The interplay between central metabolism and innate immune responses.Cytokine Growth Factor Rev.201425670771310.1016/j.cytogfr.2014.06.00825001414
    [Google Scholar]
  90. DühringS. GermerodtS. SkerkaC. ZipfelP.F. DandekarT. SchusterS. Host-pathogen interactions between the human innate immune system and Candida albicans - Understanding and modeling defense and evasion strategies.Front. Microbiol.2015662510.3389/fmicb.2015.0062526175718
    [Google Scholar]
  91. ChengS.C. JoostenL.A.B. KullbergB.J. NeteaM.G. Interplay between Candida albicans and the mammalian innate host defense.Infect. Immun.20128041304131310.1128/IAI.06146‑1122252867
    [Google Scholar]
  92. WeindlG. NaglikJ.R. KaeslerS. BiedermannT. HubeB. KortingH.C. SchallerM. Human epithelial cells establish direct antifungal defense through TLR4-mediated signaling.J. Clin. Invest.2007117123664367210.1172/JCI2811517992260
    [Google Scholar]
  93. GabrielliE. SabbatiniS. RosellettiE. KasperL. PeritoS. HubeB. CassoneA. VecchiarelliA. PericoliniE. In vivo induction of neutrophil chemotaxis by secretory aspartyl proteinases of Candida albicans.Virulence20167781982510.1080/21505594.2016.118438527127904
    [Google Scholar]
  94. UrbanC.F. ErmertD. SchmidM. Abu-AbedU. GoosmannC. NackenW. BrinkmannV. JungblutP.R. ZychlinskyA. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans.PLoS Pathog.2009510e100063910.1371/journal.ppat.100063919876394
    [Google Scholar]
  95. KennyE.F. HerzigA. KrügerR. MuthA. MondalS. ThompsonP.R. BrinkmannV. BernuthH. ZychlinskyA. Diverse stimuli engage different neutrophil extracellular trap pathways.eLife20176e2443710.7554/eLife.2443728574339
    [Google Scholar]
  96. KennoS. PeritoS. MosciP. VecchiarelliA. MonariC. 2013Autophagy and reactive oxygen species are involved in neutrophil extracellular traps release induced by C. albicans morphotypes.Front. Microbiol.787910.3389/fmicb.2016.0087927375599
    [Google Scholar]
  97. ErmertD. UrbanC.F. LaubeB. GoosmannC. ZychlinskyA. BrinkmannV. Mouse neutrophil extracellular traps in microbial infections.J. Innate Immun.20091318119310.1159/00020528120375576
    [Google Scholar]
  98. ByrdA.S. O’BrienX.M. JohnsonC.M. LavigneL.M. ReichnerJ.S. An extracellular matrix-based mechanism of rapid neutrophil extracellular trap formation in response to Candida albicans. J. Immunol.201319084136414810.4049/jimmunol.120267123509360
    [Google Scholar]
  99. NanìS. FumagalliL. SinhaU. KamenL. ScapiniP. BertonG. Src family kinases and Syk are required for neutrophil extracellular trap formation in response to β-glucan particles.J. Innate Immun.201571597310.1159/00036524925277753
    [Google Scholar]
  100. GasparotoT.H. VieiraN.A. PortoV.C. CampanelliA.P. LaraV.S. Differences between salivary and blood neutrophils from elderly and young denture wearers.J. Oral Rehabil.2011381415110.1111/j.1365‑2842.2010.02126.x20663018
    [Google Scholar]
  101. GasparotoT.H. OliveiraC.E. VieiraN.A. PortoV.C. CunhaF.Q. GarletG.P. CampanelliA.P. LaraV.S. Activation pattern of neutrophils from blood of elderly individuals with Candida-related denture stomatitis.Eur. J. Clin. Microbiol. Infect. Dis.20123161271127710.1007/s10096‑011‑1439‑z22120419
    [Google Scholar]
  102. GasparotoT.H. DalboniT.M. AmôrN.G. AbeA.E. PerriG. LaraV.S. VieiraN.A. GasparotoC.T. CampanelliA.P. Fcγ receptors on aging neutrophils.J. Appl. Oral Sci.202129e2020077010.1590/1678‑7757‑2020‑077033825754
    [Google Scholar]
  103. BjörkmanL. ChristensonK. DavidssonL. MårtenssonJ. AmirbeagiF. WelinA. ForsmanH. KarlssonA. DahlgrenC. BylundJ. Neutrophil recruitment to inflamed joints can occur without cellular priming.J. Leukoc. Biol.201910561123113010.1002/JLB.3AB0918‑369R30570778
    [Google Scholar]
  104. FillerS.G. Candida–host cell receptor–ligand interactions.Curr. Opin. Microbiol.20069433333910.1016/j.mib.2006.06.00516837237
    [Google Scholar]
  105. MiramónP. KasperL. HubeB. Thriving within the host: Candida spp. interactions with phagocytic cells.Med. Microbiol. Immunol. (Berl.)2013202318319510.1007/s00430‑013‑0288‑z23354731
    [Google Scholar]
  106. WellingtonM. KoselnyK. SutterwalaF.S. KrysanD.J. Candida albicans triggers NLRP3-mediated pyroptosis in macrophages.Eukaryot. Cell201413232934010.1128/EC.00336‑1324376002
    [Google Scholar]
  107. UwamahoroN. Verma-GaurJ. ShenH.H. QuY. LewisR. LuJ. BamberyK. MastersS.L. VinceJ.E. NadererT. TravenA. The pathogen Candida albicans hijacks pyroptosis for escape from macrophages.MBio201452e00003-1410.1128/mBio.00003‑1424667705
    [Google Scholar]
  108. LanternierF. CypowyjS. PicardC. BustamanteJ. LortholaryO. CasanovaJ.L. PuelA. Primary immunodeficiencies underlying fungal infections.Curr. Opin. Pediatr.201325673674710.1097/MOP.000000000000003124240293
    [Google Scholar]
  109. MilletN. SolisN.V. SwidergallM. Mucosal IgA prevents commensal Candida albicans dysbiosis in the oral cavity.Front. Immunol.20201155536310.3389/fimmu.2020.55536333193324
    [Google Scholar]
  110. Cornejo UlloaP. van der VeenM.H. KromB.P. Review: Modulation of the oral microbiome by the host to promote ecological balance.Odontology2019107443744810.1007/s10266‑019‑00413‑x30719639
    [Google Scholar]
  111. KirchnerF.R. LeibundGut-LandmannS. Tissue-resident memory Th17 cells maintain stable fungal commensalism in the oral mucosa.Mucosal Immunol.202114245546710.1038/s41385‑020‑0327‑132719409
    [Google Scholar]
  112. BarcelouxD.G. Cinnamon (Cinnamomum species).Dis. Mon.200955632733510.1016/j.disamonth.2009.03.00319446676
    [Google Scholar]
  113. MuhammadD.R.A. DewettinckK. Cinnamon and its derivatives as potential ingredient in functional food - A review.Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess.32710491064201710.1080/19440049.2015.104008125893282
    [Google Scholar]
  114. KhruengsaiS. SripahcoT. PripdeevechP. Antibacterial activity and synergic effects of the essential oils of Amomum verum Blackw and Zanthoxylum limonella (Dennst.) Alston.Arch. Microbiol.2023205310210.1007/s00203‑023‑03436‑936862257
    [Google Scholar]
  115. KawatraP. RajagopalanR. Cinnamon: Mystic powers of a minute ingredient.Pharmacognosy Res.20157Suppl 1S1S610.4103/0974‑8490.15799026109781
    [Google Scholar]
  116. MontoyaC. RoldanL. YuM. VallianiS. TaC. YangM. OrregoS. Smart dental materials for antimicrobial applications.Bioact. Mater.20232411910.1016/j.bioactmat.2022.12.00236582351
    [Google Scholar]
  117. FanS. WangD. WenX. LiX. FangF. RichelA. XiaoN. FauconnierM-L. HouC. ZhangD. Incorporation of cinnamon essential oil-loaded Pickering emulsion for improving antimicrobial properties and control release of chitosan/gelatin films.Food Hydrocoll.202313810843810.1016/j.foodhyd.2022.108438
    [Google Scholar]
  118. KowalskaJ. TyburskiJ. MatysiakK. JakubowskaM. ŁukaszykJ. KrzymińskaJ. Cinnamon as a useful preventive substance for the care of human and plant health.Molecules20212617529910.3390/molecules2617529934500731
    [Google Scholar]
  119. MoiniJ. LogalboA. SchnellmannJ.G. Classics in chemical neuroscience: Selegiline, isocarboxazid, phenelzine, and tranylcypromine.ACS Chem. Neurosci.202314234064407510.1021/acschemneuro.3c00591
    [Google Scholar]
  120. BaiG. WenX. NiuL. Recent developments in amorphous alloy catalysts for hydrogenation.Reference Module in Chemistry, Molecular Sciences and Chemical EngineeringElsevier201610.1016/B978‑0‑12‑409547‑2.11034‑0
    [Google Scholar]
  121. YuC. LiY.L. LiangM. DaiS.Y. MaL. LiW.G. LaiF. LiuX.M. Characteristics and hazards of the cinnamaldehyde oxidation process.RSC Advances20201032191241913310.1039/C9RA10820C35518288
    [Google Scholar]
  122. TresinaP.S. SelvamM.S. DossA. MohanV.R. Antidiabetic bioactive natural products from medicinal plants.Stud. Nat. Prod. Chem.2022757511810.1016/B978‑0‑323‑91250‑1.00004‑5
    [Google Scholar]
  123. GanZ. HuangJ. ChenJ. NisarM.F. QiW. Synthesis and antifungal activities of cinnamaldehyde derivatives against Penicillium digitatum causing citrus green mold.J. Food Qual.2020202011710.1155/2020/8898692
    [Google Scholar]
  124. GuptaP. KaurN. KumarV. GuptaA. GuptaS. DuaA. InjetiE. MittalA. Evaluation of cinnamaldehyde derivatives as potential protective agents against oxidative-stress induced myotube atrophy using chemical, biological and computational analysis.Bioorg. Chem.202313910666110.1016/j.bioorg.2023.10666137354662
    [Google Scholar]
  125. ChaiW.C. WhittallJ.J. PolyakS.W. FooK. LiX. DutschkeC.J. OgunniyiA.D. MaS. SykesM.J. SempleS.J. VenterH. Cinnamaldehyde derivatives act as antimicrobial agents against Acinetobacter baumannii through the inhibition of cell division.Front. Microbiol.20221396794910.3389/fmicb.2022.96794936106080
    [Google Scholar]
  126. RaoP.V. GanS.H. Cinnamon: a multifaceted medicinal plant.Evid. Based Complement. Alternat. Med.20142014164294210.1155/2014/64294224817901
    [Google Scholar]
  127. BanuA.T. LungharJ. Chapter 16 - Cinnamon as a potential nutraceutical and functional food ingredient.Herbs, Spices and Their Roles in Nutraceuticals and Functional FoodsElsevier202325727810.1016/B978‑0‑323‑90794‑1.00021‑1
    [Google Scholar]
  128. Valdivieso-UgarteM. Plaza-DiazJ. Gomez-LlorenteC. Lucas GómezE. Sabés-AlsinaM. GilÁ. in vitro examination of antibacterial and immunomodulatory activities of cinnamon, white thyme, and clove essential oils.J. Funct. Foods20218110443610.1016/j.jff.2021.104436
    [Google Scholar]
  129. PaianoR.B. de SousaR.L.M. BonillaJ. MorenoL.Z. de SouzaE.D.F. BaruselliP.S. MorenoA.M. in vitro effects of cinnamon, oregano, and thyme essential oils against Escherichia coli and Trueperella pyogenes isolated from dairy cows with clinical endometritis.Theriogenology202319610611110.1016/j.theriogenology.2022.11.01036413866
    [Google Scholar]
  130. LiuS. ZhaoC. CaoY. LiY. ZhangZ. NieD. TangW. LiY. Comparison of chemical compositions and antioxidant activity of essential oils from litsea cubeba, cinnamon, anise, and eucalyptus.Molecules20232813505110.3390/molecules2813505137446712
    [Google Scholar]
  131. ChaoL.K. HuaK.F. HsuH.Y. ChengS.S. LinI.F. ChenC.J. ChenS.T. ChangS.T. Cinnamaldehyde inhibits pro-inflammatory cytokines secretion from monocytes/macrophages through suppression of intracellular signaling.Food Chem. Toxicol.200846122023110.1016/j.fct.2007.07.01617868967
    [Google Scholar]
  132. GunawardenaD. KarunaweeraN. LeeS. van Der KooyF. HarmanD.G. RajuR. BennettL. GyengesiE. SucherN.J. MünchG. Anti-inflammatory activity of cinnamon (C. zeylanicum and C. cassia) extracts – identification of E-cinnamaldehyde and o-methoxy cinnamaldehyde as the most potent bioactive compounds.Food Funct.20156391091910.1039/C4FO00680A25629927
    [Google Scholar]
  133. DoyleA.A. StephensJ.C. A review of cinnamaldehyde and its derivatives as antibacterial agents.Fitoterapia201913910440510.1016/j.fitote.2019.10440531707126
    [Google Scholar]
  134. VasconcelosN.G. CrodaJ. SimionattoS. Antibacterial mechanisms of cinnamon and its constituents: A review.Microb. Pathog.201812019820310.1016/j.micpath.2018.04.03629702210
    [Google Scholar]
  135. GuptaP. GuptaS. SharmaM. KumarN. PruthiV. PoluriK.M. Effectiveness of phytoactive molecules on transcriptional expression, biofilm matrix, and cell wall components of Candida glabrata and its clinical isolates.ACS Omega201839122011221410.1021/acsomega.8b0185631459295
    [Google Scholar]
  136. StevensN. AllredK. Antidiabetic potential of volatile cinnamon oil: A review and exploration of mechanisms using in silico molecular docking simulations.Molecules202227385310.3390/molecules2703085335164117
    [Google Scholar]
  137. KhanS.N. KhanS. IqbalJ. KhanR. KhanA.U. Enhanced killing and antibiofilm activity of encapsulated cinnamaldehyde against Candida albicans.Front. Microbiol.20178164110.3389/fmicb.2017.0164128900419
    [Google Scholar]
  138. ShreazS. WaniW.A. BehbehaniJ.M. RajaV. IrshadM. KarchedM. AliI. SiddiqiW.A. HunL.T. Cinnamaldehyde and its derivatives, a novel class of antifungal agents.Fitoterapia201611211613110.1016/j.fitote.2016.05.01627259370
    [Google Scholar]
  139. da Nóbrega AlvesD. MonteiroA.F.M. AndradeP.N. LazariniJ.G. AbílioG.M.F. GuerraF.Q.S. ScottiM.T. ScottiL. RosalenP.L. CastroR.D. Docking prediction, antifungal activity, anti-biofilm effects on Candida spp., and toxicity against human cells of cinnamaldehyde.Molecules20202524596910.3390/molecules2524596933339401
    [Google Scholar]
  140. de AraújoM.R.C. MacielP.P. CastellanoL.R.C. BonanP.R.F. AlvesD.N. de MedeirosA.C.D. de CastroR.D. Efficacy of essential oil of cinnamon for the treatment of oral candidiasis: A randomized trial.Spec. Care Dentist.202141334935710.1111/scd.1257033475184
    [Google Scholar]
  141. VeilleuxM.P. GrenierD. Determination of the effects of cinnamon bark fractions on Candida albicans and oral epithelial cells.BMC Complement. Altern. Med.201919130310.1186/s12906‑019‑2730‑231703673
    [Google Scholar]
  142. AlmeidaL.F.D. PaulaJ.F. AlmeidaR.V.D. WilliamsD.W. HeblingJ. CavalcantiY.W. Efficacy of citronella and cinnamon essential oils on Candida albicans biofilms.Acta Odontol. Scand.201674539339810.3109/00016357.2016.116626127098375
    [Google Scholar]
  143. MishraP. GuptaP. PruthiV. Cinnamaldehyde incorporated gellan/PVA electrospun nanofibers for eradicating Candida biofilm.Mater. Sci. Eng. C202111911145010.1016/j.msec.2020.11145033321588
    [Google Scholar]
  144. IyerM.S. GujjariA.K. ParanthamanS. Abu LilaA.S. AlmansourK. AlshammariF. KhafagyE.S. ArabH.H. GowdaD.V. Development and evaluation of clove and cinnamon supercritical fluid extracts-loaded emulgel for antifungal activity in denture stomatitis.Gels2022813310.3390/gels801003335049568
    [Google Scholar]
  145. RangelM.L. AquinoS.G. LimaJ.M. CastellanoL.R. CastroR.D. Aquino SG de, Lima JM de, Castellano LR, Castro RD de. in vitro effect of Cinnamomum zeylanicum Blume essential oil on Candida spp. involved in oral infections.Evid. Based Complement. Alternat. Med.201820181404501310.1155/2018/404501330416530
    [Google Scholar]
  146. ChoonharuangdejS. SrithavajT. ThummawanitS. Fungicidal and inhibitory efficacy of cinnamon and lemongrass essential oils on Candida albicans biofilm established on acrylic resin: An in vitro study.J. Prosthet. Dent.20211254707.e1707.e610.1016/j.prosdent.2020.12.01733468317
    [Google Scholar]
  147. de AlmeidaM.A.L. BatistaA.U.D. de AraújoM.R.C. de AlmeidaV.F.D.S. BonanP.R.F. Nóbrega AlvesD. da CostaT.K.V.L. NóbregaD.F. de CastroR.D. Cinnamaldehyde is a biologically active compound for the disinfection of removable denture: Blinded randomized crossover clinical study.BMC Oral Health202020122310.1186/s12903‑020‑01212‑532807162
    [Google Scholar]
  148. DidehdarM. CheginiZ. TabaeianS.P. RazaviS. ShariatiA. Cinnamomum: The new therapeutic agents for inhibition of bacterial and fungal biofilm-associated infection.Front. Cell. Infect. Microbiol.20221293062410.3389/fcimb.2022.93062435899044
    [Google Scholar]
  149. ZhangC. FanL. FanS. WangJ. LuoT. TangY. ChenZ. YuL. Cinnamomum cassia Presl: A review of its traditional uses, phytochemistry, pharmacology and toxicology.Molecules20192419347310.3390/molecules2419347331557828
    [Google Scholar]
  150. YanakievS. Effects of cinnamon (Cinnamomum spp.) in dentistry: A review.Molecules20202518418410.3390/molecules2518418432932678
    [Google Scholar]
  151. LaiD.J. ChuaL. ChongJ. ChongP. TegginamaniA. Bin ZamzuriA. Antibacterial properties of cinnamon: A concise review.Indian J. Oral Health Res.202171710.4103/ijohr.ijohr_2_21
    [Google Scholar]
  152. JeongY.J. KimH.E. HanS.J. ChoiJ.S. Antibacterial and antibiofilm activities of cinnamon essential oil nanoemulsion against multi-species oral biofilms.Sci. Rep.2021111591110.1038/s41598‑021‑85375‑333723345
    [Google Scholar]
  153. SangalA. RattanS. MauryaM.R. SadasivuniK.K. Novel formulation for co-delivery of cinnamon-and cumin-loaded polymeric nanoparticles to enhance their oral bioavailability.3 Biotech20231326310.1007/s13205‑023‑03480‑836718410
    [Google Scholar]
  154. RibeiroJ.S. BordiniE.A.F. PereiraG.K.R. PolasaniR.R. SquarizeC.H. KantorskiK.Z. ValandroL.F. BottinoM.C. Novel cinnamon-laden nanofibers as a potential antifungal coating for poly(methyl methacrylate) denture base materials.Clin. Oral Investig.20222643697370610.1007/s00784‑021‑04341‑535028732
    [Google Scholar]
  155. CastroR.D. LimaE.O. Anti-Candida activity and chemical composition of Cinnamomum zeylanicum blume essential oil.Braz. Arch. Biol. Technol.201356574975510.1590/S1516‑89132013000500005
    [Google Scholar]
  156. OliveiraJ.A. da SilvaI.C.G. TrindadeL.A. LimaE.O. CarloH.L. CavalcantiA.L. de CastroR.D. Safety and tolerability of essential oil from Cinnamomum zeylanicum blume leaves with action on oral candidosis and its effect on the physical properties of the acrylic resin.Evid. Based Complement. Alternat. Med.20142014132567010.1155/2014/32567025574178
    [Google Scholar]
  157. da Nóbrega AlvesD. MeloA.K.V. AlvesA.F. de AraújoM.R.C. da Silva AraújoR. de CastroR.D. Safety and tolerability of cinnamaldehyde in orabase for oral candidiasis treatment: Phase I clinical trial.Clin. Oral Investig.20222674825483310.1007/s00784‑022‑04450‑935305150
    [Google Scholar]
  158. MolaniaT. Malekzadeh ShafaroudiA. SaeediM. MoosazadehM. ValipourF. RostamkalaeiS.S. SalehabadiN. SalehiM. Evaluation of cinnamaldehyde mucoadhesive patches on minor recurrent aphthous stomatitis: A randomized, double-blind, placebo-controlled clinical trial.BMC Oral Health202222123510.1186/s12903‑022‑02248‑535701773
    [Google Scholar]
  159. TunçM.T. Kocaİ. Ohmic heating assisted hydrodistillation of clove essential oil.Ind. Crops Prod.201914111176310.1016/j.indcrop.2019.111763
    [Google Scholar]
  160. SingletaryK. Clove: Overview of potential health benefits.Nutr. Today201449420722410.1097/NT.0000000000000036
    [Google Scholar]
  161. YadavD.J. TangadeD.P. JainD.A. AgrahariD.P. ChaudharyD.V. Dental herbs: Ethomedicinal plants in dentistry.Int. J. Appl. Dent. Sci.20217311511710.22271/oral.2021.v7.i3b.1290
    [Google Scholar]
  162. Haro-GonzálezJ.N. Castillo-HerreraG.A. Martínez-VelázquezM. Espinosa-AndrewsH. Clove essential oil (Syzygium aromaticum L. Myrtaceae): Extraction, chemical composition, food applications, and essential bioactivity for human health.Molecules20212621638710.3390/molecules2621638734770801
    [Google Scholar]
  163. KačániováM. GalovičováL. BorotováP. ValkováV. ĎúranováH. KowalczewskiP.Ł. Said-Al AhlH.A.H. HikalW.M. VukicM. SavitskayaT. GrinshpanD. VukovicN.L. Chemical composition, in vitro and in situ antimicrobial and antibiofilm activities of Syzygium aromaticum (Clove) essential oil.Plants20211010218510.3390/plants1010218534685994
    [Google Scholar]
  164. BoughendjiouaH. 2018Essential oil composition of Syzygium aromaticum (L.).Int. Res. J. Pharm. Med. Sci.132628
    [Google Scholar]
  165. HadidiM. PouraminS. AdinepourF. HaghaniS. JafariS.M. Chitosan nanoparticles loaded with clove essential oil: Characterization, antioxidant and antibacterial activities.Carbohydr. Polym.202023611607510.1016/j.carbpol.2020.11607532172888
    [Google Scholar]
  166. KaurK. KaushalS. RaniR. Chemical composition, antioxidant and antifungal potential of clove (Syzygium aromaticum) essential oil, its major compound and its derivatives.J. Essent. Oil-Bear. Plants20192251195121710.1080/0972060X.2019.1688689
    [Google Scholar]
  167. MartinsR.M. FariasM.D.A. NedelF. de PereiraC.M.P. LencinaC. LundR.G. Antimicrobial and cytotoxic evaluation of eugenol derivatives.Med. Chem. Res.201625102360236710.1007/s00044‑016‑1682‑z
    [Google Scholar]
  168. SalamR. SarkerB.K. HaqM.R. KhokonJ.U. Antimicrobial activity of medicinal plant for oral health and hygiene.Int. J. Nat. Soc. Sci.121122015
    [Google Scholar]
  169. UlanowskaM. OlasB. Biological properties and prospects for the application of eugenol - A review.Int. J. Mol. Sci.2021227367110.3390/ijms2207367133916044
    [Google Scholar]
  170. NazzaroF. FratianniF. De MartinoL. CoppolaR. De FeoV. Effect of essential oils on pathogenic bacteria.Pharmaceuticals (Basel)20136121451147410.3390/ph612145124287491
    [Google Scholar]
  171. MarcheseA. BarbieriR. CoppoE. OrhanI.E. DagliaM. NabaviS.F. IzadiM. AbdollahiM. NabaviS.M. AjamiM. Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint.Crit. Rev. Microbiol.201743666868910.1080/1040841X.2017.129522528346030
    [Google Scholar]
  172. BabuA.J. SundariA.R. IndumathiJ. MSravanthiR.V.N.S. SravanthiM. Study on the antimicrobial activity and minimum inhibitory concentration of essential oils of spices.Vet. World20114731110.5455/vetworld.4.311
    [Google Scholar]
  173. Soraggi BattaginT. Nicolas CaccalanoM. DilarriG. Felipe Cavicchia ZamunerC. AlleoniN. Leonardo SaldanhaL. BacciM. FerreiraH. Syzygium aromaticum (clove) essential oil: An alternative for the sanitization of citrus fruit in packinghouses.J. Food Process. Preserv.2021459e1549610.1111/jfpp.15496
    [Google Scholar]
  174. AmenA. HassanE. ElgendyS. BayoumiS. Abdel HameedM. Abd-AlrahmanE. The effect of Essential oils of selected plants on clinical isolates of Candida Species growth, transition and biofilm formation.Bull. Pharma. Sci.s Assiut Univ.20234621209123210.21608/bfsa.2023.327651
    [Google Scholar]
  175. FadilahF. YanuarA. ArsiantiA. AndrajatiR. Phenylpropanoids, eugenol scaffold, and its derivatives as anticancer.Asian J. Pharm. Clin. Res.2017103414610.22159/ajpcr.2017.v10i3.16071
    [Google Scholar]
  176. ThapaD. RichardsonA.J. ZweifelB. WallaceR.J. GratzS.W. Genoprotective effects of essential oil compounds against oxidative and methylated DNA damage in human colon cancer cells.J. Food Sci.20198471979198510.1111/1750‑3841.1466531206673
    [Google Scholar]
  177. Nogueira SobrinhoA.C. MoraisS.M. SouzaE.B. AlbuquerqueM.R.J.R. SantosH.S. CavalcanteC.S.P. SousaH.A. FontenelleR.O.S. Antifungal and antioxidant activities of Vernonia Chalybaea Mart. ex DC. Essential oil and their major constituent β-caryophyllene.Braz. Arch. Biol. Technol.202063e2019017710.1590/1678‑4324‑2020190177
    [Google Scholar]
  178. DahhamS.S. TabanaY.M. AhamedM.B.K. MajidA. In vivo anti-inflammatory activity of β-caryophyllene, evaluated by molecular imaging.Mol. Med. Chem.1e1001201510.14800/mmc.1001
    [Google Scholar]
  179. AliM.M. RamadanM.M. GhanemK.Z. El-GhorabeA.H. Essential oils from Egyptian aromatic plants as antioxidant and novel anticancer agents in human cancer cell lines.Grasas Aceites2015662e08010.3989/gya.0955142
    [Google Scholar]
  180. BanerjeeK. MadhyasthaH. Sandur VR. N TM. NT. ThiagarajanP. Anti-inflammatory and wound healing potential of a clove oil emulsion.Colloids Surf. B Biointerfaces202019311110210.1016/j.colsurfb.2020.11110232442923
    [Google Scholar]
  181. LaneT. AnantpadmaM. FreundlichJ.S. DaveyR.A. MadridP.B. EkinsS. The natural product eugenol is an inhibitor of the ebola virus in vitro.Pharm. Res.201936710410.1007/s11095‑019‑2629‑031101988
    [Google Scholar]
  182. DaiJ.P. ZhaoX.F. ZengJ. WanQ.Y. YangJ.C. LiW.Z. ChenX.X. WangG.F. LiK.S. Drug screening for autophagy inhibitors based on the dissociation of Beclin1-Bcl2 complex using BiFC technique and mechanism of eugenol on anti-influenza A virus activity.PLoS One201384e6102610.1371/journal.pone.006102623613775
    [Google Scholar]
  183. AboubakrH.A. NauertzA. LuongN.T. AgrawalS. El-SohaimyS.A.A. YoussefM.M. GoyalS.M. in vitro antiviral activity of clove and ginger aqueous extracts against feline calicivirus, a surrogate for human norovirus.J. Food Prot.20167961001101210.4315/0362‑028X.JFP‑15‑59327296605
    [Google Scholar]
  184. NattoZ.S. Herbs and oral health.Oral Health Care: An Important Issue of the Modern Society ArdeleanL.C. RusuL.C. 102022IntechOpenCroatia30131610.5772/intechopen.103715
    [Google Scholar]
  185. Zanul AbidinZ. Mohd SallehN. Himratul-AznitaW.H. AhmadS.F. LimG.S. Raja MohdN. DziaruddinN. Antifungal effects of eugenol on Candida albicans adherence to denture polymers.PeerJ202311e1575010.7717/peerj.1575037601266
    [Google Scholar]
  186. NuñezL. D’ AquinoM. Microbicide activity of clove essential oil (Eugenia caryophyllata).Braz. J. Microbiol.20124341255126010.1590/S1517‑8382201200040000324031950
    [Google Scholar]
  187. PramodK. AnsariS.H. AliJ. Eugenol: A natural compound with versatile pharmacological actions.Nat. Prod. Commun.20105121999200610.1177/1934578X1000501236
    [Google Scholar]
  188. DagliN. DagliR. MahmoudR. BaroudiK. Essential oils, their therapeutic properties, and implication in dentistry: A review.J. Int. Soc. Prev. Community Dent.20155533534010.4103/2231‑0762.16593326539382
    [Google Scholar]
  189. MithH. DuréR. DelcenserieV. ZhiriA. DaubeG. ClinquartA. Antimicrobial activities of commercial essential oils and their components against food‐borne pathogens and food spoilage bacteria.Food Sci. Nutr.20142440341610.1002/fsn3.11625473498
    [Google Scholar]
  190. BhatV. SharmaS.M. ShettyV. ShastryC.S. RaoV. ShenoyS.M. Screening of selected plant essential oils for their antifungal activity against Candida species isolated from denture stomatitis patients.J. Health All. Sci.414651201410.1055/s‑0040‑1703730
    [Google Scholar]
  191. PatelH. PamechaS. ChadhaM. MuthuvigneshJ. HathiV. JoshiA. 2022A comparative evaluation of antifungal efficacy of clove oil, 2% gluteraldehyde, and 5% sodium hypoclorite is infectants and its effect on dimensional accuracy of addition silicone impression material.J. Res. Adv. Dent.1341410.53064/jrad.2022.13.4.228
    [Google Scholar]
  192. NallaswamyV.D. RoyA. RajeshkumarS. LakshmiT. EzhilarasanD. SubhaM. Effervescent denture cleansing granules using clove oil and analysis of its in vitro antimicrobial activity.Indian J. Public Health Res. Dev.20191011368710.5958/0976‑5506.2019.04162.7
    [Google Scholar]
  193. PattanachaipuvanonP. RatanajanchaiM. Viscoelasticity at initial setting and gelation time of a short-term soft liner incorporated with clove, star anise, and kaffir lime essential oils.Mahidol Dent. J.2021412122131
    [Google Scholar]
  194. FareenH.F. GeethaR.V. Evaluation of antimicrobial activity of commercially available herbal toothpaste-An in vitro study.Drug Invent. Today2018103214
    [Google Scholar]
  195. DidehdarM. CheginiZ. ShariatiA. Eugenol: A novel therapeutic agent for the inhibition of Candida species infection.Front. Pharmacol.20221387212710.3389/fphar.2022.87212736016558
    [Google Scholar]
  196. KhanF. TabassumN. JeongG.J. JungW.K. KimY.M. Inhibition of mixed biofilms of Candida albicans and Staphylococcus aureus by β-caryophyllene-gold nanoparticles.Antibiotics (Basel)202312472610.3390/antibiotics1204072637107087
    [Google Scholar]
  197. TonglairoumP. NgawhirunpatT. RojanarataT. KaomongkolgitR. OpanasopitP. Fabrication and evaluation of nanostructured herbal oil/hydroxypropyl-β-cyclodextrin/polyvinylpyrrolidone mats for denture stomatitis prevention and treatment.AAPS PharmSciTech20161761441144910.1208/s12249‑016‑0478‑226821915
    [Google Scholar]
  198. HameedM. RasulA. WaqasM. SaadullahM. AslamN. AbbasG. LatifS. AfzalH. InamS. Akhtar ShahP. Formulation and evaluation of a clove oil-encapsulated nanofiber formulation for effective wound-healing.Molecules2021269249110.3390/molecules2609249133923335
    [Google Scholar]
  199. AkturkA. Enrichment of cellulose acetate nanofibrous scaffolds with retinyl palmitate and clove essential oil for wound healing applications.ACS Omega2023865553556010.1021/acsomega.2c0688136816664
    [Google Scholar]
  200. ParhamS. Zargar KharaziA. Cellulosic textile/clove nanocomposite as an antimicrobial wound dressing: In vitro and in vivo study.Colloids Surf. B Biointerfaces202221711265910.1016/j.colsurfb.2022.11265935763896
    [Google Scholar]
  201. GuptaP. MishraP. MehraL. RastogiK. PrasadR. MittalG. PoluriK.M. Eugenol-acacia gum-based bifunctional nanofibers as a potent antifungal transdermal substitute.Nanomedicine (Lond.)202116252269228910.2217/nnm‑2021‑027434569268
    [Google Scholar]
  202. Betzler de Oliveira de SiqueiraL. MatosA.P.S. CardosoV.S. VillanovaJ.C.O. GuimarãesB.C.L.R. dos SantosE.P. Beatriz VermelhoA. Santos-OliveiraR. Ricci JuniorE. Clove oil nanoemulsion showed potent inhibitory effect against Candida spp.Nanotechnology2019304242510110.1088/1361‑6528/ab30c131290755
    [Google Scholar]
  203. PriyadarsiniK. The chemistry of curcumin: From extraction to therapeutic agent.Molecules20141912200912011210.3390/molecules19122009125470276
    [Google Scholar]
  204. JamilS.N.H. AliA.H. FerozS.R. LamS.D. AgustarH.K. Mohd Abd RazakM.R. LatipJ. Curcumin and its derivatives as potential antimalarial and anti-inflammatory agents: A review on structure–activity relationship and mechanism of action.Pharmaceuticals (Basel)202316460910.3390/ph1604060937111366
    [Google Scholar]
  205. JurenkaJ.S. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: A review of preclinical and clinical research.Altern. Med. Rev.200914214115319594223
    [Google Scholar]
  206. QadirM.I. NaqviS.T. MuhammadS.A. QadirM. NaqviS.T. Curcumin: A polyphenol with molecular targets for cancer control.Asian Pac. J. Cancer Prev.20161762735273927356682
    [Google Scholar]
  207. Curcumin.2024Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Curcumin
  208. SilvaA.C. SantosP.D.F. SilvaJ.T.P. LeimannF.V. BrachtL. GonçalvesO.H. Impact of curcumin nanoformulation on its antimicrobial activity.Trends Food Sci. Technol.201872748210.1016/j.tifs.2017.12.004
    [Google Scholar]
  209. ChenW.F. DengS.L. ZhouB. YangL. LiuZ.L. Curcumin and its analogues as potent inhibitors of low density lipoprotein oxidation: H-atom abstraction from the phenolic groups and possible involvement of the 4-hydroxy-3-methoxyphenyl groups.Free Radic. Biol. Med.200640352653510.1016/j.freeradbiomed.2005.09.00816443168
    [Google Scholar]
  210. SomparnP. PhisalaphongC. NakornchaiS. UnchernS. MoralesN.P. Comparative antioxidant activities of curcumin and its demethoxy and hydrogenated derivatives.Biol. Pharm. Bull.2007301747810.1248/bpb.30.7417202663
    [Google Scholar]
  211. XuG. WeiD. WangJ. JiangB. WangM. XueX. ZhouS. WuB. JiangM. Crystal structure, optical properties and biological imaging of two curcumin derivatives.Dyes Pigments201410131231710.1016/j.dyepig.2013.09.034
    [Google Scholar]
  212. MishraS. NarainU. MishraR. MisraK. Design, development and synthesis of mixed bioconjugates of piperic acid–glycine, curcumin–glycine/alanine and curcumin–glycine–piperic acid and their antibacterial and antifungal properties.Bioorg. Med. Chem.20051351477148610.1016/j.bmc.2004.12.05715698763
    [Google Scholar]
  213. HettiarachchiS.S. PereraY. DunuweeraS.P. DunuweeraA.N. RajapakseS. RajapakseR.M.G. Comparison of antibacterial activity of nanocurcumin with bulk curcumin.ACS Omega2022750464944650010.1021/acsomega.2c0529336570282
    [Google Scholar]
  214. ZhengD. HuangC. HuangH. ZhaoY. KhanM.R.U. ZhaoH. HuangL. Antibacterial mechanism of curcumin: A review.Chem. Biodivers.2020178e200017110.1002/cbdv.20200017132533635
    [Google Scholar]
  215. AnthwalA. ThakurB.K. RawatM.S. RawatD.S. TyagiA.K. AggarwalB.B. Synthesis, characterization and in vitro anticancer activity of C-5 curcumin analogues with potential to inhibit TNF-α-induced NF-κB activation.BioMed Res. Int.20142014152416125157362
    [Google Scholar]
  216. AggarwalB.B. PrasadS. ReuterS. KannappanR. YadevV.R. ParkB. KimJ.H. GuptaS.C. PhromnoiK. SundaramC. PrasadS. ChaturvediM.M. SungB. Identification of novel anti-inflammatory agents from Ayurvedic medicine for prevention of chronic diseases: “Reverse pharmacology” and “bedside to bench” approach.Curr. Drug Targets201112111595165310.2174/13894501179810946421561421
    [Google Scholar]
  217. GagliardiS. MorassoC. StivaktakisP. PandiniC. TinelliV. TsatsakisA. ProsperiD. HickeyM. CorsiF. CeredaC. Curcumin formulations and trials: What’s new in neurological diseases.Molecules20202522538910.3390/molecules2522538933217959
    [Google Scholar]
  218. AnandP. ThomasS.G. KunnumakkaraA.B. SundaramC. HarikumarK.B. SungB. TharakanS.T. MisraK. PriyadarsiniI.K. RajasekharanK.N. AggarwalB.B. Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature.Biochem. Pharmacol.200876111590161110.1016/j.bcp.2008.08.00818775680
    [Google Scholar]
  219. HahnY.I. KimS.J. ChoiB.Y. ChoK.C. BanduR. KimK.P. KimD.H. KimW. ParkJ.S. HanB.W. LeeJ. NaH.K. ChaY.N. SurhY.J. Curcumin interacts directly with the Cysteine 259 residue of STAT3 and induces apoptosis in H-Ras transformed human mammary epithelial cells.Sci. Rep.201881640910.1038/s41598‑018‑23840‑229686295
    [Google Scholar]
  220. HsuC.H. ChengA.L. Clinical studies with curcumin.Adv. Exp. Med. Biol.200759547148010.1007/978‑0‑387‑46401‑5_2117569225
    [Google Scholar]
  221. BafirmanB. YulfadinataA. AgusA. AyubiN. Curcumin: Compound in turmeric that has the potential to increase serum interleukin-10 (IL-10) levels after high-intensity exercise.2024523741
    [Google Scholar]
  222. AdamczakA. OżarowskiM. KarpińskiT.M. Curcumin, a natural antimicrobial agent with strain-specific activity.Pharmaceuticals (Basel)202013715310.3390/ph1307015332708619
    [Google Scholar]
  223. MalhotraM. RaiA. MalhotraV. Curcumin in the management of oral potentially malignant disorders.World J. Pharm. Res.20198121
    [Google Scholar]
  224. BrogdenK.A. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?Nat. Rev. Microbiol.20053323825010.1038/nrmicro109815703760
    [Google Scholar]
  225. LeeW. LeeD.G. An antifungal mechanism of curcumin lies in membrane‐targeted action within Candida albicans.IUBMB Life2014661178078510.1002/iub.132625380239
    [Google Scholar]
  226. MartinsC.V.B. da SilvaD.L. NeresA.T.M. MagalhãesT.F.F. WatanabeG.A. ModoloL.V. SabinoA.A. de FátimaA. de ResendeM.A. Curcumin as a promising antifungal of clinical interest.J. Antimicrob. Chemother.200863233733910.1093/jac/dkn48819038979
    [Google Scholar]
  227. LabbanN. TaweelS.M.A. ALRabiahM.A. AlfouzanA.F. AlshiddiI.F. AsseryM.K. Efficacy of Rose Bengal and Curcumin mediated photodynamic therapy for the treatment of denture stomatitis in patients with habitual cigarette smoking: A randomized controlled clinical trial.Photodiagn. Photodyn. Ther.20213510238010.1016/j.pdpdt.2021.10238034087468
    [Google Scholar]
  228. Al-GhamdiA.R.S. KhanamH.M.K. QamarZ. AbdulN.S. ReddyN. VempalliS. NoushadM. AlqahtaniW.M.S. Therapeutic efficacy of adjunctive photodynamic therapy in the treatment of denture stomatitis.Photodiagn. Photodyn. Ther.20234210332610.1016/j.pdpdt.2023.10332636773753
    [Google Scholar]
  229. KhanalL.R. ShresthaA. JoshiK.R. BhochhibhoyaA. Flexural strength of heat cure denture base resin incorporated with curcumin: An in-vitro study.J. Nepalese Prosthodont. Soc.202361131710.3126/jnprossoc.v6i1.58349
    [Google Scholar]
  230. HajifathaliS. LesanS. LotfaliE. Salimi-SabourE. KhatibiM. Investigation of the antifungal effects of curcumin against nystatin-resistant Candida albicans. Dent. Res. J. (Isfahan)20232015010.4103/1735‑3327.37480737304423
    [Google Scholar]
  231. KhamooshiP. PourhajibagherM. SodagarA. BahadorA. AhmadiB. ArabS. Antibacterial properties of an acrylic resin containing curcumin nanoparticles: An in vitro study.J. Dent. Res. Dent. Clin. Dent. Prospect.202216319019510.34172/joddd.2022.03236704184
    [Google Scholar]
  232. TatapudiR. Abdul SamadS.K. ManyamR. DasariD. LakshmiR.V. Efficacy of curcumin in the treatment of denture stomatitis.J. Oral Maxillofac. Pathol.202125228629110.4103/0973‑029X.32512834703123
    [Google Scholar]
  233. VandanaD. PawarS.H. Formulation and evaluation of topical herbal gel containing inclusion complex of curcumin.Asian J. Pharm. Clin. Res.201912919620110.22159/ajpcr.2019.v12i9.34053
    [Google Scholar]
  234. ArefN.S. AbdallahR.M. Curcumin containing soft liner as an alternative treatment modality for oral candidiasis.World J. Dent.202112643544010.5005/jp‑journals‑10015‑1867
    [Google Scholar]
  235. MustafaM.W. UngphaiboonS. PhadoongsombutN. PangsomboonK. ChelaeS. MahattanadulS. Effectiveness of an alcohol-free chitosan-curcuminoid mouthwash compared with chlorhexidine mouthwash in denture stomatitis treatment: A randomized trial.J. Altern. Complement. Med.201925555255810.1089/acm.2018.045930758216
    [Google Scholar]
  236. YamalaN.Y.N. RaghunathV.R.V. Effect of Curcuma longa extract on Candida albicans adhesion to heat cure acrylic resin denture material: An in-vitro study.Int. J. Indigenous Herbs Drugs.2017221823
    [Google Scholar]
  237. BakhshiM. MahboubiA. JaafariM.R. EbrahimiF. TofangchihaM. AlizadehA. Comparative efficacy of 1% curcumin nanomicelle gel and 2% curcumin gel for treatment of recurrent aphthous stomatitis: A double-blind randomized clinical trial.J. Evid. Based Dent. Pract.202222210170810.1016/j.jebdp.2022.10170835718440
    [Google Scholar]
  238. GauthamanJ. GanesanA. Therapeutic evaluation of 5% topical amlexanox paste and 2% curcumin oral gel in the management of recurrent aphthous stomatitis - A randomized clinical trial.J. Indian Acad. Oral Med. Radiol.2022341172110.4103/jiaomr.jiaomr_225_21
    [Google Scholar]
  239. EgbunaC. GuptaE. EzzatS.M. JeevanandamJ. MishraN. AkramM. Aloe species as valuable sources of functional bioactives.Functional Foods and NutraceuticalsSpringerCham EgbunaC. Dable TupasG. 202033738710.1007/978‑3‑030‑42319‑3_18
    [Google Scholar]
  240. BaruahA. BordoloiM. Deka BaruahH.P. Aloe vera: A multipurpose industrial crop.Ind. Crops Prod.20169495196310.1016/j.indcrop.2016.08.034
    [Google Scholar]
  241. DagneE. BisratD. ViljoenA. Van WykB.E. Chemistry of Aloe species.Curr. Org. Chem.20004101055107810.2174/1385272003375932
    [Google Scholar]
  242. AhmedF.A. El-BassossyT.A.I. AbdelgawadA.A.M.A. A review: Therapeutic, medicinal and food uses of Aloe vera.Univers. J. Pharm.202386728110.22270/ujpr.v8i6.1045
    [Google Scholar]
  243. EshunK. HeQ. Aloe vera: A valuable ingredient for the food, pharmaceutical and cosmetic industries - A review.Crit. Rev. Food Sci. Nutr.2004442919610.1080/1040869049042469415116756
    [Google Scholar]
  244. NiY. TurnerD. YatesK.M. TizardI. Isolation and characterization of structural components of Aloe vera L. leaf pulp.Int. Immunopharmacol.20044141745175510.1016/j.intimp.2004.07.00615531291
    [Google Scholar]
  245. AvijganM. AvijganM. HakamifardA. RazaviN. An innovation for retarded healing process of a chronic ulcer by Aloe vera gel treatment.J. Nat. Rem.2016162455110.18311/jnr/2016/479
    [Google Scholar]
  246. AnywarG. TugumeP. KakudidiE.K. A review of Aloe species used in traditional medicine in East Africa.S. Afr. J. Bot.20221471027104110.1016/j.sajb.2021.07.036
    [Google Scholar]
  247. NeenaI. GaneshE. PoornimaP. KorishettarR. An ancient herb aloevera in dentistry: A review.J. Oral Res. Rev.201571253010.4103/2249‑4987.160174
    [Google Scholar]
  248. MaanA.A. NazirA. KhanM.K.I. AhmadT. ZiaR. MuridM. AbrarM. The therapeutic properties and applications of Aloe vera: A review.J. Herb. Med.20181211010.1016/j.hermed.2018.01.002
    [Google Scholar]
  249. DanishP. AliQ. HafeezM.M. MalikA. Antifungal and antibacterial activity of aloe vera plant extract.Biol. Clin. Sci. Res. J.2020202011810.54112/bcsrj.v2020i1.4
    [Google Scholar]
  250. DongX. ZengY. LiuY. YouL. YinX. FuJ. NiJ. Aloe‐emodin: A review of its pharmacology, toxicity, and pharmacokinetics.Phytother. Res.202034227028110.1002/ptr.653231680350
    [Google Scholar]
  251. FarmanH. FayyazS. JabeenH. MuhammadN. KhanM.A. LiaqatS. Aloe vera in dentistry: A review.Biom. Lett.2020611722
    [Google Scholar]
  252. Nejatzadeh-BarandoziF. Antibacterial activities and antioxidant capacity of Aloe vera.Org. Med. Chem. Lett.201331510.1186/2191‑2858‑3‑523870710
    [Google Scholar]
  253. Minjares-FuentesR. FemeniaA. Comas-SerraF. Rodríguez-GonzálezV.M. Compositional and structural features of the main bioactive polysaccharides present in the aloe vera plant.J. AOAC Int.201810161711171910.5740/jaoacint.18‑011929895349
    [Google Scholar]
  254. Kavita Rai Nandan N NandanN. Aloe vera – Nature’s power.J. Ayurveda Integr. Med.201612434910.21760/jaims.v1i2.3664
    [Google Scholar]
  255. KumarR. SinghA.K. GuptaA. BishayeeA. PandeyA.K. Therapeutic potential of Aloe vera - A miracle gift of nature.Phytomedicine20196015299610.1016/j.phymed.2019.15299631272819
    [Google Scholar]
  256. SadeghiS. DavoodvandiA. PourhanifehM.H. SharifiN. ArefNezhadR. SahebnasaghR. MoghadamS.A. SahebkarA. MirzaeiH. Anti-cancer effects of cinnamon: Insights into its apoptosis effects.Eur. J. Med. Chem.201917813114010.1016/j.ejmech.2019.05.06731195168
    [Google Scholar]
  257. ManipalS. ShireenF. PrabuD. Anti-fungal activity of Aloe vera: in vitro study.SRM J. Res. Dent. Sci.2015629210.4103/0976‑433X.155464
    [Google Scholar]
  258. ChantarawaratitP. SangvanichP. BanlunaraW. SoontornvipartK. ThunyakitpisalP. Acemannan sponges stimulate alveolar bone, cementum and periodontal ligament regeneration in a canine class II furcation defect model.J. Periodontal Res.201449216417810.1111/jre.1209023710575
    [Google Scholar]
  259. ChoonhakarnC. BusaracomeP. SripanidkulchaiB. SarakarnP. The efficacy of aloe vera gel in the treatment of oral lichen planus: A randomized controlled trial.Br. J. Dermatol.2008158357357710.1111/j.1365‑2133.2007.08370.x18093246
    [Google Scholar]
  260. RajputS.S. SoniK.K. SaxenaR.C. Pharmacology and phytochemistry of saponin isolated from Aloe vera for wound healing activity.Asian J. Chem.200921210291032
    [Google Scholar]
  261. SalehiB. Lopez-JornetP. Pons-Fuster LópezE. CalinaD. Sharifi-RadM. Ramírez-AlarcónK. FormanK. FernándezM. MartorellM. SetzerW. MartinsN. RodriguesC. Sharifi-RadJ. Plant-derived bioactives in oral mucosal lesions: A key emphasis to curcumin, lycopene, chamomile, aloe vera, green tea and coffee properties.Biomolecules20199310610.3390/biom903010630884918
    [Google Scholar]
  262. WahediH.M. JeongM. ChaeJ.K. DoS.G. YoonH. KimS.Y. Aloesin from Aloe vera accelerates skin wound healing by modulating MAPK/Rho and Smad signaling pathways in vitro and in vivo.Phytomedicine201728192610.1016/j.phymed.2017.02.00528478809
    [Google Scholar]
  263. YagiA. KabashA. OkamuraN. HaraguchiH. MoustafaS.M. KhalifaT.I. Antioxidant, free radical scavenging and anti-inflammatory effects of aloesin derivatives in Aloe vera.Planta Med.2002681195796010.1055/s‑2002‑3566612451482
    [Google Scholar]
  264. HekmatpouD. MehrabiF. RahzaniK. AminiyanA. The effect of aloe vera clinical trials on prevention and healing of skin wound: A systematic review.Iran. J. Med. Sci.20194411930666070
    [Google Scholar]
  265. GirohV. HebbaleM. MhapuskarA. HiremuttD. AgarwalP. Efficacy of aloe vera and triamcinolone acetonide 0.1% in recurrent aphthous stomatitis: A preliminary comparative study.J. Indian Acad. Oral Med. Radiol.2019311455010.4103/jiaomr.jiaomr_203_18
    [Google Scholar]
  266. HudwekarA. BeldarA. MurkuteS. LendheyS. ThamkeM. Aloe vera on wound healing after periodontal flap surgery in chronic periodontitis patient: A randomized control trial.J. Oral Res. Rev.2019112727610.4103/jorr.jorr_14_19
    [Google Scholar]
  267. GetahunT. SharmaV. GuptaN. Chemical composition and biological activity of essential oils from Aloe debrana roots.J. Essent. Oil-Bear. Plants202023349350210.1080/0972060X.2020.1788996
    [Google Scholar]
  268. ShiraliS. BarariA. HosseiniS.A. KhodadiE. Effects of six weeks endurance training and aloe vera supplementation on COX-2 and VEGF levels in mice with breast cancer.Asian Pac. J. Cancer Prev.2017181313628240006
    [Google Scholar]
  269. TrybusW. KrólT. TrybusE. StachurskaA. Kopacz-BednarskaA. KrólG. Induction of mitotic catastrophe in human cervical cancer cells after administration of aloe-emodin.Anticancer Res.20183842037204429599321
    [Google Scholar]
  270. TsengH.S. WangY.F. TzengY.M. ChenD.R. LiaoY.F. ChiuH.Y. HsiehW.T. Aloe-emodin enhances tamoxifen cytotoxicity by suppressing Ras/ERK and PI3K/mTOR in breast cancer cells.Am. J. Chin. Med.201745233735010.1142/S0192415X1750021528231748
    [Google Scholar]
  271. ChenQ. TianS. ZhuJ. LiK.T. YuT.H. YuL.H. Exploring a novel target treatment on breast cancer: Aloe-emodin mediated photodynamic therapy induced cell apoptosis and inhibited cell metastasis.Anticancer Agents Med. Chem.201616676377010.2174/1871520615666150821093323
    [Google Scholar]
  272. LuoJ. YuanY. ChangP. LiD. LiuZ. QuY. Combination of aloe-emodin with radiation enhances radiation effects and improves differentiation in human cervical cancer cells.Mol. Med. Rep.201410273173610.3892/mmr.2014.231824920336
    [Google Scholar]
  273. KimK. ChungM.H. ParkS. ChaJ. BaekJ.H. LeeS.Y. ChoiS.Y. ER stress attenuation by Aloe-derived polysaccharides in the protection of pancreatic β-cells from free fatty acid-induced lipotoxicity.Biochem. Biophys. Res. Commun.2018500379780310.1016/j.bbrc.2018.04.16229684344
    [Google Scholar]
  274. Alinejad-MofradS. FoadoddiniM. SaadatjooS.A. ShayestehM. Improvement of glucose and lipid profile status with Aloe vera in pre-diabetic subjects: A randomized controlled-trial.J. Diabetes Metab. Disord.20151412210.1186/s40200‑015‑0137‑225883909
    [Google Scholar]
  275. RezazadehF. MoshaveriniaM. MotamedifarM. AlyaseriM. Assessment of anti HSV-1 activity of Aloe vera gel extract: An in vitro study.J. Dent. (Shiraz)2016171495426966709
    [Google Scholar]
  276. SunZ. YuC. WangW. YuG. ZhangT. ZhangL. ZhangJ. WeiK. Aloe polysaccharides inhibit influenza A virus infection - A promising natural anti-flu drug.Front. Microbiol.20189233810.3389/fmicb.2018.0233830319596
    [Google Scholar]
  277. MemonM.R. MemonH. ShoroM. BhurgriH. IssraniR. IqbalA. Effectiveness of chitosan versus natural Aloe vera on Candida adherence in denture soft lining material.Scientifica (Cairo)20249918914202410.1155/2024/9918914
    [Google Scholar]
  278. MosaddadS.A. HussainA. TebyaniyanH. Green alternatives as antimicrobial agents in mitigating periodontal diseases: A Narrative Review.Microorganisms2023115126910.3390/microorganisms1105126937317243
    [Google Scholar]
  279. MallombassangA.T.B. AmiruddinM. AsmahN. HattaM. Effect of Aloe vera extract in inhibit of Candida albicans on cured acrylic resin plates.J. Syiah Kuala Dent. Soc.20248215716110.24815/jds.v8i2.36546
    [Google Scholar]
  280. ShettyP. HegdeV. GomesL. Anticandidal efficacy of denture cleansing tablet, Triphala, Aloe vera, and Cashew leaf on complete dentures of institutionalized elderly.J. Ayurveda Integr. Med.201451111410.4103/0975‑9476.12884724812470
    [Google Scholar]
  281. NairC. OjahP. LuniyalC. AstekarM. PalA. ChopraM. Anti candidal efficacy of commercially available triphala, neem, denture cleanser and natural aloevera leaf on heat polymerized acrylic resin.J. Indian Prosthodont. Soc.202121216717210.4103/jips.jips_599_2033938866
    [Google Scholar]
  282. FarhoodI.K. PharmH.S. NabeelF. Al-ansaryH. Anticandedal effect action of different concentrations of aglycon fraction of anthroquinon (monoanathron) isolated from Aloe vera on heat cure acrylic resins.Mustansiria Dent. J.2019161778810.32828/mdj.v16i1.1027
    [Google Scholar]
  283. KanliözM. EKİCİ U. The effects of using liposomal bupivacaine and aloe vera cream after haemorrhoidectomy on postoperative pain, need for analgesics, hospitalisation period and return to work and social life.Türk Kolon ve Rektum Hastalıkları Dergisi.2020303184190
    [Google Scholar]
  284. El FawalG.F. OmerA.M. TamerT.M. Evaluation of antimicrobial and antioxidant activities for cellulose acetate films incorporated with Rosemary and Aloe Vera essential oils.J. Food Sci. Technol.20195631510151810.1007/s13197‑019‑03642‑830956331
    [Google Scholar]
  285. DonkorA.M. DonkorM.N. KuubabongnaaN. Evaluation of anti-infective potencies of formulated aloin A ointment and aloin A isolated from Aloe barbadensis Miller.BMC Chem.2020141810.1186/s13065‑020‑0659‑732047877
    [Google Scholar]
  286. ArsèneM.M.J. ViktorovnaP.I. AllaM. MariyaM. NikolaevitchS.A. DavaresA.K.L. YurievnaM.E. RehailiaM. GabinA.A. AlekseevnaK.A. VyacheslavovnaY.N. VladimirovnaZ.A. SvetlanaO. MilanaD. Antifungal activity of silver nanoparticles prepared using Aloe vera extract against Candida albicans. Vet. World2023161182610.14202/vetworld.2023.18‑2636855352
    [Google Scholar]
  287. FarahmandA. SayarF. RezazadehM. Clinical efficacy of Aloe vera toothpaste on periodontal parameters of patients with gingivitis - A randomized, controlled, single-masked clinical trial.J. Contemp. Dent. Pract.202122324224710.5005/jp‑journals‑10024‑305934210922
    [Google Scholar]
  288. De MartinoL. BrunoM. FormisanoC. De FeoV. NapolitanoF. RosselliS. SenatoreF. Chemical composition and antimicrobial activity of the essential oils from two species of Thymus growing wild in southern Italy.Molecules200914114614462410.3390/molecules1411461419924089
    [Google Scholar]
  289. Stahl-BiskupE. VenskutonisR.P. ThymeHandbook of Herbs and Spices2nd edWoodhead Publishing499525201210.1533/9780857095671.499
    [Google Scholar]
  290. Hammoudi HalatD. KrayemM. KhaledS. YounesS. A focused insight into thyme: Biological, chemical, and therapeutic properties of an indigenous Mediterranean herb.Nutrients20221410210410.3390/nu1410210435631245
    [Google Scholar]
  291. SahooC.R. PaidesettyS.K. PadhyR.N. The recent development of thymol derivative as a promising pharmacological scaffold.Drug Dev. Res.20218281079109510.1002/ddr.2184834164828
    [Google Scholar]
  292. Nagoor MeeranM.F. JavedH. Al TaeeH. AzimullahS. OjhaS.K. Pharmacological properties and molecular mechanisms of thymol: Prospects for its therapeutic potential and pharmaceutical development.Front. Pharmacol.2017838010.3389/fphar.2017.0038028694777
    [Google Scholar]
  293. ChauhanD.N. SinghP.R. ChauhanN.S. ShahK. Pharmacological Studies in Natural Oral CareJohn Wiley & Sons2023475610.1002/9781394167197
    [Google Scholar]
  294. KaurR. DarokarM.P. ChattopadhyayS.K. KrishnaV. AhmadA. Synthesis of halogenated derivatives of thymol and their antimicrobial activities.Med. Chem. Res.20142352212221710.1007/s00044‑013‑0809‑8
    [Google Scholar]
  295. LiangH. BaoF. DongX. TanR. ZhangC. LuQ. ChengY. Antibacterial thymol derivatives isolated from Centipeda minima.Molecules20071281606161310.3390/1208160617960076
    [Google Scholar]
  296. VassiliouE. AwoleyeO. DavisA. MishraS. Anti-inflammatory and antimicrobial properties of thyme oil and its main constituents.Int. J. Mol. Sci.2023248693610.3390/ijms2408693637108100
    [Google Scholar]
  297. AltiokD. AltiokE. TihminliogluF. Physical, antibacterial and antioxidant properties of chitosan films incorporated with thyme oil for potential wound healing applications.J. Mater. Sci. Mater. Med.20102172227223610.1007/s10856‑010‑4065‑x20372985
    [Google Scholar]
  298. CoimbraA. MiguelS. RibeiroM. CoutinhoP. SilvaL. DuarteA.P. FerreiraS. Thymus zygis essential oil: Phytochemical characterization, bioactivity evaluation and synergistic effect with antibiotics against Staphylococcus aureus.Antibiotics (Basel)202211214610.3390/antibiotics1102014635203749
    [Google Scholar]
  299. PereiraA.S.P. Banegas-LunaA.J. Peña-GarcíaJ. Pérez-SánchezH. ApostolidesZ. Evaluation of the anti-diabetic activity of some common herbs and spices: Providing new insights with inverse virtual screening.Molecules20192422403010.3390/molecules2422403031703341
    [Google Scholar]
  300. PatilS.M. RamuR. ShirahattiP.S. ShivamalluC. AmachawadiR.G. A systematic review on ethnopharmacology, phytochemistry and pharmacological aspects of Thymus vulgaris Linn.Heliyon202175e0705410.1016/j.heliyon.2021.e0705434041399
    [Google Scholar]
  301. KryvtsovaM.V. SalamonI. KoscovaJ. BuckoD. SpivakM. Antimicrobial, antibiofilm and biochemichal properties of Thymus vulgaris essential oil against clinical isolates of opportunistic infections.Biosyst. Divers.201927327027510.15421/011936
    [Google Scholar]
  302. OzogulY. Kuley BoğaE. AkyolI. DurmusM. UcarY. RegensteinJ.M. KöşkerA.R. Antimicrobial activity of thyme essential oil nanoemulsions on spoilage bacteria of fish and food-borne pathogens.Food Biosci.20203610063510.1016/j.fbio.2020.100635
    [Google Scholar]
  303. BoskovicM. ZdravkovicN. IvanovicJ. JanjicJ. DjordjevicJ. StarcevicM. BalticM.Z. Antimicrobial activity of thyme (Tymus vulgaris) and oregano (Origanum vulgare) essential oils against some food-borne microorganisms.Procedia Food Sci.20155182110.1016/j.profoo.2015.09.005
    [Google Scholar]
  304. HeQ. ZhangL. SongL. ZhangX. LiuD. HuY. GuoM. Inactivation of Staphylococcus aureus using ultrasound in combination with thyme essential oil nanoemulsions and its synergistic mechanism.Lebensm. Wiss. Technol.202114711157410.1016/j.lwt.2021.111574
    [Google Scholar]
  305. MathelaC.S. SinghK.K. GuptaV.K. Synthesis and in vitro antibacterial activity of thymol and carvacrol derivatives.Acta Pol. Pharm.201067437538020635533
    [Google Scholar]
  306. FerreiraL.E. BenincasaB.I. FachinA.L. FrançaS.C. ContiniS.S.H.T. ChagasA.C.S. BeleboniR.O. Thymus vulgaris L. essential oil and its main component thymol: Anthelmintic effects against Haemonchus contortus from sheep.Vet. Parasitol.2016228707610.1016/j.vetpar.2016.08.01127692335
    [Google Scholar]
  307. AliA. Chemical composition, α-glucosidase inhibitory and anticancer activity of essential oil of Thymus vulgaris leaves.J. Essent. Oil-Bear. Plants202124469570310.1080/0972060X.2021.1973575
    [Google Scholar]
  308. Rojas-ArmasJ. Arroyo-AcevedoJ. Ortiz-SnchezM. Palomino-PachecoM. Castro-LunaA. Ramos-CevallosN. Justil-GuerreroH. Hilario-VargasJ. Herrera-CaldernO. Acute and repeated 28-day oral dose toxicity studies of Thymus vulgaris L. essential oil in rats.Toxicol. Res.201935322523210.5487/TR.2019.35.3.22531341551
    [Google Scholar]
  309. SaatkampR.H. SanchesM.P. GambinJ.P.D. AmaralB.R. FariasN.S. CaonT. MüllerC.M.O. ParizeA.L. Development of thymol nanoemulsions with potential application in oral infections.J. Drug Deliv. Sci. Technol.20238710485510.1016/j.jddst.2023.104855
    [Google Scholar]
  310. HegdeV. NamalaB.B. Comparative evaluation of the effect of plant extract, Thymus vulgaris and commercially available denture cleanser on the flexural strength and surface roughness of denture base resin.J. Indian Prosthodont. Soc.201919326126510.4103/jips.jips_141_1931462866
    [Google Scholar]
  311. mohamedS. elddamony mohamed Flexural strength of three different denture base materials after immersion in a thyme extract and a chemical cleanser: An in vitro comparative study.Egypt. Dent. J.202369150551310.21608/edj.2022.160262.2239
    [Google Scholar]
  312. AnjumR. DhadedS. JoshiS. SajjanC. KoninP. ReddyY. Effect of plant extract denture cleansing on heat-cured acrylic denture base resin: An in vitro study.J. Indian Prosthodont. Soc.201717440140510.4103/jips.jips_97_1729249885
    [Google Scholar]
  313. SharifzadehA. ShokriH. KatiraeeF. Anti-adherence and anti-fungal abilities of thymol and carvacrol against candida species isolated from patients with oral candidiasis in comparison with fluconazole and voriconazole.Jundishapur J. Nat. Pharm. Prod.2021161e6500510.5812/jjnpp.65005
    [Google Scholar]
  314. ShresthaA. RimalJ. RaoA. SequeiraP.S. DoshiD. BhatG.K. in vitro antifungal effect of mouth rinses containing chlorhexidine and thymol.J. Dent. Sci.2011611510.1016/j.jds.2011.02.001
    [Google Scholar]
  315. SalehiB. MishraA.P. ShuklaI. Sharifi-RadM. ContrerasM.M. Segura-CarreteroA. FathiH. NasrabadiN.N. KobarfardF. Sharifi-RadJ. Thymol, thyme, and other plant sources: Health and potential uses.Phytother. Res.20183291688170610.1002/ptr.610929785774
    [Google Scholar]
  316. de Oliveira CarvalhoI. PurgatoG.A. PíccoloM.S. PizzioloV.R. CoelhoR.R. Diaz-MuñozG. Alves Nogueira DiazM. in vitro anticariogenic and antibiofilm activities of toothpastes formulated with essential oils.Arch. Oral Biol.202011710483410.1016/j.archoralbio.2020.10483432663696
    [Google Scholar]
  317. NaikJ.B. RajputR.L. NarkhedeJ.S. MujumdarA. PatilP.B. Synthesis and evaluation of UV cross-linked Poly (acrylamide) loaded thymol nanogel for antifungal application in oral candidiasis.J. Polym. Res.20212811510.1007/s10965‑020‑02377‑x
    [Google Scholar]
  318. KasparavicieneG. KalvenieneZ. PavilonisA. MarksieneR. DauksieneJ. BernatonieneJ. Formulation and characterization of potential antifungal oleogel with essential oil of thyme.Evid. Based Complement. Alternat. Med.201820181943181910.1155/2018/943181929849737
    [Google Scholar]
  319. PriyaA. SelvarajA. DivyaD. Karthik RajaR. PandianS.K. in vitro and in vivo anti-infective potential of thymol against early childhood caries causing dual species Candida albicans and Streptococcus mutans.Front. Pharmacol.20211276076810.3389/fphar.2021.76076834867378
    [Google Scholar]
  320. El-SayedS.M. El-SayedH.S. Antimicrobial nanoemulsion formulation based on thyme (Thymus vulgaris) essential oil for UF labneh preservation.J. Mater. Res. Technol.2021101029104110.1016/j.jmrt.2020.12.073
    [Google Scholar]
  321. PemmarajuS.C. PruthiP.A. PrasadR. PruthiV. Candida albicans biofilm inhibition by synergistic action of terpenes and fluconazole.Indian J. Exp. Biol.201351111032103724416942
    [Google Scholar]
  322. LiuX. ZhengX. FangW. ZhangY. Screening of food additives and plant extracts against Candida albicans in vitro for prevention of denture stomatitis.Procedia Environ. Sci.2012121361136610.1016/j.proenv.2012.01.435
    [Google Scholar]
  323. KhanM.A. DhadedS. JoshiS. Commercial and plant extract denture cleansers in prevention of Candida albicans growth on soft denture reliner: In vitro study.J. Clin. Diagn. Res.2016102ZC42ZC4510.7860/JCDR/2016/12558.722827042584
    [Google Scholar]
  324. KhuranaP. SinghalR. AgarwalS.K. KalpanaK. Comparative evaluation of the effect of two plant extract and denture cleanser on the staining and anti-fungal efficacy of denture base resin: An in vitro study.J. Dent. Oral Biol.20227317
    [Google Scholar]
  325. Guimarães Silva VasconcelosP. Medeiros de Almeida MaiaC. Mendes de VasconcelosV. Paolla Raimundo e SilvaJ. Fechine TavaresJ. Vieira PereiraJ. Wanderley CavalcantiY. Maria Melo de Brito CostaE. in vitro inhibition of a multispecies oral cavity biofilm by Syzygium aromaticum essential oil.Gerodontology202239436637310.1111/ger.1259434633113
    [Google Scholar]
  326. GuptaM. BansalV. BhaduriT. ShaikhS. SayedF. BansalV. AgrawalA. Assessment of antimicrobial effectiveness of neem and clove extract against streptococcus mutans and Candida albicans: An in vitro Study.Niger. Med. J.201960628528910.4103/nmj.NMJ_20_1932180657
    [Google Scholar]
  327. NaeiniA. ShayeghS.S. ShokriH. DavatiA. KhazaeiA. AkbariA. in vitro antifungal effect of herbal mixture (Nigella sativa, Foeniculum vulgare and Camellia sinensis) against Candida species isolated from denture wearers.J. Herbmed Pharmacol.2017627479
    [Google Scholar]
  328. ShamseddineL. ChidiacJ.J. Composition’s effect of Origanum syriacum essential oils in the antimicrobial activities for the treatment of denture stomatitis.Odontology2021109232733510.1007/s10266‑020‑00547‑332808051
    [Google Scholar]
  329. PinelliL.A.P. MontandonA.A.B. CorbiS.C.T. MoraesT.A. FaisL.M.G. Ricinus communis treatment of denture stomatitis in institutionalised elderly.J. Oral Rehabil.201340537538010.1111/joor.1203923438045
    [Google Scholar]
  330. SabzghabaeeA.M. ShirdareZ. EbadianB. AslaniA. GhannadiA. Clinical evaluation of the essential oil of Pelargonium graveolens for the treatment of denture stomatitis.Dent. Res. J. (Isfahan)20118Suppl. 1S105S10823372587
    [Google Scholar]
  331. CapistranoH.M. de AssisE.M. LealR.M. Alvarez-LeiteM.E. BrenerS. BastosE.M. Brazilian green propolis compared to miconazole gel in the treatment of Candida-associated denture stomatitis.Evid. Based Complement. Alternat. Med.20132013194798023737855
    [Google Scholar]
  332. AlavarceR.A. SaldanhaL.L. AlmeidaN.L. PortoV.C. DokkedalA.L. LaraV.S. The beneficial effect of Equisetum giganteum L. against Candida biofilm formation: New approaches to denture stomatitis.Evid. Based Complement. Alternat. Med.20152015193962526290676
    [Google Scholar]
  333. BakhshiM. TaheriJ.B. Basir ShabestariS. TanikA. PahlevanR. Comparison of therapeutic effect of aqueous extract of garlic and nystatin mouthwash in denture stomatitis.Gerodontology2012292e680e68410.1111/j.1741‑2358.2011.00544.x22126338
    [Google Scholar]
  334. GhorbaniA. SadrzadehA. HabibiE. DadgarK. AkbariJ. MoosazadehM. BakhshiH. AhangarkaniF. VaeziA. Efficacy of Camellia sinensis extract against Candida species in patients with denture stomatitis.Curr. Med. Mycol.201843151810.18502/cmm.4.3.17430619964
    [Google Scholar]
  335. DavoodiN. AslaniA. SabzghabaeeA.M. EbadianB. GhannadiA. Clinical evaluation of the essential oil of “Satureja Hortensis” for the treatment of denture stomatitis.Dent. Res. J. (Isfahan)20129219820210.4103/1735‑3327.9523622623938
    [Google Scholar]
  336. SilvaP.M.B. ChocanoA.P.C. VenanteH.S. CostaR.M.B. SilvaR.A. NeppelenbroekK.H. LaraV.S. PortoV.C. Beneficial effects of three natural products for the treatment of denture stomatitis.Arquivos em Odontologia20225714114810.35699/2178‑1990.2021.25765
    [Google Scholar]
/content/journals/cdent/10.2174/012542579X317149241202064449
Loading
/content/journals/cdent/10.2174/012542579X317149241202064449
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Aloe vera; cinnamon; clove; curcumin; Denture stomatitis; natural remedies; thyme
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test