Current Drug Delivery - Volume 17, Issue 3, 2020
Volume 17, Issue 3, 2020
-
-
Delivery Efficacy Differences of Intravenous and Intraperitoneal Injection of Exosomes: Perspectives from Tracking Dye Labeled and MiRNA Encapsulated Exosomes
Authors: Xueying Zhou, Zhelong Li, Wenqi Sun, Guodong Yang, Changyang Xing and Lijun YuanBackground: Exosomes are cell-derived nanovesicles that play vital roles in intercellular communication. Recently, exosomes are recognized as promising drug delivery vehicles. Up till now, how the in vivo distribution of exosomes is affected by different administration routes has not been fully understood. Methods: In the present study, in vivo distribution of exosomes following intravenous and intraperitoneal injection approaches was systemically analyzed by tracking the fluorescence-labeled exosomes and qPCR analysis of C. elegans specific miRNA abundance delivered by exosomes in different organs. Results: The results showed that exosomes administered through tail vein were mostly taken up by the liver, spleen and lungs while exosomes injected intraperitoneally were more dispersedly distributed. Besides the liver, spleen, and lungs, intraperitoneal injection effectively delivered exosomes into the visceral adipose tissue, making it a promising strategy for obesity therapy. Moreover, the results from fluorescence tracking and qPCR were slightly different, which could be explained by systemic errors. Conclusion: Together, our study reveals that different administration routes cause a significant differential in vivo distribution of exosomes, suggesting that optimization of the delivery route is prerequisite to obtain rational delivery efficiency in detailed organs.
-
-
-
Glutaryl Melatonin Niosome Gel for Topical Oral Mucositis: Anti-Inflammatory and Anticandidiasis
Background: Glutaryl melatonin, which is synthesized from melatonin and is a pineal glandderived neurohormone with anti-inflammatory and anti-oxidant properties, was comparatively investigated for its potential use as a topical anti-inflammatory agent. Objective: Glutaryl melatonin, synthesized and screened for in vitro anti-candidiasis and in vitro and in vivo anti-inflammatory activities, was formulated as a niosome gel for topical oral evaluation in 5- fluorouracil-induced oral mucositis in mice. Methods: In vitro anti-fungal activity in Candida albicans, in vitro anti-inflammatory activity in Escherichia coli liposaccharide-induced RAW cells and in vivo anti-inflammatory activity using a croton oilinduced ear edema model in ICR mice were investigated. Mucositis in mice (n= 6/group, 10-week-old mice) was induced by intraperitoneal injections of 5-fluorouracil, and the mice were subjected to a topical oral application of niosome gel containing melatonin (2% w/w) or glutaryl melatonin (2% w/w) and were compared with mice subjected to blank, fluocinolone acetonide (0.5% w/w) and control conditions. Results: Glutaryl melatonin, at a 14.2 mM concentration, showed the highest fungicidal effect on C. albicans using the broth dilution method, indicating a nonsignificant difference from 1 μM of nystatin (p = 0.05). Nitric oxide, interleukin-6 and tumor necrosis factors were analyzed by ELISA. Liposaccharide-induced RAW cells were significantly reduced by glutaryl melatonin (p < 0.01). Ear edema inhibition of glutaryl melatonin was significant 1 h after application compared with that of melatonin (p = 0.03). Food consumption and body weight of the 5-fluorouracil-treated mice were significantly lower than those of the normal mice before all treatments (p < 0.05). Differences in the amount of licking behavior, which were observed in the control group for 5 min, were noticeable in the 5- fluorouracil-treated mice but not in the mice treated with the glutaryl melatonin niosome gel. Conclusion: Glutaryl melatonin exhibited mild anti-candidiasis and anti-inflammatory properties. The incorporation of glutaryl melatonin in a niosome gel formulation, demonstrated the potential for topical oral applications to reduce oral discomfort caused by 5-fluorouracil treatment in mice.
-
-
-
Freeze-Dried Clopidogrel Loaded Lyotropic Liquid Crystal: Box-Behnken Optimization, In-Vitro and In-Vivo Evaluation
Authors: Eman A. Hakeem, Galal M. El-Mahrouk, Ghada Abdelbary and Mahmoud H. TeaimaBackground: Clopidogrel (CLP) suffers from extensive first pass metabolism results in a negative impact on its oral systemic bioavailability. Cubosomes are Lyotropic Liquid Crystalline (LLC) nano-systems comprising monoolein, a steric stabilizer and an aqueous system, it considered a promising carrier for different pharmaceutical compounds. Box-Behnken Design (BBD) is an efficient tool for process analysis and optimization skipping forceful treatment combinations. Objective: The study was designed to develop freeze-dried clopidogrel loaded LLC (cubosomes) for enhancement of its oral bioavailability. Methods: A 33 BBD was adopted, the studied independent factors were glyceryl monooleate (GMO lipid phase), Pluronic F127 (PL F127steric stabilizer) and polyvinyl alcohol powder (stabilizer). Particle Size (PS), Polydispersity Index (PDI) and Zeta Potential (ZP) were set as independent response variables. Seventeen formulae were prepared in accordance with the bottom up approach and in-vitro evaluated regarding PS, PDI and ZP. Statistical analysis and optimization were achieved using design expert software®, then the optimum suggested formula was prepared, in-vitro revaluated, freeze-dried with 3% mannitol (cryoprotectant), solid state characterized and finally packed in hard gelatin capsule for comparative in-vitro release and in-vivo evaluation to Plavix®. Results: Results of statistical analysis of each individual response revealed a quadratic model for PS and PDI where a linear model for ZP. The optimum suggested formula with desirability factor equal 0.990 consisting of (200 mg GMO, 78.15 mg PL F127 and 2% PVA). LC/MS/MS study confirmed significant higher Cmax, AUC0-24h and AUC0-∞ than that of Plavix®. Conclusion: The results confirm the capability of developed carrier to overcome the low oral bioavailability.
-
-
-
Dextran Microparticulate Inhalable Dry Powder for the Treatment of Cystic Fibrosis and Mucopolysaccharidosis
Authors: Neel R. Solanki, Deepa H. Patel and Dipali R. TaleleBackground: Cystic Fibrosis (CF) is a genetic disease which affects the patient’s lungs, pancreas, liver, kidney and intestine and lacks sulfatase enzyme, leading to mucopolysaccharidosis. Colistin sulfate acts by interacting with phospholipids of bacterial cell membranes. Sulfatase enzyme reduces the high levels of sulfated glycosaminoglycans and glycolipids by the hydrolysis of sulfate esters in lysosome. Objective: The aim of the present investigation was to prepare and evaluate dextran microparticulate inhalable dry powder for the efficient targeting of colistin sulfate at affected area of lung without causing the side effects in the treatment of CF and mucopolysaccharidosis. Methods: Microparticulate dry powder was prepared by the lyophilization method and evaluated for particle size, % yield, % drug content, solid state characterization, in-vitro lung deposition study, and in-vitro drug release study. Results: Particle size, % yield and % drug content were found to be 4.03 ± 0.196 μm, 94.02 % and 99.45 ± 0.015% respectively. Bulk density, tapped density, hausner’s ratio, carr’s index and angle of repose of optimized batch were found to be 0.216 ± 0.025 g/cm3, 0.236 ± 0.035 g/cm3, 1.09 ± 0.026, 8.47 ± 0.025 % and 26.10 ± 0.029° respectively. A fine particle fraction, fine particle dose, mass median aerodynamic diameter, geometric standard deviation and emitted dose were found to be 66.78%, 16.45 mg, 4.89 μm, 1.32 and 246.33 mg respectively. The % CDR of optimized batch was found to be 96.12 ± 0.049 % at 24 h. Conclusion: Based on the obtained results, we conclude that dextran microparticulate inhalable dry powder might be suitable carrier for the delivery of colistin sulfate and sulfatase in combination via pulmonary route for the treatment of cystic fibrosis and mucopolysaccharidosis.
-
-
-
Novel Phospholipid-Based Labrasol Nanomicelles Loaded Flavonoids for Oral Delivery with Enhanced Penetration and Anti-Brain Tumor Efficiency
Authors: Gang Wang, Junjie Wang and Rui GuanBackground: Owing to the rich anticancer properties of flavonoids, there is a need for their incorporation into drug delivery vehicles like nanomicelles for safe delivery of the drug into the brain tumor microenvironment. Objective: This study, therefore, aimed to prepare the phospholipid-based Labrasol/Pluronic F68 modified nano micelles loaded with flavonoids (Nano-flavonoids) for the delivery of the drug to the target brain tumor. Methods: Myricetin, quercetin and fisetin were selected as the initial drugs to evaluate the biodistribution and acute toxicity of the drug delivery vehicles in rats with implanted C6 glioma tumors after oral administration, while the uptake, retention, release in human intestinal Caco-2 cells and the effect on the brain endothelial barrier were investigated in Human Brain Microvascular Endothelial Cells (HBMECs). Results: The results demonstrated that nano-flavonoids loaded with myricetin showed more evenly distributed targeting tissues and enhanced anti-tumor efficiency in vivo without significant cytotoxicity to Caco-2 cells and alteration in the Trans Epithelial Electric Resistance (TEER). There was no pathological evidence of renal, hepatic or other organs dysfunction after the administration of nanoflavonoids, which showed no significant influence on cytotoxicity to Caco-2 cells. Conclusion: In conclusion, Labrasol/F68-NMs loaded with MYR and quercetin could enhance antiglioma effect in vitro and in vivo, which may be better tools for medical therapy, while the pharmacokinetics and pharmacodynamics of nano-flavonoids may ensure optimal therapeutic benefits.
-
-
-
The Development of Pemetrexed Diacid-Loaded Gelatin-Cloisite 30B (MMT) Nanocomposite for Improved Oral Efficacy Against Cancer: Characterization, In-Vitro and Ex-Vivo Assessment
Authors: Kriti Soni, Ali Mujtaba, Md. H. Akhter and Kanchan KohliAim: The intention of this investigation was to develop Pemetrexed Diacid (PTX)-loaded gelatine-cloisite 30B (MMT) nanocomposite for the potential oral delivery of PTX and the in vitro, and ex vivo assessment. Background: Gelatin/Cloisite 30 B (MMT) nanocomposites were prepared by blending gelatin with MMT in aqueous solution. Methods: PTX was incorporated into the nanocomposite preparation. The nanocomposites were investigated by Fourier Transmission Infra Red Spectroscopy (FT-IR), Differential Scanning Calorimetry (DSC), Scanning Electron Microscope (SEM) X-Ray Diffraction (XRD) and Confocal Laser Microscopy (CLSM). FT-IR of nanocomposite showed the disappearance of all major peaks which corroborated the formation of nanocomposites. The nanocomposites were found to have a particle size of 121.9 ± 1.85 nm and zeta potential -12.1 ± 0.63 mV. DSC thermogram of drug loaded nanocomposites indicated peak at 117.165 oC and 205.816 oC, which clearly revealed that the drug has been incorporated into the nanocomposite because of cross-linking of cloisite 30 B and gelatin in the presence of glutaraldehyde. Results: SEM images of gelatin show a network like structure which disappears in the nanocomposite. The kinetics of the drug release was studied in order to ascertain the type of release mechanism. The drug release from nanocomposites was in a controlled manner, followed by first-order kinetics and the drug release mechanism was found to be of Fickian type. Conclusion: Ex vivo gut permeation studies revealed 4 times enhancement in the permeation of drug present in the nanocomposite as compared to plain drug solution and were further affirmed by CLSM. Thus, gelatin/(MMT) nanocomposite could be promising for the oral delivery of PTX in cancer therapy and future prospects for the industrial pharmacy.
-
-
-
Formulation, Characterization and In-vitro and In-vivo Evaluation of Capecitabine Loaded Niosomes
Authors: Parth Patel, Tejas Barot and Pratik KulkarniBackground: Nanocarriers improve the efficacy of drugs by facilitating their specific delivery and protecting them from external environment resulting in a better performance against diseases. Objective: In this study, it was aimed to improve the efficacy of capecitabine against colorectal cancer by its entrapment in niosomes. Ether injection method was used to prepare niosomes composed of span 20 and cholesterol. Methods: Niosomes were evaluated by evaluating the entrapment efficiency, in-vitro drug release and cytotoxicity of capecitabine loaded niosomes. Niosomes were characterized by particle size analysis, transmission electron microscopy, Fourier transform infrared spectroscopy and differential scanning calorimetry for surface morphology and drug excipient interactions. Results: High encapsulation efficiency (90.55%) was observed, which is anticipated to resolve the multi-drug resistance problem. Reported particle size was 180.9 + 5 nm with a negative zeta potential - 21 + 0.5 mV and the kinetic study showed a concentration-dependent release of the drug from the niosome. DSC study proved entrapment of the entire drug and its non-covalent bonding with the excipients. Cytotoxicity study of niosomes on CaCO2 cell line showed an improved IC50 value as compared to the free drug. Conclusion: Enhanced cytotoxicity observed in the results further supports the suitability of niosome as a nanocarrier for pharmaceutical drug delivery.
-
Volumes & issues
-
Volume 22 (2025)
-
Volume 21 (2024)
-
Volume 20 (2023)
-
Volume 19 (2022)
-
Volume 18 (2021)
-
Volume 17 (2020)
-
Volume 16 (2019)
-
Volume 15 (2018)
-
Volume 14 (2017)
-
Volume 13 (2016)
-
Volume 12 (2015)
-
Volume 11 (2014)
-
Volume 10 (2013)
-
Volume 9 (2012)
-
Volume 8 (2011)
-
Volume 7 (2010)
-
Volume 6 (2009)
-
Volume 5 (2008)
-
Volume 4 (2007)
-
Volume 3 (2006)
-
Volume 2 (2005)
-
Volume 1 (2004)
Most Read This Month

Most Cited Most Cited RSS feed
-
-
Preface
Authors: Deng-Guang Yu and He Lv
-
- More Less