Current Drug Delivery - Volume 14, Issue 2, 2017
Volume 14, Issue 2, 2017
-
-
Chemical Engineering in the “BIO” World
Authors: Gianluca Chiarappa, Mario Grassi, Michela Abrami, Roberto Andrea Abbiati, Anna Angela Barba, Anja Boisen, Valerio Brucato, Giulio Ghersi, Diego Caccavo, Sara Cascone, Sergio Caserta, Nicola Elvassore, Monica Giomo, Stefano Guido, Gaetano Lamberti, Domenico Larobina, Davide Manca, Paolo Marizza, Giovanna Tomaiuolo and Gabriele GrassiModern Chemical Engineering was born around the end of the 19th century in Great Britain, Germany, and the USA, the most industrialized countries at that time. Milton C. Whitaker, in 1914, affirmed that the difference between Chemistry and Chemical Engineering lies in the capability of chemical engineers to transfer laboratory findings to the industrial level. Since then, Chemical Engineering underwent huge transformations determining the detachment from the original Chemistry nest. The beginning of the sixties of the 20th century saw the development of a new branch of Chemical Engineering baptized Biomedical Engineering by Peppas and Langer and that now we can name Biological Engineering. Interestingly, although Biological Engineering focused on completely different topics from Chemical Engineering ones, it resorted to the same theoretical tools such as, for instance, mass, energy and momentum balances. Thus, the birth of Biological Engineering may be considered as a Darwinian evolution of Chemical Engineering similar to that experienced by mammals which, returning to water, used legs and arms to swim. From 1960 on, Biological Engineering underwent a considerable evolution as witnessed by the great variety of topics covered such as hemodialysis, release of synthetic drugs, artificial organs and, more recently, delivery of small interfering RNAs (siRNA). This review, based on the activities developed in the frame of our PRIN 2010-11 (20109PLMH2) project, tries to recount origins and evolution of Chemical Engineering illustrating several examples of recent and successful applications in the biological field. This, in turn, may stimulate the discussion about the Chemical Engineering students curriculum studiorum update.
-
-
-
Drug Delivery From Hydrogels: A General Framework for the Release Modeling
Authors: Diego Caccavo, Sara Cascone, Gaetano Lamberti, Anna Angela Barba and Anette LarssonThe controlled delivery of drugs, including siRNAs, can be effectively obtained using Hydrogel- Based Drugs Delivery Systems (HB-DDSs). Successful design of HB-DDSs requires the knowledge of the mechanisms that influence drug release. The modeling of the physical phenomena involved could help in the development and optimization of HB-DDS, sensibly reducing the time and costs required by a trial-and-error procedures. The modeling is rather complex because of the presence of several, synergistic and competing, transport phenomena. In this work a general framework useful for modeling the HB-DDS has been derived and it is proposed, coupling and homogenizing the literature models. It is shown that all of them can be traced back to two different approaches: multiphasic models and multicomponent mixture models. In the first one the hydrogel is seen as constituted by different phases, the behavior of each one being described by their own mass and momentum conservation equations. In the second approach, the hydrogel is considered as made of one phase composed by several components.
-
-
-
Innovations and Improvements in Pharmacokinetic Models Based on Physiology
Authors: Roberto Andrea Abbiati and Davide MancaBackground: Accompanied by significant improvements of modeling techniques and computational methods in medical sciences, the last thirty years saw the flourishing of pharmacokinetic models for applications in the pharmacometric field. In particular, physiologically based pharmacokinetic (PBPK) models, grounded on a mechanistic foundation, have been applied to explore a multiplicity of aspects with possible applications in patient care and new drugs development, as in the case of siRNA therapies. Method: This article summarizes the features we recently introduced in PBPK modeling within a threeyear research project funded by Italian Research Ministry. Four major points are detailed: (i) the mathematical formulation of the model, which allows modulating its complexity as a function of the administration route and active principle; (ii) a dedicated parameter of the PBPK model quantifies the drugprotein binding, which affects the active principle distribution; (iii) the gall bladder compartment and the bile enterohepatic circulation process; (iv) the coupling of the pharmacokinetic and pharmacodynamic models to produce an overall understanding of the drug effects on mammalian body. Results: The proposed model is applied to two separate endovenous (remifentanil) and oral (sorafenib) drug administrations. The resulting PBPK simulations are consistent with the literature experimental data. Blood concentration predictability is confirmed in multiple reference subjects. Furthermore, in case of sorafenib administration in mice, it is possible to evaluate the drug concentration in the liver and reproduce the effects of the enterohepatic circulation. Finally, a preliminary application of the coupling of the pharmacokinetic/pharmacodynamic models is presented and discussed.
-
-
-
New Preparative Approaches for Micro and Nano Drug Delivery Carriers
The full success of pharmacological therapies is strongly depending on the use of suitable, efficient and smart drug delivery systems (DDSs). Thus DDSs development is one of the main challenges in pharmaceutical industry both to achieve tailored carrier systems based on drug features and to promote manufacturing innovations to reduce energetic resources, emissions, wastes and risks. Main functions of an ideal DDS are: to protect loaded active molecules from degradation in physiological environments; to deliver them in a controlled manner and towards specific organs or tissues, to allow the maintenance of drug concentration within therapeutic window. Smart features, such as those able to induce active molecule release upon the occurrence of specific physiological stimuli, are also desirable. Under the manufacturing point of view, the current industrial scenery is obliged to respond to the increasing market requirements and to the mandatory rules in sustainable productions such as raw material and energy savings. In this work a general framework on drug delivery systems preparation techniques is presented. In particular two sections on innovation in preparative approaches carried out are detailed. These latter involve the use of microwave and ultrasonic energy applied in the production of polymeric and lipidic delivery systems on micro- and nanometric scale. The novelties of these preparative approaches are emphasized and examples of developed drug delivery carriers, loaded with vitamins and drug mimicking siRNA, are shown.
-
-
-
Injectable Chitosan/β-Glycerophosphate System for Sustained Release: Gelation Study, Structural Investigation, and Erosion Tests
Hydrogels can constitute reliable delivery systems of drugs, including those based on nucleic acids (NABDs) such as small interfering ribonucleic acid (siRNA). Their nature, structure, and response to physiological or external stimuli strongly influence the delivery mechanisms of entrapped active molecules, and, in turn, their possible uses in pharmacological and biomedical applications. In this study, a thermo-gelling chitosan/β-glycero-phosphate system has been optimized in order to assess its use as injectable system able to: i) gelling at physiological pH and temperature, and ii) modulate the release of included active ingredients. To this aim, we first analyzed the effect of acetic acid concentration on the gelation temperature. We then found the “optimized composition”, namely, the one in which the Tgel is equal to the physiological temperature. The resulting gel was tested, by low field nuclear magnetic resonance (LF-NMR), to evaluate its average mesh-size, which can affect release kinetics of loaded drug. Finally, films of gelled chitosan, loaded with a model drug, have been tested in vitro to monitor their characteristic times, i.e. diffusion and erosion time, when they are exposed to a medium mimicking a physiological environment (buffer solution at pH 7.4). Results display that the optimized system is deemed to be an ideal candidate as injectable gelling material for a sustained release.
-
-
-
Smart Inulin-Based Polycationic Nanodevices for siRNA Delivery
Authors: G. Cavallaro, C. Sardo, C. Scialabba, M. Licciardi and G. GiammonaThe advances of short interfering RNA (siRNA) mediated therapy provide a powerful option for the treatment of many diseases by silencing the expression of targeted genes including cancer development and progression. Inulin is a very simple and biocompatible polysaccharide proposed by our groups to produce interesting delivery systems for Nucleic Acid Based Drugs (NABDs), such as siRNA, either as polycations able to give polyplexes and polymeric coatings for nanosystems having a metallic core. In this research field, different functionalizing groups were linked to the inulin backbone with specific aims including oligoamine such as Ethylendiammine (EDA), Diethylediamine (DETA), Spermine, (SPM) etc. In this contribution the main Inulin-based nanodevices for the delivery of siRNA have been reported, analysed and compared with particular reference to their chemical design and structure, biocompatibility, siRNA complexing ability, silencing ability.
-
-
-
Microfluidic Investigation of the Effect of Liposome Surface Charge on Drug Delivery in Microcirculation
Nano-carrier drug transport in blood microcirculation is one of the hotspots of current research in drug development due to many advantages over traditional therapies, such as reduced sideeffects, target delivery, controlled release, improved pharmacokinetics and therapeutic index. Despite the substantial efforts made in the design of nanotherapeutics, the big majority of the used strategies failed to overcome the biological barriers to drug transport encountered in human microvasculature, such as transport by blood flow via the microcirculatory network and margination, the mechanism according to which particles migrate along vessel radius to the wall. In fact, drug transport efficiency in microvasculature is affected by both the particulate nature of blood and drug carrier properties, such as size, shape and surface charge. In this work, the effect of the surface charge of liposomes on their margination in blood flow in microcapillaries was experimentally evaluated. By high-speed video microscopy and image analysis it was found that the two custom-made liposomes (one neuter and the other positively charged) tend to drift laterally, moving towards the wall and accumulating in the cell-free layer. In particular, neuter and cationic liposomes showed a comparable margination propensity, suggesting that the presence of blood cells governs the flow behavior independently on liposome surface charge.
-
-
-
Double Flow Bioreactor for In Vitro Test of Drug Delivery
In this work, double-structured polymeric scaffolds were produced, and a double flow bioreactor was designed and set up in order to create a novel system to carry out advanced in vitro drug delivery tests. The scaffolds, consisting of a cylindrical porous matrix, are able to host cells, thus mimicking a three-dimensional tumor mass: moreover, a "pseudo-vascular" structure was embedded into the matrix, with the aim of allowing a flow circulation. The structure that emulates a blood vessel is a porous tubular-shaped scaffold prepared by Diffusion Induced Phase Separation (DIPS), with an internal lumen of 2 mm and a wall thickness of 200 micrometers. The as-prepared vessel was incorporated into a three-dimensional matrix, prepared by Thermally Induced Phase Separation (TIPS), characterized by a high porosity (about 95%) and pore size adequate to accommodate tumor cells and/or mesenchymal cells. The morphology of the multifunctional scaffolds is easy-tunable in terms of pore size, porosity and thickness and therefore adaptable to various cell or tissue types. At the same time, a double flow bioreactor was designed and built up, in order to be able to carry out biological tests on the scaffold under dynamic conditions. The device allows a separate control of the two flows (one for the tubular scaffold, one for the porous matrix) through the scaffolds. Preliminary characterizations and tests carried out suggest the presented system as a candidate to suitably "in vitro" assess the effects of different drugs on various cell populations.
-
-
-
Cyclin D1 Gene Silencing by siRNA in Ex Vivo Human Tissue Cultures
Background: Short interfering RNAs (siRNAs) are double-stranded RNA molecules able to specifically targeting genes products responsible for human diseases. Cyclin D1 (CyD1) is a cell cycleregulatory molecule, up-regulated at sites of inflammation in several tissues. CyD1 is a very interesting potential target in lung and colon inflammatory diseases. Objective: The aim of this paper was testing CyD1 expression in human lung and colon tissues after the application of an inflammatory stimulus, and verifying its gene silencing by using siRNA for CyD1 (siCyD1). Method: Colon and pulmonary biopsies were treated with siCyD1 by using two different transfection carriers: a) invivofectamine and b) ad hoc produced nanoliposomes. After 24 hours of incubation with nanoliposomes encapsulating siRNA or invivofectamine-CyD1siRNA, in presence or absence of ECLPS, we analysed the protein expression of CyD1 through Western-Blotting. Results: After EC-LPS treatment, in both colon and pulmonary biopsies, an overexpression of CyD1was found (about 64% and 40% respectively). Invivofectamine-CyD1 siRNA reduced the expression of CyD1 approximately by 46% compared to the basal condition, and by around 65% compared to EC-LPS treated colon samples. In lung, following in vivo fectamine siRNA silencing in the presence of EC-LPS, no reduction was observed. Ad hoc nanoliposomes were able to enter colon and lung tissues, but CyD1 silencing was reported in 2 colon samples out of 4 and no efficacy was demonstrated in the only lung sample we studied. Conclusion: The silencing of Cyclin D1 expression in vitro “organ culture” model is possible. Our preliminary results encourage further investigations, using different siRNA concentrations delivered by nanoliposomes.
-
-
-
From Genesis to Revelation: The Role of Inflammatory Mediators in Chronic Respiratory Diseases and their Control by Nucleic Acid-based Drugs
Asthma, chronic obstructive pulmonary disease, cystic fibrosis, and idiopathic pulmonary fibrosis, are among the most common chronic diseases and their prevalence is increasing. Each of these diseases is characterized by the secretion of cytokines and pro-inflammatory molecules which are thought to play a critical role in their pathogenesis. Moreover, immune cells, particularly neutrophils, macrophages and dendritic cells as well structural cells such as epithelial and airway smooth muscle cells are also involved in the pathogenic cycle of these diseases. There is a pressing need for the development of new therapies for these pulmonary diseases, particularly as no existing treatment has been shown to reduce disease progression. HMGB1 (high-mobility group box 1), originally identified as a nuclear non histone protein with DNA-binding domains can be secreted by living and dying cells and it is now regarded as an important endogenous danger signaling molecule. Besides as a signal of tissue injury, HMGB1 is considered a powerful mediator of inflammation and high levels of HMGB1 are found in chronic lung diseases. The role of HMGB1 in respiratory diseases is still elusive nevertheless these studies suggest an involvement of this cytokine in their pathogenesis. Nucleic acid-based drugs (NABDs) are a novel class of pharmaceuticals including antisense oligonucleotides, DNA-zymes, and RNA interference as mediated by small interfering RNA (siRNA), which are used to dampen the expression of disease-causing genes having therapeutic potential for controlling chronic airway diseases. Due to their inherent difficulties, such as for example sensitivity to endonucleases, their delivery in vivo should be assured by vectors. Non-viral lipid- and polymer-based nanosystems have acquired much importance in this context. In this review, we will discuss these emerging tools in gene therapy of chronic lung diseases, particularly the use of siRNA in the down-regulation of critical molecules in the pathogenesis of chronic lung diseases, with particular emphasis on HMGB1 as therapeutic target.
-
-
-
The Role of the Transcription Factor E2F1 in Hepatocellular Carcinoma
Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide and the third leading cause of cancer-related death. Because of the fast growth, early hepatic metastasis and the multidrug resistance, the five-year survival rate is very low. Thus, the understanding of its biology can significantly contribute in identifying valuable targets for novel therapeutic approaches. In this regard, E2F1 may represent an interesting candidate. E2F1 is a transcription factor implicated in the regulation of many cellular processes including cell proliferation and apoptosis. Whereas the involvement of E2F1 in HCC has been recognized, its ability to act as a proliferative and/or apoptotic factor in HCC has not yet been clarified and, in this regard, an active debate is ongoing. The definition of E2F1 role in HCC is not a trivial aspect as it can have significant consequences for the development of novel therapeutic options with E2F1 as target. In this review, we present data about the reported proliferative/apoptotic effects as well as the dual (combined proliferation and apoptosis) functions of E2F1 in HCC discussing the molecular basis for this behavior. The data available so far indicate that the proliferative and apoptotic functions of E2F1 in HCC may coexist but the proliferative effect seems to be more pronounced than the apoptotic one.
-
-
-
Pharmacokinetics of Gefitinib: Roles of Drug Metabolizing Enzymes and Transporters
Authors: Can Zhao, Shu-Yan Han and Ping-Ping LiGefitinib (Iressa, AstraZeneca) has been widely used for the treatment of locally advanced or metastatic non-small cell lung cancer. A number of studies have been reported on its pharmacokinetics profiles, especially on the metabolism. In this review, we have comprehensively summarized the pharmacokinetic characteristics of gefitinib: absorption, distribution, metabolism and excretion (ADME). Overall, gefitinib reached the maximum plasma level relatively fast and distributed extensively. It underwent extensive biotransformation and predominantly excreted in feces, with less than 7% in the urine. CYP450 enzymes played critical roles in the process of gefitinib metabolism. The major enzyme involved in the metabolism was CYP3A4, with other CYP450 enzymes playing a secondary role. A high clearance of gefitinib might result in drug resistance by lowering drug concentration. The enhanced efflux and decreased uptake by transporters were important resistance mechanisms. The transporters involved in pharmacokinetics of gefitinib consist of the ATP-binding cassette and the solute carrier superfamily. Understanding the pharmacokinetics property of gefitinib may provide valuable and new information for dealing with drug resistance and making personalized therapy regarding their interindividual variability.
-
-
-
Potential of Liposomes for Enhancement of Oral Drug Absorption
Authors: Marjan Daeihamed, Simin Dadashzadeh, Azadeh Haeri and Masoud Faghih AkhlaghiOral administration of medication is the first option when patient compliance is considered. However, many barriers face oral absorption of drugs that limit bioavailability in about 90% of therapeutic agents. Utilization of nanoparticulate drug delivery systems is a major strategy for increasing oral absorption. They can improve oral bioavailability through mechanisms such as protection of the drug in the GI tract, increasing cellular contact and residence time of the drug, protection of the drug from presystemic metabolism and efflux and increasing diffusion across the mucosal and epithelial layers. Liposomes are biocompatible carriers employed to improve oral bioavailability of drugs and in addition to the general advantages of nanocarriers for oral delivery, they offer benefits derived from their lipidic bilayer structure. They can better adhere to biomembranes, form mixed-micelle structures with bile salts to increase the solubility of poorly-soluble drugs and are suitable candidates for lymphatic uptake. They have been successful in improving oral bioavailability of a variety of compounds including peptide and proteins, hydrophilic and lipophilic drugs. Stability under GI conditions is the main concern for oral liposomes, however, promising approaches have been suggested to increase the stability of oral liposomes. These include: using appropriate lipid compositions, polymer coating, addition of stabilizing lipids to liposomal structures, preparation of double liposomes and proliposomes and some other innovative methods. The present review focuses on the role of liposomes in improving oral absorption of drugs, the problems encountered, and the types of liposomes designed to overcome these issues. Barriers to oral delivery will be discussed and examples of bioavailability enhancement upon encapsulation in various types of liposomes investigated.
-
Volumes & issues
-
Volume 22 (2025)
-
Volume 21 (2024)
-
Volume 20 (2023)
-
Volume 19 (2022)
-
Volume 18 (2021)
-
Volume 17 (2020)
-
Volume 16 (2019)
-
Volume 15 (2018)
-
Volume 14 (2017)
-
Volume 13 (2016)
-
Volume 12 (2015)
-
Volume 11 (2014)
-
Volume 10 (2013)
-
Volume 9 (2012)
-
Volume 8 (2011)
-
Volume 7 (2010)
-
Volume 6 (2009)
-
Volume 5 (2008)
-
Volume 4 (2007)
-
Volume 3 (2006)
-
Volume 2 (2005)
-
Volume 1 (2004)
Most Read This Month

Most Cited Most Cited RSS feed
-
-
Preface
Authors: Deng-Guang Yu and He Lv
-
- More Less