Skip to content
2000
image of Unlocking the Power of Electrospinning: A Review of Cutting-Edge Polymers and their Impact on Scaffold Design and Performance

Abstract

Electrospun scaffolds are pivotal in tissue engineering due to their ability to mimic the Extracellular Matrix (ECM). Despite their potential, challenges such as, two-dimensional structure, limited load bearing capacity, and low mechanical strength restrict their application. This review explores advancements in electrospinning techniques and materials, highlighting methods like coaxial electrospinning, which enables the encapsulation of therapeutic agents, and the integration with 3D printing to create hybrid scaffolds with improved cell infiltration. Characterization techniques assessed by different researchers, such as scaffold morphology, mechanical properties, and biocompatibility, show that scaffolds with high spatial interconnectivity and controlled alignment enhance cell orientation and migration. Innovations in smart polymers and stimuli-responsive materials have furthered scaffold functionality. While recent advancements address some limitations, issues with scalability and production uniformity remain. Future research should optimize fabrication parameters and explore novel materials to enhance scaffold performance, requiring collaborative efforts and technological innovations to expand their practical applications in tissue engineering and regenerative medicine.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018366586250402144057
2025-04-22
2025-08-13
Loading full text...

Full text loading...

References

  1. Girard F. Lajoye C. Camman M. Tissot N. Berthelot Pedurand F. Tandon B. Moedder D. Liashenko I. Salameh S. Dalton P.D. Rielland M. First advanced bilayer scaffolds for tailored skin tissue engineering produced via electrospinning and melt electrowriting. Adv. Funct. Mater. 2024 34 27 2314757 10.1002/adfm.202314757
    [Google Scholar]
  2. Wang Z. Wang Y. Yan J. Zhang K. Lin F. Xiang L. Deng L. Guan Z. Cui W. Zhang H. Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration. Adv. Drug Deliv. Rev. 2021 174 504 534 10.1016/j.addr.2021.05.007 33991588
    [Google Scholar]
  3. Broadwin M. Imarhia F. Oh A. Stone C.R. Sellke F.W. Bhowmick S. Abid M.R. Exploring electrospun scaffold innovations in cardiovascular therapy: A review of electrospinning in cardiovascular disease. Bioengineering 2024 11 3 218 10.3390/bioengineering11030218
    [Google Scholar]
  4. Polak M. Ura D.P. Berniak K. Szewczyk P.K. Marzec M.M. Stachewicz U. Interfacial blending in co-axially electrospun polymer core-shell fibers and their interaction with cells via focal adhesion point analysis. Colloids Surf. B Biointerfaces 2024 237 113864 10.1016/j.colsurfb.2024.113864 38522283
    [Google Scholar]
  5. Mani M.P. Ponnambalath Mohanadas H. Faudzi A.A.M. Ismail A.F. Tucker N. Mohamaddan S. Verma K. S.; Jaganathan, S.K. Preparation, design, and characterization of an electrospun polyurethane/calcium chloride nanocomposite scaffold with improved properties for skin tissue regeneration. J. Ind. Text. 2024 54 15280837241228275 10.1177/15280837241228275
    [Google Scholar]
  6. Hwang T.I. Kim J.I. Lee J. Moon J.Y. Lee J.C. Joshi M.K. Park C.H. Kim C.S. In situ biological transmutation of catalytic lactic acid waste into calcium lactate in a readily processable three-dimensional fibrillar structure for bone tissue engineering. ACS Appl. Mater. Interfaces 2020 12 16 18197 18210 10.1021/acsami.9b19997 32153182
    [Google Scholar]
  7. Yang G. Li X. He Y. Ma J. Ni G. Zhou S. From nano to micro to macro: Electrospun hierarchically structured polymeric fibers for biomedical applications. Prog. Polym. Sci. 2018 81 80 113 10.1016/j.progpolymsci.2017.12.003
    [Google Scholar]
  8. Ferlin K.M. Prendergast M.E. Miller M.L. Kaplan D.S. Fisher J.P. Biomaterialia A. Author C. Family Distinguished Professor F. Chair Director A. Influence of 3D printed porous architecture on mesenchymal stem cell enrichment and differentiation. Acta Biomater. 2016 32 161 169 10.1016/j.actbio.2016.01.007
    [Google Scholar]
  9. Toriello M. Afsari M. Shon H.K. Tijing L.D. Progress on the fabrication and application of electrospun nanofiber composites. Membranes 2020 10 9 204 10.3390/membranes10090204
    [Google Scholar]
  10. Kailasa S. Reddy M.S.B. Maurya M.R. Rani B.G. Rao K.V. Sadasivuni K.K. Electrospun nanofibers: Materials, synthesis parameters, and their role in sensing applications. Macromol. Mater. Eng. 2021 306 11 2100410 10.1002/mame.202100410
    [Google Scholar]
  11. Zelkó R. Lamprou D.A. Sebe I. Recent development of electrospinning for drug delivery. Pharmaceutics 2019 12 1 5 10.3390/pharmaceutics12010005
    [Google Scholar]
  12. Wang C. Tong S.N. Tse Y.H. Wang M. Conventional electrospinning vs. emulsion electrospinning: A comparative study on the development of nanofibrous drug/biomolecule delivery vehicles. Adv. Mat. Res. 2012 410 118 121
    [Google Scholar]
  13. Sun Z. Zussman E. Yarin A.L. Wendorff J.H. Greiner A. Compound core–shell polymer nanofibers by co‐electrospinning. Adv. Mater. 2003 15 22 1929 1932 10.1002/adma.200305136
    [Google Scholar]
  14. Tian J. Ma Q. Yu W. Li D. Dong X. Liu G. Yu H. Comparison of different electrospinning technologies for the production of arrays with multifunctional properties: fluorescence, conduction and magnetism. J. Phys. D Appl. Phys. 2020 53 15 155301 10.1088/1361‑6463/ab69ac
    [Google Scholar]
  15. Zhao P. Jiang H. Pan H. Zhu K. Chen W. Biodegradable fibrous scaffolds composed of gelatin coated poly (e-caprolactone) prepared by coaxial 190 extruder for 3D bioprinting with composed bioink oriented to evaluation of viability in the generation of tissues. Electrospinning. J. Biomed. Mater. Res. A 2006 79 4 963 973 16948146
    [Google Scholar]
  16. Müller F. Jokisch S. Bargel H. Scheibel T. Centrifugal electrospinning enables the production of meshes of ultrathin polymer fibers. ACS Appl. Polym. Mater. 2020 2 11 4360 4367 10.1021/acsapm.0c00853
    [Google Scholar]
  17. Beaudoin É.J. Kubaski M.M. Samara M. Zednik R.J. Demarquette N.R. Scaled-up multi-needle electrospinning process using parallel plate auxiliary electrodes. Nanomaterials 2022 12 8 1356 10.3390/nano12081356 35458064
    [Google Scholar]
  18. Hosseini Ravandi S.A. Sadrjahani M. Valipouri A. Dabirian F. Ko F.K. Recently developed electrospinning methods: A review. Text. Res. J. 2022 92 23-24 5130 5145 10.1177/00405175211069880
    [Google Scholar]
  19. Molnar K. Nagy Z.K. Corona-electrospinning: Needleless method for high-throughput continuous nanofiber production. Eur. Polym. J. 2016 74 279 286 10.1016/j.eurpolymj.2015.11.028
    [Google Scholar]
  20. Sun Y. Cheng S. Lu W. Wang Y. Zhang P. Yao Q. Electrospun fibers and their application in drug controlled release, biological dressings, tissue repair, and enzyme immobilization. RSC Advances 2019 9 44 25712 25729 10.1039/C9RA05012D
    [Google Scholar]
  21. Liu J. Liu Y.B. Jiang X.M. Luo X. Zeng M. Design and research of supplying power for spinning emitter in needleless electrospinning with non-metallic rotating shaft. J. Phys. Conf. Ser. 2019 1209 1 012002 10.1088/1742‑6596/1209/1/012002
    [Google Scholar]
  22. Saleh Hudin H.S. Multiple-jet electrospinning methods for nanofiber processing: A review. Mater. Manuf. Process. 2018 33 5 479 498 10.1080/10426914.2017.1388523
    [Google Scholar]
  23. Zha F. Chen W. Zhang L. Yu D. Electrospun natural polymer and its composite nanofibrous scaffolds for nerve tissue engineering. J. Biomater. Sci. Polym. Ed. 2020 31 4 519 548 10.1080/09205063.2019.1697170
    [Google Scholar]
  24. Gaharwar A.K. Singh I. Khademhosseini A. Engineered biomaterials for in situ tissue regeneration. Nat. Rev. Mater. 2020 5 9 686 705 10.1038/s41578‑020‑0209‑x
    [Google Scholar]
  25. Schiros T.N. Mosher C.Z. Zhu Y. Bina T. Gomez V. Lee C.L. Lu H.H. Obermeyer A.C. Bioengineering textiles across scales for a sustainable circular economy. Chem 2021 7 11 2913 2926 10.1016/j.chempr.2021.10.012
    [Google Scholar]
  26. İşgen H.B. Samatya Yilmaz S. Aytac A. The production of hollow nanofibers from PBS/TPU blends by coaxial electrospinning method. Gazi Univ J Sci. 2024 37 1 64 73 10.35378/gujs.1199571
    [Google Scholar]
  27. Zhao D. Zhu T. Li J. Cui L. Zhang Z. Zhuang X. Ding J. Poly(lactic-co-glycolic acid)-based composite bone-substitute materials. Bioact. Mater. 2021 6 2 346 360 10.1016/j.bioactmat.2020.08.016
    [Google Scholar]
  28. Zhang H. Lin X. Cao X. Wang Y. Wang J. Zhao Y. Developing natural polymers for skin wound healing. Bioact. Mater. 2024 33 355 376 10.1016/j.bioactmat.2023.11.012
    [Google Scholar]
  29. Gürtler A.L. Linseisen I. Grohganz H. Heinz A. Coaxial electrospinning of polycaprolactone – A design of experiments approach. Eur. Polym. J. 2024 208 112886 10.1016/j.eurpolymj.2024.112886
    [Google Scholar]
  30. Hadisi Z. Farokhi M. Bakhsheshi-Rad H.R. Jahanshahi M. Hasanpour S. Pagan E. Dolatshahi-Pirouz A. Zhang Y.S. Kundu S.C. Akbari M. Hyaluronic acid (HA)‐based silk fibroin/zinc oxide core–shell electrospun dressing for burn wound management. Macromol. Biosci. 2020 20 4 1900328 10.1002/mabi.201900328 32077252
    [Google Scholar]
  31. Cho Y.S. Ghim M.S. Hong M.W. Kim Y.Y. Cho Y.S. Strategy to improve endogenous bone regeneration of 3D-printed PCL/nano-HA composite scaffold: Collagen designs with BMP-2 and FGF-2. Mater. Des. 2023 229 111913 10.1016/j.matdes.2023.111913
    [Google Scholar]
  32. Anjum S. Rahman F. Pandey P. Arya D.K. Alam M. Rajinikanth P.S. Ao Q. Electrospun biomimetic nanofibrous scaffolds: A promising prospect for bone tissue engineering and regenerative medicine. Int. J. Mol. Sci. 2022 23 16 9206 10.3390/ijms23169206
    [Google Scholar]
  33. Flores-Rojas G.G. Gómez-Lazaro B. López-Saucedo F. Vera-Graziano R. Bucio E. Mendizábal E. Electrospun scaffolds for tissue engineering: A review. Macromol 2023 3 3 524 553 10.3390/macromol3030031
    [Google Scholar]
  34. Xue J. Wu T. Dai Y. Xia Y. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem. Rev. 2019 119 8 5298 5415 10.1021/acs.chemrev.8b00593
    [Google Scholar]
  35. Saurav S. Sharma P. Kumar A. Tabassum Z. Girdhar M. Mamidi N. Mohan A. Harnessing natural polymers for nano-scaffolds in bone tissue engineering: A comprehensive overview of bone disease treatment. Curr. Issues Mol. Biol. 2024 46 1 585 611 10.3390/cimb46010038
    [Google Scholar]
  36. Verma S. Sharma P.K. Malviya R. Chitosan-Chitosan derivative for cartilage associated disorders: Protein interaction and biodegradability. Carbohydr. Polym. Technol. Appl. 2024 7 100506 10.1016/j.carpta.2024.100506
    [Google Scholar]
  37. Song H. Zhang Y. Zhang Z. Xiong S. Ma X. Li Y. Hydroxyapatite/nell-1 nanoparticles electrospun fibers for osteoinduction in bone tissue engineering application. Int. J. Nanomedicine 2021 16 4321 4332 10.2147/IJN.S309567 34211273
    [Google Scholar]
  38. Huang X.Y. Zhou X.X. Yang H. Xu T. Dao J.W. Bian L. Wei D.X. Directed osteogenic differentiation of human bone marrow mesenchymal stem cells via sustained release of BMP4 from PBVHx-based nanoparticles. Int. J. Biol. Macromol. 2024 265 Pt 1 130649 10.1016/j.ijbiomac.2024.130649 38453121
    [Google Scholar]
  39. Mitra S. Mateti T. Ramakrishna S. Laha A. A review on curcumin-loaded electrospun nanofibers and their application in modern medicine. JOM 2022 74 9 3392 3407 10.1007/s11837‑022‑05180‑9
    [Google Scholar]
  40. Chen K. Li Y. Li Y. Tan Y. Liu Y. Pan W. Tan G. Stimuli-responsive electrospun nanofibers for drug delivery, cancer therapy, wound dressing, and tissue engineering. J. Nanobiotechnology 2023 21 1 237 10.1186/s12951‑023‑01987‑z
    [Google Scholar]
  41. Zhao L. Niu L. Liang H. Tan H. Liu C. Zhu F. pH and glucose dual-responsive injectable hydrogels with insulin and fibroblasts as bioactive dressings for diabetic wound healing. ACS Appl. Mater. Interfaces 2017 9 43 37563 37574 10.1021/acsami.7b09395 28994281
    [Google Scholar]
  42. Singh B. Yun S. Park M.H. Light-responsive layer-by-layer assembled nanofibers for sequential drug release. J. Drug Deliv. Sci. Technol. 2023 88 104910 10.1016/j.jddst.2023.104910
    [Google Scholar]
  43. Delaine-Smith R.M. Hann A.J. Green N.H. Reilly G.C. Electrospun fiber alignment guides osteogenesis and matrix organization differentially in two different osteogenic cell types. Front. Bioeng. Biotechnol. 2021 9 672959 10.3389/fbioe.2021.672959 34760876
    [Google Scholar]
  44. Garrudo F.F.F. Chapman C.A. Hoffman P. Udangawa R.W. Silva J.C. Mikael P.E. Rodrigues C.A. Polyaniline-polycaprolactone blended nanofibers for neural cell culture. Eur. Polym. J. 2019 117 28 37 10.1016/j.eurpolymj.2019.04.048
    [Google Scholar]
  45. Gil-Castell O. Ontoria-Oviedo I. Badia J.D. Amaro-Prellezo E. Sepúlveda P. Ribes-Greus A. Conductive polycaprolactone/gelatin/polyaniline nanofibres as functional scaffolds for cardiac tissue regeneration. React. Funct. Polym. 2022 170 105064 10.1016/j.reactfunctpolym.2021.105064
    [Google Scholar]
  46. Abadi B. Goshtasbi N. Bolourian S. Tahsili J. Adeli-Sardou M. Forootanfar H. Electrospun hybrid nanofibers: Fabrication, characterization, and biomedical applications. Front. Bioeng. Biotechnol. 2022 10 986975 10.3389/fbioe.2022.986975
    [Google Scholar]
  47. Dippold D. Cai A. Hardt M. Boccaccini A.R. Horch R.E. Beier J.P. Schubert D.W. Investigation of the batch-to-batch inconsistencies of Collagen in PCL-Collagen nanofibers. Mater. Sci. Eng. C 2019 95 217 225 10.1016/j.msec.2018.10.057 30573244
    [Google Scholar]
  48. Huang C. Wang M. Yu S. Yu D.G. Bligh S.W.A. Electrospun fenoprofen/polycaprolactone@ tranexamic acid/hydroxyapatite nanofibers as orthopedic hemostasis dressings. Nanomaterials 2024 14 7 646 10.3390/nano14070646 38607180
    [Google Scholar]
  49. Reddy M.S.B. Ponnamma D. Choudhary R. Sadasivuni K.K. A comparative review of natural and synthetic biopolymer composite scaffolds. Polymers 2021 13 7 1105 10.3390/polym13071105
    [Google Scholar]
  50. Kalantari K. Afifi A.M. Jahangirian H. Webster T.J. Biomedical applications of chitosan electrospun nanofibers as a green polymer – Review. Carbohydr. Polym. 2019 207 588 600 10.1016/j.carbpol.2018.12.011
    [Google Scholar]
  51. Iacob A.T. Drăgan M. Ionescu O.M. Profire L. Ficai A. Andronescu E. Confederat L.G. Lupașcu D. An overview of biopolymeric electrospun nanofibers based on polysaccharides for wound healing management. Pharmaceutics 2020 12 10 1 49 10.3390/pharmaceutics12100983
    [Google Scholar]
  52. Juncos Bombin A.D. Dunne N.J. McCarthy H.O. Electrospinning of natural polymers for the production of nanofibres for wound healing applications. Mater. Sci. Eng. C 2020 114 110994 10.1016/j.msec.2020.110994
    [Google Scholar]
  53. Khosravimelal S. Chizari M. Farhadihosseinabadi B. Moosazadeh Moghaddam M. Gholipourmalekabadi M. Fabrication and characterization of an antibacterial chitosan/silk fibroin electrospun nanofiber loaded with a cationic peptide for wound-dressing application. J. Mater. Sci. Mater. Med. 2021 32 9 114 10.1007/s10856‑021‑06542‑6 34455501
    [Google Scholar]
  54. Riva L. Fiorati A. Punta C. Synthesis and application of cellulose-polyethyleneimine composites and nanocomposites: A concise review. Materials 2021 14 3 1 22 10.3390/ma14030473
    [Google Scholar]
  55. Arumugam M. Murugesan B. Chinnalagu D. Balasekar P. Cai Y. Sivakumar P.M. Rengasamy G. Chinniah K. Mahalingam S. Electrospun silk fibroin and collagen composite nanofiber incorporated with palladium and platinum nanoparticles for wound dressing applications. J. Polym. Environ. 2024 32 6 2797 2817 10.1007/s10924‑024‑03261‑1
    [Google Scholar]
  56. Wilk S. Benko A. Advances in fabricating the electrospun biopolymer-based biomaterials. J. Funct. Biomater. 2021 12 2 26 10.3390/jfb12020026
    [Google Scholar]
  57. Bayer I.S. Hyaluronic acid and controlled release: A review. Molecules 2020 25 11 2649 10.3390/molecules25112649
    [Google Scholar]
  58. Amaraweera S.M. Gunathilake C. Gunawardene O.H.P. Fernando N.M.L. Wanninayaka D.B. Dassanayake R.S. Rajapaksha S.M. Manamperi A. Fernando C.A.N. Kulatunga A.K. Manipura A. Development of starch-based materials using current modification techniques and their applications: A review. Molecules 2021 26 22 6880 10.3390/molecules26226880
    [Google Scholar]
  59. Dodero A. Brunengo E. Alloisio M. Sionkowska A. Vicini S. Castellano M. Chitosan-based electrospun membranes: Effects of solution viscosity, coagulant and crosslinker. Carbohydr. Polym. 2020 235 115976 10.1016/j.carbpol.2020.115976 32122507
    [Google Scholar]
  60. Golizadeh M. Karimi A. Gandomi-Ravandi S. Vossoughi M. Khafaji M. Joghataei M.T. Faghihi F. Evaluation of cellular attachment and proliferation on different surface charged functional cellulose electrospun nanofibers. Carbohydr. Polym. 2019 207 796 805 10.1016/j.carbpol.2018.12.028 30600068
    [Google Scholar]
  61. Mohammadzadehmoghadam S. Dong Y. Fabrication and characterization of electrospun silk fibroin/gelatin scaffolds crosslinked with glutaraldehyde vapor. Front. Mater. 2019 6 91 10.3389/fmats.2019.00091
    [Google Scholar]
  62. Diep E. Schiffman J.D. Encapsulating bacteria in alginate-based electrospun nanofibers. Biomater. Sci. 2021 9 12 4364 4373 10.1039/D0BM02205E 34128000
    [Google Scholar]
  63. El-Aassar M.R. El-Beheri N.G. Agwa M.M. Eltaher H.M. Alseqely M. Sadik W.S. El-Khordagui L. Antibiotic-free combinational hyaluronic acid blend nanofibers for wound healing enhancement. Int. J. Biol. Macromol. 2021 167 1552 1563 10.1016/j.ijbiomac.2020.11.109 33212109
    [Google Scholar]
  64. Lv H. Cui S. Zhang H. Pei X. Gao Z. Hu J. Zhou Y. Liu Y. Crosslinked starch nanofibers with high mechanical strength and excellent water resistance for biomedical applications. Biomed. Mater. 2020 15 2 025007 10.1088/1748‑605X/ab509f 31645028
    [Google Scholar]
  65. Huang C. Yang G. Zhou S. Luo E. Pan J. Bao C. Liu X. Controlled delivery of growth factor by hierarchical nanostructured core–shell nanofibers for the efficient repair of critical-sized rat calvarial defect. ACS Biomater. Sci. Eng. 2020 6 10 5758 5770 10.1021/acsbiomaterials.0c00837 33320572
    [Google Scholar]
  66. Yang J. Wang K. Yu D.G. Yang Y. Bligh S.W.A. Williams G.R. Electrospun Janus nanofibers loaded with a drug and inorganic nanoparticles as an effective antibacterial wound dressing. Mater. Sci. Eng. C 2020 111 110805 10.1016/j.msec.2020.110805 32279788
    [Google Scholar]
  67. De Grave L. Bernaerts K.V. Van Vlierberghe S. Development of photo-crosslinked poly(aspartic acid) fiber networks via electrospinning. Next Materials 2024 3 100172 10.1016/j.nxmate.2024.100172
    [Google Scholar]
  68. Silva J.C. Udangawa R.N. Chen J. Mancinelli C.D. Garrudo F.F.F. Mikael P.E. Cabral J.M.S. Ferreira F.C. Linhardt R.J. Kartogenin-loaded coaxial PGS/PCL aligned nanofibers for cartilage tissue engineering. Mater. Sci. Eng. C 2020 107 110291 10.1016/j.msec.2019.110291 31761240
    [Google Scholar]
  69. Moradipour P. Limoee M. Janfaza S. Behbood L. Core-shell nanofibers based on polycaprolactone/polyvinyl alcohol and polycaprolactone/collagen for biomedical applications. J. Pharm. Innov. 2022 17 3 911 920 10.1007/s12247‑021‑09568‑z
    [Google Scholar]
  70. Godakanda V.U. Li H. Alquezar L. Zhao L. Zhu L.M. de Silva R. de Silva K.M.N. Williams G.R. Tunable drug release from blend poly(vinyl pyrrolidone)-ethyl cellulose nanofibers. Int. J. Pharm. 2019 562 172 179 10.1016/j.ijpharm.2019.03.035 30898638
    [Google Scholar]
  71. Rezk A.I. Kim K.S. Kim C.S. Poly(ε-caprolactone)/poly(glycerol sebacate) composite nanofibers incorporating hydroxyapatite nanoparticles and simvastatin for bone tissue regeneration and drug delivery applications. Polymers 2020 12 11 2667 10.3390/polym12112667 33198091
    [Google Scholar]
  72. Ajmal G. Bonde G.V. Mittal P. Khan G. Pandey V.K. Bakade B.V. Mishra B. Biomimetic PCL-gelatin based nanofibers loaded with ciprofloxacin hydrochloride and quercetin: A potential antibacterial and anti-oxidant dressing material for accelerated healing of a full thickness wound. Int. J. Pharm. 2019 567 118480 10.1016/j.ijpharm.2019.118480 31255776
    [Google Scholar]
  73. Bakhsheshi-Rad H.R. Ismail A.F. Aziz M. Akbari M. Hadisi Z. Daroonparvar M. Chen X.B. Antibacterial activity and in vivo wound healing evaluation of polycaprolactone-gelatin methacryloyl-cephalexin electrospun nanofibrous. Mater. Lett. 2019 256 126618 10.1016/j.matlet.2019.126618
    [Google Scholar]
  74. Adeli-Sardou M. Yaghoobi M.M. Torkzadeh-Mahani M. Dodel M. Controlled release of lawsone from polycaprolactone/gelatin electrospun nano fibers for skin tissue regeneration. Int. J. Biol. Macromol. 2019 124 478 491 10.1016/j.ijbiomac.2018.11.237 30500508
    [Google Scholar]
  75. Hall Barrientos I.J. Paladino E. Szabó P. Brozio S. Hall P.J. Oseghale C.I. Passarelli M.K. Moug S.J. Black R.A. Wilson C.G. Zelkó R. Lamprou D.A. Electrospun collagen-based nanofibres: A sustainable material for improved antibiotic utilisation in tissue engineering applications. Int. J. Pharm. 2017 531 1 67 79 10.1016/j.ijpharm.2017.08.071 28807566
    [Google Scholar]
  76. Loukelis K. Papadogianni D. Kruse J.E. Chatzinikolaidou M. The effects of gellan gum concentration on electrospinning and degradation of flexible, crosslinker-free scaffolds for bone tissue engineering. Carbohydr. Polym. Technol. Appl. 2024 7 100454 10.1016/j.carpta.2024.100454
    [Google Scholar]
  77. Mirzaeei S. Taghe S. Asare-Addo K. Nokhodchi A. Polyvinyl alcohol/chitosan single-layered and polyvinyl alcohol/chitosan/eudragit RL100 multi-layered electrospun nanofibers as an ocular matrix for the controlled release of ofloxacin: An in vitro and in vivo evaluation. AAPS PharmSciTech 2021 22 5 170 10.1208/s12249‑021‑02051‑5 34085150
    [Google Scholar]
  78. Samadian H. Zamiri S. Ehterami A. Farzamfar S. Vaez A. Khastar H. Alam M. Ai A. Derakhshankhah H. Allahyari Z. Goodarzi A. Salehi M. Electrospun cellulose acetate/gelatin nanofibrous wound dressing containing berberine for diabetic foot ulcer healing: In vitro and in vivo studies. Sci. Rep. 2020 10 1 8312 10.1038/s41598‑020‑65268‑7 32433566
    [Google Scholar]
  79. Gautam S. Sharma C. Purohit S.D. Singh H. Dinda A.K. Potdar P.D. Chou C.F. Mishra N.C. Gelatin-polycaprolactone-nanohydroxyapatite electrospun nanocomposite scaffold for bone tissue engineering. Mater. Sci. Eng. C 2021 119 111588 10.1016/j.msec.2020.111588 33321633
    [Google Scholar]
  80. Aseer M. Taleb M. Arabpour Z. Bhatti Q.A. Ghanbari H. Potential of collagen/PLA-based nanofibrous scaffold to support PC12 cells and neural repair. J Contemp Med Sci. 2024 10 1 1493 10.22317/jcms.v10i1.1493
    [Google Scholar]
  81. Aadil K.R. Nathani A. Sharma C.S. Lenka N. Gupta P. Investigation of poly(vinyl) alcohol-gellan gum based nanofiber as scaffolds for tissue engineering applications. J. Drug Deliv. Sci. Technol. 2019 54 101276 10.1016/j.jddst.2019.101276
    [Google Scholar]
  82. Viana V.R. Ferreira W.H. Azero E.G. Dias M.L. Andrade C.T. Optimization of the electrospinning conditions by box-behnken design to prepare poly(vinyl alcohol)/chitosan crosslinked nanofibers. J Mater Sci Chem Eng. 2020 8 4 13 31 10.4236/msce.2020.84002
    [Google Scholar]
  83. Kusumah F.H. Munir M.M. Khairurrijal K. Antioxidant activity and release profile of electrospun cellulose acetate/gelatine nanofiber containing mangosteen hull extract. J. Phys. Conf. Ser. 2023 2596 1 012003 10.1088/1742‑6596/2596/1/012003
    [Google Scholar]
  84. Abu Owida H. Al-haj Moh’d, B.; Al Takrouri, M. Designing an integrated low-cost electrospinning device for nanofibrous scaffold fabrication. HardwareX 2022 11 e00250 10.1016/j.ohx.2021.e00250 35509902
    [Google Scholar]
  85. Bansal J. Neuman K. Greene V.K. Rubenstein D.A. Development of 3D printed electrospun scaffolds for the fabrication of porous scaffolds for vascular applications. 3D Print. Addit. Manuf. 2022 9 5 380 388 10.1089/3dp.2020.0337
    [Google Scholar]
  86. Kotrotsos A. Yiallouros P. Kostopoulos V. Fabrication and characterization of polylactic acid electrospun scaffolds modified with multi-walled carbon nanotubes and hydroxyapatite nanoparticles. Biomimetics 2020 5 3 43 10.3390/biomimetics5030043 32887424
    [Google Scholar]
  87. Massoumi B. Abbasian M. Khalilzadeh B. Jahanban-Esfahlan R. Rezaei A. Samadian H. Derakhshankhah H. Jaymand M. Gelatin-based nanofibrous electrically conductive scaffolds for tissue engineering applications. Int. J. Polym. Mater. 2021 70 10 693 702 10.1080/00914037.2020.1760271
    [Google Scholar]
  88. Chai C.J. Amirul A.A. Vigneswari S. Data on the effect of electrospinning parameters on the morphology of the nanofibrous poly(3-hydroxybutyrate-co-4-hydroxybutyrate) scaffolds. Data Brief 2020 28 104777 10.1016/j.dib.2019.104777 31871967
    [Google Scholar]
  89. Jayaram A.K. Pitsalidis C. Tan E. Moysidou C.M. De Volder M.F.L. Kim J.S. Owens R.M. 3D hybrid scaffolds based on PEDOT: PSS/MWCNT composites. Front Chem. 2019 7 MAY 363 10.3389/fchem.2019.00363 31165066
    [Google Scholar]
  90. Zhou X. Pan Y. Liu R. Luo X. Zeng X. Zhi D. Li J. Cheng Q. Huang Z. Zhang H. Wang K. Biocompatibility and biodegradation properties of polycaprolactone/polydioxanone composite scaffolds prepared by blend or co-electrospinning. J. Bioact. Compat. Polym. 2019 34 2 115 130 10.1177/0883911519835569
    [Google Scholar]
  91. Hirsch E. Nacsa M. Ender F. Mohai M. Nagy Z.K. Marosi G.J. Preparation and characterization of biocompatible electrospun nanofiber scaffolds. Period. Polytech. Chem. Eng. 2018 62 4 510 518 10.3311/PPch.12854
    [Google Scholar]
  92. Guidotti G. Soccio M. Argentati C. Luzi F. Aluigi A. Torre L. Armentano I. Emiliani C. Morena F. Martino S. Lotti N. Novel nanostructured scaffolds of poly(butylene trans-1,4-cyclohexanedicarboxylate)-based copolymers with tailored hydrophilicity and stiffness: Implication for tissue engineering modeling. Nanomaterials 2023 13 16 2330 10.3390/nano13162330 37630915
    [Google Scholar]
  93. Nagiah N. El Khoury R. Othman M.H. Akimoto J. Ito Y. Roberson D.A. Joddar B. Development and characterization of furfuryl-gelatin electrospun scaffolds for cardiac tissue engineering. ACS Omega 2022 7 16 13894 13905 10.1021/acsomega.2c00271 35559153
    [Google Scholar]
  94. Zykova A. Morokov E. Tyubaeva P. Influence of processing methods on the mechanical behavior of poly‐3‐hydroxybutyrate nonwoven scaffolds. Macromol. Symp. 2022 404 1 2100322 10.1002/masy.202100322
    [Google Scholar]
  95. Marsudi M.A. Ariski R.T. Wibowo A. Cooper G. Barlian A. Rachmantyo R. Bartolo P.J.D.S. Conductive polymeric‐based electroactive scaffolds for tissue engineering applications: Current progress and challenges from biomaterials and manufacturing perspectives. Int. J. Mol. Sci. 2021 22 21 11543 10.3390/ijms222111543 34768972
    [Google Scholar]
  96. Ferrari P.F. Aliakbarian B. Lagazzo A. Tamayol A. Palombo D. Perego P. Tailored electrospun small-diameter graft for vascular prosthesis. Int. J. Polym. Mater. 2017 66 12 635 643 10.1080/00914037.2016.1252361
    [Google Scholar]
  97. Jahan U.M. Blevins B. Minko S. Reukov V. Advancing biomedical applications: Antioxidant and biocompatible cerium oxide nanoparticle- integrated poly-{\epsilon}-caprolactone fibers. arXiv preprint, 2024 2404.17091
  98. Biomedical patches with aligned fibers. Patent US-11071617-B2, 2010
  99. Clinical trials of electrospun scaffolds. Available from: https://www.researchgate.net/figure/Clinical-trials-of-electrospun-scaffolds_tbl2_328482447
/content/journals/cdd/10.2174/0115672018366586250402144057
Loading
/content/journals/cdd/10.2174/0115672018366586250402144057
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test