Skip to content
2000
Volume 22, Issue 10
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Background

Pancreatic cancer is a highly malignant tumor with a poor prognosis, and current treatment methods have limited effectiveness. Therefore, developing new and more effective therapeutic strategies is crucial. This study aims to establish pH-responsive silk fibroin (SF) nanoparticles encapsulating β-hydroxyisovalerylshikonin (SF@β-HIVS) to enhance the therapeutic effects against pancreatic cancer.

Methods

SF@β-HIVS nanoparticles were prepared using a self-assembly technique and characterized under different pH conditions using scanning electron microscopy (SEM) and dynamic light scattering (DLS). The effects of SF@β-HIVS on the viability, apoptosis, and migration of PANC-1 cells were assessed through experiments. Additionally, experiments using a PANC-1 xenograft mouse model evaluated the antitumor activity and biosafety of SF@β-HIVS.

Results

SF@β-HIVS nanoparticles exhibited a uniformly distributed spherical structure under pH 7.4 conditions and rapidly disintegrated in acidic environments, releasing the drug. experiments demonstrated that SF@β-HIVS significantly inhibited PANC-1 cell proliferation, induced apoptosis, and suppressed cell migration. , experiments confirmed the significant antitumor activity and good biosafety of SF@β-HIVS.

Conclusion

This study successfully developed pH-responsive SF@β-HIVS nanoparticles and validated their potential in treating pancreatic cancer. These findings provided a foundation for the clinical application of SF@β-HIVS in pancreatic cancer treatment.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018342718241030070142
2025-12-01
2025-11-30
Loading full text...

Full text loading...

References

  1. MizrahiJ.D. SuranaR. ValleJ.W. ShroffR.T. Pancreatic cancer.Lancet2020395102422008202010.1016/S0140‑6736(20)30974‑032593337
    [Google Scholar]
  2. KhalafN. El-SeragH.B. AbramsH.R. ThriftA.P. Burden of pancreatic cancer: From epidemiology to practice.Clin. Gastroenterol. Hepatol.202119587688410.1016/j.cgh.2020.02.05432147593
    [Google Scholar]
  3. Hui-longC. Wei-guangY. JingA. JingL. Jing-jieG. Yuan-diD. BaoL. Hui-xinS. Disease burden and risk factors of pancreatic cancer in China in 1990 and 2019.Chin. J. Gen. Pract.2023212337340
    [Google Scholar]
  4. PereiraS.P. OldfieldL. NeyA. HartP.A. KeaneM.G. PandolS.J. LiD. GreenhalfW. JeonC.Y. KoayE.J. AlmarioC.V. HalloranC. LennonA.M. CostelloE. Early detection of pancreatic cancer.Lancet Gastroenterol. Hepatol.20205769871010.1016/S2468‑1253(19)30416‑932135127
    [Google Scholar]
  5. YangJ. XuR. WangC. QiuJ. RenB. YouL. Early screening and diagnosis strategies of pancreatic cancer: A comprehensive review.Cancer Commun. (Lond.)202141121257127410.1002/cac2.1220434331845
    [Google Scholar]
  6. WoodL.D. CantoM.I. JaffeeE.M. SimeoneD.M. Pancreatic cancer: Pathogenesis, screening, diagnosis, and treatment.Gastroenterology20221632386402.e110.1053/j.gastro.2022.03.05635398344
    [Google Scholar]
  7. SchizasD. CharalampakisN. KoleC. EconomopoulouP. KoustasE. GkotsisE. ZiogasD. PsyrriA. KaramouzisM.V. Immunotherapy for pancreatic cancer: A 2020 update.Cancer Treat. Rev.20208610201610.1016/j.ctrv.2020.10201632247999
    [Google Scholar]
  8. BearA.S. VonderheideR.H. O’HaraM.H. Challenges and opportunities for pancreatic cancer immunotherapy.Cancer Cell202038678880210.1016/j.ccell.2020.08.00432946773
    [Google Scholar]
  9. PrincipeD.R. KorcM. KamathS.D. MunshiH.G. RanaA. Trials and tribulations of pancreatic cancer immunotherapy.Cancer Lett.202150411410.1016/j.canlet.2021.01.03133549709
    [Google Scholar]
  10. BockornyB. GrossmanJ.E. HidalgoM. Facts and hopes in immunotherapy of pancreatic cancer.Clin. Cancer Res.202228214606461710.1158/1078‑0432.CCR‑21‑345235775964
    [Google Scholar]
  11. TaoJ. YangG. ZhouW. QiuJ. ChenG. LuoW. ZhaoF. YouL. ZhengL. ZhangT. ZhaoY. Targeting hypoxic tumor microenvironment in pancreatic cancer.J. Hematol. Oncol.20211411410.1186/s13045‑020‑01030‑w33436044
    [Google Scholar]
  12. HoW.J. JaffeeE.M. ZhengL. The tumour microenvironment in pancreatic cancer — Clinical challenges and opportunities.Nat. Rev. Clin. Oncol.202017952754010.1038/s41571‑020‑0363‑532398706
    [Google Scholar]
  13. HessmannE. BuchholzS.M. DemirI.E. SinghS.K. GressT.M. EllenriederV. NeesseA. Microenvironmental determinants of pancreatic cancer.Physiol. Rev.202010041707175110.1152/physrev.00042.201932297835
    [Google Scholar]
  14. FalcomatàC. BärthelS. SchneiderG. RadR. Schmidt-SupprianM. SaurD. Context-specific determinants of the immunosuppressive tumor microenvironment in pancreatic cancer.Cancer Discov.202313227829710.1158/2159‑8290.CD‑22‑087636622087
    [Google Scholar]
  15. DeR. MahataM.K. KimK.T. Structure‐based varieties of polymeric nanocarriers and influences of their physicochemical properties on drug delivery profiles.Adv. Sci. (Weinh.)2022910210537310.1002/advs.20210537335112798
    [Google Scholar]
  16. MeiH. CaiS. HuangD. GaoH. CaoJ. HeB. Carrier-free nanodrugs with efficient drug delivery and release for cancer therapy: From intrinsic physicochemical properties to external modification.Bioact. Mater.2022822024010.1016/j.bioactmat.2021.06.03534541398
    [Google Scholar]
  17. SohailR. AbbasS.R. Evaluation of amygdalin-loaded alginate-chitosan nanoparticles as biocompatible drug delivery carriers for anticancerous efficacy.Int. J. Biol. Macromol.2020153364510.1016/j.ijbiomac.2020.02.19132097740
    [Google Scholar]
  18. NematollahiE. PourmadadiM. YazdianF. FatoorehchiH. RashediH. NigjehM.N. Synthesis and characterization of chitosan/polyvinylpyrrolidone coated nanoporous γ-Alumina as a pH-sensitive carrier for controlled release of quercetin.Int. J. Biol. Macromol.202118360061310.1016/j.ijbiomac.2021.04.16033932424
    [Google Scholar]
  19. ShangS. LiX. WangH. ZhouY. PangK. LiP. LiuX. ZhangM. LiW. LiQ. ChenX. Targeted therapy of kidney disease with nanoparticle drug delivery materials.Bioact. Mater.20243720622110.1016/j.bioactmat.2024.03.01438560369
    [Google Scholar]
  20. DhirS. VermaR. BhattS. GargV. DuttR. Green synthesis, characterization, and biomedical applications of copper and copper oxide nanoparticles of plant origin.Curr. Drug Ther.202318539140610.2174/1574885518666230328150208
    [Google Scholar]
  21. VermaR. MittalV. KaushikD. Quality based design approach for improving oral bioavailability of valsartan loaded SMEDDS and study of impact of lipolysis on the drug diffusion.Drug Deliv. Lett.20188213013910.2174/2210303108666180313141956
    [Google Scholar]
  22. Carmona-AlmazánJ.P. Castro-CeseñaA.B. AguilaS.A. Evaluation of the release kinetics of hydrophilic and lipophilic compounds from lipid–polymer hybrid nanoparticles.Nanoscale20241633158011581410.1039/D4NR01358A39120682
    [Google Scholar]
  23. KumarV. PackirisamyG. 3D porous sodium alginate-silk fibroin composite bead based in vitro tumor model for screening of anti-cancer drug and induction of magneto-apoptosis.Int. J. Biol. Macromol.2023242Pt 312482710.1016/j.ijbiomac.2023.12482737207758
    [Google Scholar]
  24. PandeyV. HaiderT. ChandakA.R. ChakrabortyA. BanerjeeS. SoniV. Surface modified silk fibroin nanoparticles for improved delivery of doxorubicin: Development, characterization, in-vitro studies.Int. J. Biol. Macromol.20201642018202710.1016/j.ijbiomac.2020.07.32632758604
    [Google Scholar]
  25. YaoQ. LanQ.H. JiangX. DuC.C. ZhaiY.Y. ShenX. XuH.L. XiaoJ. KouL. ZhaoY.Z. Bioinspired biliverdin/silk fibroin hydrogel for antiglioma photothermal therapy and wound healing.Theranostics20201025117191173610.7150/thno.4768233052243
    [Google Scholar]
  26. RasulR.M. Tamilarasi MuniandyM. ZakariaZ. ShahK. CheeC.F. DabbaghA. RahmanN.A. WongT.W. A review on chitosan and its development as pulmonary particulate anti-infective and anti-cancer drug carriers.Carbohydr. Polym.202025011680010.1016/j.carbpol.2020.11680033049807
    [Google Scholar]
  27. RajivgandhiG. SaravananK. RamachandranG. LiJ.L. YinL. QueroF. AlharbiN.S. KadaikunnanS. KhaledJ.M. ManoharanN. LiW.J. Enhanced anti-cancer activity of chitosan loaded Morinda citrifolia essential oil against A549 human lung cancer cells.Int. J. Biol. Macromol.20201644010402110.1016/j.ijbiomac.2020.08.16932853609
    [Google Scholar]
  28. AlizadehN. MalakzadehS. Antioxidant, antibacterial and anti-cancer activities of β-and γ-CDs/curcumin loaded in chitosan nanoparticles.Int. J. Biol. Macromol.202014777879110.1016/j.ijbiomac.2020.01.20631982535
    [Google Scholar]
  29. JaiswalJ. RajputP.K. SrivastavA.K. RaoM.J. YadavU.C.S. KumarU. Synthesis, physiochemical characterization, molecular docking study, and anti-breast cancer activity of silymarin loaded zein nanoparticles.Int. J. Biol. Macromol.2024264Pt 213067910.1016/j.ijbiomac.2024.13067938462110
    [Google Scholar]
  30. FarokhiM. MottaghitalabF. ReisR.L. RamakrishnaS. KunduS.C. Functionalized silk fibroin nanofibers as drug carriers: Advantages and challenges.J. Control. Release202032132434710.1016/j.jconrel.2020.02.02232061791
    [Google Scholar]
  31. GhaleiS. HandaH. A review on antibacterial silk fibroin-based biomaterials: Current state and prospects.Mater. Today Chem.20222310067310.1016/j.mtchem.2021.10067334901586
    [Google Scholar]
  32. SeibF.P. JonesG.T. Rnjak-KovacinaJ. LinY. KaplanD.L. pH-dependent anticancer drug release from silk nanoparticles.Adv. Healthc. Mater.20132121606161110.1002/adhm.20130003423625825
    [Google Scholar]
  33. PalanikumarL. Al-HosaniS. KalmouniM. NguyenV.P. AliL. PasrichaR. BarreraF.N. MagzoubM. pH-responsive high stability polymeric nanoparticles for targeted delivery of anticancer therapeutics.Commun. Biol.2020319510.1038/s42003‑020‑0817‑432127636
    [Google Scholar]
  34. ChenQ. JiaC. XuY. JiangZ. HuT. LiC. ChengX. Dual-pH responsive chitosan nanoparticles for improving in vivo drugs delivery and chemoresistance in breast cancer.Carbohydr. Polym.202229011951810.1016/j.carbpol.2022.11951835550759
    [Google Scholar]
  35. MaoJ.J. PillaiG.G. AndradeC.J. LigibelJ.A. BasuP. CohenL. KhanI.A. MustianK.M. PuthiyedathR. DhimanK.S. LaoL. GhelmanR. Cáceres GuidoP. LopezG. Gallego-PerezD.F. SalicrupL.A. Integrative oncology: Addressing the global challenges of cancer prevention and treatment.CA Cancer J. Clin.202272214416410.3322/caac.2170634751943
    [Google Scholar]
  36. ZhangJ. HuK. DiL. WangP. LiuZ. ZhangJ. YueP. SongW. ZhangJ. ChenT. WangZ. ZhangY. WangX. ZhanC. ChengY.C. LiX. LiQ. FanJ.Y. ShenY. HanJ.Y. QiaoH. Traditional herbal medicine and nanomedicine: Converging disciplines to improve therapeutic efficacy and human health.Adv. Drug Deliv. Rev.202117811396410.1016/j.addr.2021.11396434499982
    [Google Scholar]
  37. SunJ. WangS. WangY. WangR. LiuK. LiE. QiaoP. ShiL. DongW. HuangL. GuoL. Phylogenomics and genetic diversity of Arnebiae radix and its allies (Arnebia, Boraginaceae) in China.Front. Plant Sci.20221392082610.3389/fpls.2022.92082635755641
    [Google Scholar]
  38. MaoX. RongYU C.; Hua Li, W.; Xin Li, W. Induction of apoptosis by shikonin through a ROS/JNK-mediated process in Bcr/Abl-positive chronic myelogenous leukemia (CML) cells.Cell Res.200818887988810.1038/cr.2008.8618663379
    [Google Scholar]
  39. MaX. YuM. HaoC. YangW. Shikonin induces tumor apoptosis in glioma cells via endoplasmic reticulum stress, and Bax/Bak mediated mitochondrial outer membrane permeability.J. Ethnopharmacol.202026311305910.1016/j.jep.2020.11305932663591
    [Google Scholar]
  40. MaeokaR. OujiY. NakazawaT. MatsudaR. MorimotoT. YokoyamaS. YamadaS. NishimuraF. NakagawaI. ParkY.S. YoshikawaM. NakaseH. Local administration of shikonin improved the overall survival in orthotopic murine glioblastoma models with temozolomide resistance.Biomed. Pharmacother.202316611529610.1016/j.biopha.2023.11529637557011
    [Google Scholar]
  41. ValipourM. Recent advances of antitumor shikonin/alkannin derivatives: A comprehensive overview focusing on structural classification, synthetic approaches, and mechanisms of action.Eur. J. Med. Chem.202223511431410.1016/j.ejmech.2022.11431435367708
    [Google Scholar]
  42. AsahinaY. TakatoriH. NioK. OkadaH. HayashiT. HayashiT. HashibaT. SudaT. NishitaniM. SugimotoS. HondaM. KanekoS. YamashitaT. Beta-hydroxyisovaleryl-shikonin eradicates epithelial cell adhesion molecule-positive liver cancer stem cells by suppressing dUTP pyrophosphatase expression.Int. J. Mol. Sci.202324221628310.3390/ijms24221628338003473
    [Google Scholar]
  43. ZengY. ZhangH. ZhuM. PuQ. LiJ. HuX. β-hydroxyisovaleryl-shikonin exerts an antitumor effect on pancreatic cancer through the PI3K/AKT Signaling pathway.Front. Oncol.20221290425810.3389/fonc.2022.90425835860565
    [Google Scholar]
  44. LiX. YeM. GaoY.E. HouS. JiaP. XueP. KangY. XuZ. The systematic evaluation of physicochemical and biological properties in vitro and in vivo for natural silk fibroin nanoparticles.Adv. Fiber Mater.2022451141115210.1007/s42765‑022‑00167‑2
    [Google Scholar]
  45. KouZ. DouD. MoH. JiJ. LanL. LanX. ZhangJ. LanP. Preparation and application of a polymer with pH/temperatureresponsive targeting.Int. J. Biol. Macromol.2020165Pt A995100110.1016/j.ijbiomac.2020.09.24833022350
    [Google Scholar]
  46. BrarS.K. VermaM. Measurement of nanoparticles by light-scattering techniques.Trends Analyt. Chem.201130141710.1016/j.trac.2010.08.008
    [Google Scholar]
  47. Bharti SharmaJ. BhattS. TiwariA. TiwariV. KumarM. VermaR. KaushikD. VirmaniT. KumarG. Al kamalyO. SalehA. Khalid ParvezM. AlhalmiA. Statistical optimization of tetrahydrocurcumin loaded solid lipid nanoparticles using Box Behnken design in the management of streptozotocin-induced diabetes mellitus.Saudi Pharm. J.202331910172710.1016/j.jsps.2023.10172737638219
    [Google Scholar]
  48. ZhangY. YangX. BiT. WuX. WangL. RenY. OuY. XieC. LiK. RanH. WangJ. ZhaoF. ShuiP. QingJ. Targeted inhibition of the immunoproteasome blocks endothelial MHC class II antigen presentation to CD4+ T cells in chronic liver injury.Int. Immunopharmacol.202210710863910.1016/j.intimp.2022.10863935219165
    [Google Scholar]
  49. ZhilanT. ZengyuZ. PengpengJ. HualanY. ChaoL. YanX. ZiminG. ShuangxingH. WeiweiL. Salidroside promotes pro-angiogenesis and repair of blood brain barrier via Notch/ITGB1 signal path in CSVD Model.J. Adv. Res.202410.1016/j.jare.2024.02.01938417575
    [Google Scholar]
  50. TaoL. ChenX. ZhengY. WuY. JiangX. YouM. LiS. HuF. Chinese propolis suppressed pancreatic cancer Panc-1 cells proliferation and migration via Hippo-YAP pathway.Molecules2021269280310.3390/molecules2609280334068565
    [Google Scholar]
  51. ChengB. WangQ. SongY. LiuY. LiuY. YangS. LiD. ZhangY. ZhuC. MIF inhibitor, ISO-1, attenuates human pancreatic cancer cell proliferation, migration and invasion in vitro, and suppresses xenograft tumour growth in vivo.Sci. Rep.2020101674110.1038/s41598‑020‑63778‑y32317702
    [Google Scholar]
  52. ZhengJ.L. WangS.S. ShenK.P. ChenL. PengX. ChenJ.F. AnH.M. HuB. Ursolic acid induces apoptosis and anoikis in colorectal carcinoma RKO cells.BMC Complement. Med. Ther.20212115210.1186/s12906‑021‑03232‑233549076
    [Google Scholar]
  53. XuY. YeS. ZhangN. ZhengS. LiuH. ZhouK. WangL. CaoY. SunP. WangT. The FTO/miR‐181b‐3p/ARL5B signaling pathway regulates cell migration and invasion in breast cancer.Cancer Commun. (Lond.)2020401048450010.1002/cac2.1207532805088
    [Google Scholar]
  54. ZhangZ. HouW. ZhangC. TanY. ZhangD. AnW. PanS. WuW. ChenQ. XuH. A research of STEAP1 regulated gastric cancer cell proliferation, migration and invasion in vitro and in vivos.J. Cell. Mol. Med.20202424142171423010.1111/jcmm.1603833128353
    [Google Scholar]
  55. SarantisP. BokasA. PapadimitropoulouA. KoustasE. TheocharisS. PapakotoulasP. SchizasD. PapalamprosA. FelekourasE. PapavassiliouA.G. KaramouzisM.V. Combinatorial treatment of tinzaparin and chemotherapy can induce a significant antitumor effect in pancreatic cancer.Int. J. Mol. Sci.20212213705310.3390/ijms2213705334208987
    [Google Scholar]
  56. WatabeT. LiuY. Kaneda-NakashimaK. ShirakamiY. LindnerT. OoeK. ToyoshimaA. NagataK. ShimosegawaE. HaberkornU. KratochwilC. ShinoharaA. GieselF. HatazawaJ. Theranostics targeting fibroblast activation protein in the tumor stroma: 64 Cu- and 225 Ac-labeled FAPI-04 in pancreatic cancer xenograft mouse models.J. Nucl. Med.202061456356910.2967/jnumed.119.23312231586001
    [Google Scholar]
  57. YedgarS. BarshteinG. GuralA. Hemolytic activity of nanoparticles as a marker of their hemocompatibility.Micromachines (Basel)20221312209110.3390/mi1312209136557391
    [Google Scholar]
  58. KokilaN.R. MaheshB. RoopaK.P. Daruka PrasadB. RajK. ManjulaS.N. MruthunjayaK. RamuR. Thunbergia mysorensis mediated nano silver oxide for enhanced antibacterial, antioxidant, anticancer potential and in vitro hemolysis evaluation.J. Mol. Struct.2022125513245510.1016/j.molstruc.2022.132455
    [Google Scholar]
  59. GurC. KandemirF.M. Molecular and biochemical investigation of the protective effects of rutin against liver and kidney toxicity caused by malathion administration in a rat model.Environ. Toxicol.202338355556510.1002/tox.2370036346126
    [Google Scholar]
  60. MunirM.U. Nanomedicine penetration to tumor: Challenges, and advanced strategies to tackle this issue.Cancers (Basel)20221412290410.3390/cancers1412290435740570
    [Google Scholar]
  61. LiuL. KshirsagarP.G. GautamS.K. GulatiM. WafaE.I. ChristiansenJ.C. WhiteB.M. MallapragadaS.K. WannemuehlerM.J. KumarS. SolheimJ.C. BatraS.K. SalemA.K. NarasimhanB. JainM. Nanocarriers for pancreatic cancer imaging, treatments, and immunotherapies.Theranostics20221231030106010.7150/thno.6480535154473
    [Google Scholar]
  62. DemirtürkN. BilensoyE. Nanocarriers targeting the diseases of the pancreas.Eur. J. Pharm. Biopharm.2022170102310.1016/j.ejpb.2021.11.00634852262
    [Google Scholar]
  63. ShenX. PanD. GongQ. GuZ. LuoK. Enhancing drug penetration in solid tumors via nanomedicine: Evaluation models, strategies and perspectives.Bioact. Mater.20243244547210.1016/j.bioactmat.2023.10.01737965242
    [Google Scholar]
  64. NiuJ. LiM. WangY. Cell proliferation and cytotoxicity assays, the fundamentals for drug discovery.Int. J. Drug Discov. Pharmacol.202410.53941/ijddp.2024.100013
    [Google Scholar]
  65. FrankfurtO.S. KrishanA. Apoptosis-based drug screening and detection of selective toxicity to cancer cells.Anticancer Drugs200314755556110.1097/00001813‑200308000‑0000812960740
    [Google Scholar]
  66. AhmadA. ImranM. SharmaN. Precision nanotoxicology in drug development: Current trends and challenges in safety and toxicity implications of customized multifunctional nanocarriers for drug-delivery applications.Pharmaceutics20221411246310.3390/pharmaceutics1411246336432653
    [Google Scholar]
  67. PandeyR.P. VidicJ. MukherjeeR. ChangC.M. Experimental methods for the biological evaluation of nanoparticle-based drug delivery risks.Pharmaceutics202315261210.3390/pharmaceutics1502061236839932
    [Google Scholar]
  68. GawlikowskiM. El FrayM. JaniczakK. Zawidlak-WęgrzyńskaB. KustoszR. In-vitro biocompatibility and hemocompatibility study of new PET copolyesters intended for heart assist devices.Polymers (Basel)20201212285710.3390/polym1212285733260484
    [Google Scholar]
  69. HuangX. DingL. LiuX. TongR. DingJ. QianZ. CaiL. ZhangP. LiD. Regulation of tumor microenvironment for pancreatic cancer therapy.Biomaterials202127012068010.1016/j.biomaterials.2021.12068033588140
    [Google Scholar]
  70. XiaoY. YuD. Tumor microenvironment as a therapeutic target in cancer.Pharmacol. Ther.202122110775310.1016/j.pharmthera.2020.10775333259885
    [Google Scholar]
  71. ChenW. SunZ. LuL. Targeted engineering of medicinal chemistry for cancer therapy: Recent advances and perspectives.Angew. Chem. Int. Ed.202160115626564310.1002/anie.20191451132096328
    [Google Scholar]
  72. SunY. ShaY. CuiG. MengF. ZhongZ. Lysosomal-mediated drug release and activation for cancer therapy and immunotherapy.Adv. Drug Deliv. Rev.202319211462410.1016/j.addr.2022.11462436435229
    [Google Scholar]
  73. LiZ. ChengG. ZhangQ. WuW. ZhangY. WuB. LiuZ. TongX. XiaoB. ChengL. DaiF. PX478-loaded silk fibroin nanoparticles reverse multidrug resistance by inhibiting the hypoxia-inducible factor.Int. J. Biol. Macromol.2022222Pt B2309231710.1016/j.ijbiomac.2022.10.01836228812
    [Google Scholar]
  74. TanM. LiuW. LiuF. ZhangW. GaoH. ChengJ. ChenY. WangZ. CaoY. RanH. Silk fibroin-coated nanoagents for acidic lysosome targeting by a functional preservation strategy in cancer chemotherapy.Theranostics20199496197310.7150/thno.3076530867809
    [Google Scholar]
  75. ZouX. JiangZ. LiL. HuangZ. Selenium nanoparticles coated with pH responsive silk fibroin complex for fingolimod release and enhanced targeting in thyroid cancer.Artif. Cells Nanomed. Biotechnol.2021491839510.1080/21691401.2021.187162033438446
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018342718241030070142
Loading
/content/journals/cdd/10.2174/0115672018342718241030070142
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test