Skip to content
2000
Volume 22, Issue 8
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Introduction

The last strategy in targeted drug delivery systems is to deliver the anticancer drug to the tumor tissue to increase its therapeutic effect and minimize its undesirable side effects. In line with this goal in this research, the redox/pH-responsive disulfide magnetic nanocarriers based on PF127-NH/L-cysteine-CM-β-CD-FA were synthesized and evaluated in a doxorubicin delivery system.

Methods

We effectively surrounded FeO nanoparticles with SiO using the sol-gel method, and then confidently coated them with oleic acid on FeO@SiO nanoparticles.. In another reaction, a PF127-NH/L-cysteine-CM-β-CD-FA was synthesized. The process involved modifying pluronic F127 (PF 127) with maleic anhydride and aminating it to form PF127-NH. The obtained PF127-NH was attached to L-cysteine, followed by condensing with carboxymethyl-β-cyclodextrin and then functionalized by folic acid. Finally, PF127-NH/L-cysteine-CM-β-CD-FA was coated on the surface of magnetic nanoparticles, and the resulting PF127-NH/L-cysteine-CM-β-CD-FA was disulfidated to form the final nanocarrier network, which was abbreviated as LCMNPs-SS. The doxorubicin was used as a model drug and loaded into the LCMNPs-SS nanocarrier.

Results

The LCMNPs-SS nanocarrier exhibited excellent properties for controlled release, with a well-defined release rate, a controllable level by an external magnet, and adjusting by DL-dithiothreitol concentration. The LCMNPs-SS nanocarrier could also break apart when exposed to an oxidant or a change in pH. This meant that the drug release could be fine-tuned in response to temperature, pH, or more than one stimulus.

Conclusion

These drug-carrying systems are valuable in reducing the dose of doxorubicin. High internalization of the synthesized LCMNPs-SS caused sped cellular uptake.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018340056240924183806
2024-10-04
2025-12-17
Loading full text...

Full text loading...

References

  1. ChangS. WangY. ZhangT. PuX. ZongL. ZhuH. ZhaoL. FengB. Redox-Responsive Disulfide Bond-Bridged mPEG-PBLA Prodrug Micelles for Enhanced Paclitaxel Biosafety and Antitumor Efficacy.Front. Oncol.2019982310.3389/fonc.2019.00823 31508374
    [Google Scholar]
  2. Carmona-AlmazánJ.P. Castro-CeseñaA.B. AguilaS.A. Evaluation of the release kinetics of hydrophilic and lipophilic compounds from lipid–polymer hybrid nanoparticles.Nanoscale20241633158011581410.1039/D4NR01358A 39120682
    [Google Scholar]
  3. Alvarez-LorenzoC. ConcheiroA. Smart drug delivery systems: from fundamentals to the clinic.Chem. Commun. (Camb.)201450587743776510.1039/C4CC01429D 24805962
    [Google Scholar]
  4. AroraD. BhattS. KumarM. VermaR. TanejaY. KaushalN. TiwariA. TiwariV. AlexiouA. AlbogamiS. AlotaibiS.S. MittalV. SinglaR.K. KaushikD. BatihaG.E.S. RETRACTED: QbD-based rivastigmine tartrate-loaded solid lipid nanoparticles for enhanced intranasal delivery to the brain for Alzheimer’s therapeutics.Front. Aging Neurosci.20221496024610.3389/fnagi.2022.960246 36034142
    [Google Scholar]
  5. PoojaD. GunukulaA. GuptaN. AdamsD.J. KulhariH. Bombesin receptors as potential targets for anticancer drug delivery and imaging.Int. J. Biochem. Cell Biol.201911410556710.1016/j.biocel.2019.105567 31295552
    [Google Scholar]
  6. DhirS. VermaR. BhattS. GargV. DuttR. Green synthesis, characterization, and biomedical applications of copper and copper oxide nanoparticles of plant origin.Curr. Drug Ther.202318539140610.2174/1574885518666230328150208
    [Google Scholar]
  7. ChenQ. ZhengJ. YuanX. WangJ. ZhangL. Folic acid grafted and tertiary amino based pH-responsive pentablock polymeric micelles for targeting anticancer drug delivery.Mater. Sci. Eng. C2018821910.1016/j.msec.2017.08.026 29025636
    [Google Scholar]
  8. PaluszkiewiczP. MartuszewskiA. ZarębaN. WalaK. BanasikM. KepinskaM. The application of nanoparticles in diagnosis and treatment of kidney diseases.Int. J. Mol. Sci.202123113110.3390/ijms23010131 35008556
    [Google Scholar]
  9. FatemiM. MeshkiniA. MatinM.M. A dual catalytic functionalized hollow mesoporous silica-based nanocarrier coated with bacteria-derived exopolysaccharides for targeted delivery of irinotecan to colorectal cancer cells.Int. J. Biol. Macromol.2024259Pt 112917910.1016/j.ijbiomac.2023.129179 38181911
    [Google Scholar]
  10. FeiM.Y. SongM.M. WangP. PangG. ChenJ. LuD.P. LiuR. ZhangG.Y. ZhaoT.T. ShenY.X. YuY.Q. Folic acid modified Fe 3 O 4 nanoclusters by a one-step ultrasonic technique for drug delivery and MR imaging.RSC Advances20201095294530310.1039/C9RA09670A 35498332
    [Google Scholar]
  11. LaurentS. SaeiA.A. BehzadiS. PanahifarA. MahmoudiM. Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: opportunities and challenges.Expert Opin. Drug Deliv.20141191449147010.1517/17425247.2014.924501 24870351
    [Google Scholar]
  12. MishraB. YadavA.S. MalhotraD. MitraT. SinsinwarS. RadharaniN.N.V. SahooS.R. PatnaikS. KunduG.C. Chitosan Nanoparticle-Mediated delivery of curcumin suppresses tumor growth in breast cancer.Nanomaterials (Basel)20241415129410.3390/nano14151294 39120399
    [Google Scholar]
  13. SharmaG. KodaliV. GaffreyM. WangW. MinardK.R. KarinN.J. TeeguardenJ.G. ThrallB.D. Iron oxide nanoparticle agglomeration influences dose rates and modulates oxidative stress-mediated dose–response profiles in vitro.Nanotoxicology20148666367510.3109/17435390.2013.822115 23837572
    [Google Scholar]
  14. GalloJ. LongN.J. AboagyeE.O. Magnetic nanoparticles as contrast agents in the diagnosis and treatment of cancer.Chem. Soc. Rev.201342197816783310.1039/c3cs60149h 23788179
    [Google Scholar]
  15. GalloJ. LongN.J. AboagyeE.O. Targeted treatment of cancer with magnetic nanoparticles.J. Magn. Magn. Mater.1999202554564
    [Google Scholar]
  16. SicilianoG. MonteduroA.G. TurcoA. PrimiceriE. RizzatoS. DepaloN. CurriM.L. MaruccioG. Polydopamine-Coated Magnetic Iron Oxide nanoparticles: From design to applications.Nanomaterials (Basel)2022127114510.3390/nano12071145 35407264
    [Google Scholar]
  17. Heidari MajdM. AsgariD. BararJ. ValizadehH. KafilV. AbadpourA. MoumivandE. MojarradJ.S. RashidiM.R. CoukosG. OmidiY. Tamoxifen loaded folic acid armed PEGylated magnetic nanoparticles for targeted imaging and therapy of cancer.Colloids Surf. B Biointerfaces201310611712510.1016/j.colsurfb.2013.01.051 23434700
    [Google Scholar]
  18. GautierJ. Allard-VannierE. MunnierE. SoucéM. ChourpaI. Recent advances in theranostic nanocarriers of doxorubicin based on iron oxide and gold nanoparticles.J. Control. Release20131691-2486110.1016/j.jconrel.2013.03.018 23567046
    [Google Scholar]
  19. KrzyminiewskiR. DoboszB. KristB. SchroederG. KurczewskaJ. BluyssenH.A.R. ESR method in monitoring of nanoparticle endocytosis in cancer cells.Int. J. Mol. Sci.20202112438810.3390/ijms21124388 32575638
    [Google Scholar]
  20. SuzenS. Gurer-OrhanH. SasoL. Detection of reactive oxygen and nitrogen species by electron paramagnetic resonance (EPR) technique.Molecules201722118110.3390/molecules22010181 28117726
    [Google Scholar]
  21. JelonekK. ZajdelA. WilczokA. LatochaM. Musiał-KulikM. ForyśA. KasperczykJ. Dual-targeted biodegradable micelles for anticancer drug delivery.Int. J. Biol. Macromol.2019241187189
    [Google Scholar]
  22. ParkE.K. KimS.Y. LeeS.B. LeeY.M. Folate-conjugated methoxy poly(ethylene glycol)/poly(ɛ-caprolactone) amphiphilic block copolymeric micelles for tumor-targeted drug delivery.J. Control. Release20051091-315816810.1016/j.jconrel.2005.09.039 16263189
    [Google Scholar]
  23. RossJ.F. WangH. BehmF.G. MathewP. WuM. BoothR. RatnamM. Folate receptor type? is a neutrophilic lineage marker and is differentially expressed in myeloid leukemia.Cancer199985234835710.1002/(SICI)1097‑0142(19990115)85:2<348:AID‑CNCR12>3.0.CO;2‑4 10023702
    [Google Scholar]
  24. PrabaharanM. ManoJ.F. Chitosan derivatives bearing cyclodextrin cavitiesas novel adsorbent matrices.Carbohydr. Polym.200663215316610.1016/j.carbpol.2005.08.051
    [Google Scholar]
  25. LoftssonT. MassonM. Cyclodextrins in topical drug formulations: theory and practice.Int. J. Pharm.20012251-2153010.1016/S0378‑5173(01)00761‑X 11489551
    [Google Scholar]
  26. ShelleyH. BabuR.J. Role of Cyclodextrins in Nanoparticle-Based Drug Delivery Systems.J. Pharm. Sci.201810771741175310.1016/j.xphs.2018.03.021 29625157
    [Google Scholar]
  27. Del ValleE.M.M. ValleE.M. Cyclodextrins and their uses: a review.Process Biochem.20043991033104610.1016/S0032‑9592(03)00258‑9
    [Google Scholar]
  28. PatelR. PatelM. ShahD. Applications of Cyclodextrin in Drug Delivery.Int. J. Pharm. World Res.20101122
    [Google Scholar]
  29. ZhangJ. MaP.X. Cyclodextrin-based supramolecular systems for drug delivery: Recent progress and future perspective.Adv. Drug Deliv. Rev.20136591215123310.1016/j.addr.2013.05.001 23673149
    [Google Scholar]
  30. KhanA.S. Nanotechnology: Ethical and Social Implications;
    [Google Scholar]
  31. MachínR. IsasiJ.R. VélazI. β-Cyclodextrin hydrogels as potential drug delivery systems.Carbohydr. Polym.20128732024203010.1016/j.carbpol.2011.10.024
    [Google Scholar]
  32. LiuC. ZhangZ. LiuX. NiX. LiJ. Gelatin-based hydrogels with β-cyclodextrin as a dual functional component for enhanced drug loading and controlled release.RSC Advances2013347250412504910.1039/c3ra42532k
    [Google Scholar]
  33. HarringtonK.J. Rowlinson-BuszaG. SyrigosK.N. UsterP.S. VileR.G. StewartJ.S. Pegylated liposomes have potential as vehicles for intratumoral and subcutaneous drug delivery.Clin. Cancer Res.20006625282537 10873109
    [Google Scholar]
  34. VassilevaV. GrantJ. De SouzaR. AllenC. Piquette-MillerM. Novel biocompatible intraperitoneal drug delivery system increases tolerability and therapeutic efficacy of paclitaxel in a human ovarian cancer xenograft model.Cancer Chemother. Pharmacol.200760690791410.1007/s00280‑007‑0449‑0 17375303
    [Google Scholar]
  35. ZengZ. PengZ. ChenL. ChenY. Facile fabrication of thermally responsive Pluronic F127-based nanocapsules for controlled release of doxorubicin hydrochloride.Colloid Polym. Sci.201429271521153010.1007/s00396‑014‑3183‑2
    [Google Scholar]
  36. TharmalingamT. GhebehH. WuerzT. ButlerM. Pluronic enhances the robustness and reduces the cell attachment of mammalian cells.Mol. Biotechnol.200839216717710.1007/s12033‑008‑9045‑8 18327558
    [Google Scholar]
  37. ValleJ.W. ArmstrongA. NewmanC. AlakhovV. PietrzynskiG. BrewerJ. CampbellS. CorrieP. RowinskyE.K. RansonM. A phase 2 study of SP1049C, doxorubicin in P-glycoprotein-targeting pluronics, in patients with advanced adenocarcinoma of the esophagus and gastroesophageal junction.Invest. New Drugs20112951029103710.1007/s10637‑010‑9399‑1 20179989
    [Google Scholar]
  38. DansonS. FerryD. AlakhovV. MargisonJ. KerrD. JowleD. BramptonM. HalbertG. RansonM. Phase I dose escalation and pharmacokinetic study of pluronic polymer-bound doxorubicin (SP1049C) in patients with advanced cancer.Br. J. Cancer200490112085209110.1038/sj.bjc.6601856 15150584
    [Google Scholar]
  39. LemieuxP. GuérinN. ParadisG. ProulxR. ChistyakovaL. KabanovA. AlakhovV. A combination of poloxamers increases gene expression of plasmid DNA in skeletal muscle.Gene Ther.200071198699110.1038/sj.gt.3301189 10849559
    [Google Scholar]
  40. RieraM. ChillonM. AranJ.M. CruzadoJ.M. TorrasJ. GrinyóJ.M. FillatC. Intramuscular SP1017‐formulated DNA electrotransfer enhances transgene expression and distributes hHGF to different rat tissues.J. Gene Med.20046111111810.1002/jgm.463 14716683
    [Google Scholar]
  41. MitsunoT. OhyanagiH. NaitoR. Clinical studies of a perfluorochemical whole blood substitute (Fluosol-DA) Summary of 186 cases.Ann. Surg.19821951606910.1097/00000658‑198201001‑00010 7034658
    [Google Scholar]
  42. Adams-GravesP. KedarA. KoshyM. SteinbergM. VeithR. WardD. CrawfordR. EdwardsS. BustrackJ. EmanueleM. RheothRx (poloxamer 188) injection for the acute painful episode of sickle cell disease: a pilot study.Blood19979052041204610.1182/blood.V90.5.2041 9292541
    [Google Scholar]
  43. JewellR.C. KhorS.P. KisorD.F. LaCroixK.A.K. WarginW.A. Pharmacokinetics of RheothRx injection in healthy male volunteers.J. Pharm. Sci.199786780881210.1021/js960491e 9232521
    [Google Scholar]
  44. GhiarasimR. SimionescuN. CoroabaA. UrituC.M. MarangociN.L. IbanescuS.A. PintealaM. SI-ATRP Decoration of Magnetic Nanoparticles with PHEMA and Post-Polymerization Modification with Folic Acid for Tumor Cells’ Specific Targeting.Int. J. Mol. Sci.202123115510.3390/ijms23010155 35008582
    [Google Scholar]
  45. Nowak-JaryJ. MachnickaB. In vivo Biodistribution and Clearance of Magnetic Iron Oxide Nanoparticles for Medical Applications.Int. J. Nanomedicine2023184067410010.2147/IJN.S415063 37525695
    [Google Scholar]
  46. KaramiS. ZeynizadehB. Reduction of 4-nitrophenol by a disused adsorbent: EDA-functionalized magnetic cellulose nanocomposite after the removal of Cu2+.Carbohydr. Polym.201921129830710.1016/j.carbpol.2019.01.113 30824092
    [Google Scholar]
  47. YamaguchiK. KatoT. HiraoA. NakahamaS. Protection and polymerization of functional monomers, 9. Synthesis of poly[1‐(4‐mercaptomethylphenyl)ethylene] by hydrolysis of poly1‐[4‐(tert ‐butyldimethylsilylthiomethyl)‐phenyl]ethylene produced with a radical initiator.Makromol. Chem., Rapid. Commun.19878420320710.1002/marc.1987.030080407
    [Google Scholar]
  48. EhsanimehrS. Najafi MoghadamP. DehaenW. Shafiei-IrannejadV. Synthesis of pH-sensitive nanocarriers based on polyacrylamide grafted nanocrystalline cellulose for targeted drug delivery to folate receptor in breast cancer cells.Eur. Polym. J.202115011039810.1016/j.eurpolymj.2021.110398
    [Google Scholar]
  49. MaM. ZhangY. YuW. ShenH. ZhangH. GuN. Preparation and characterization of magnetite nanoparticles coated by amino silane.Colloids Surf. A Physicochem. Eng. Asp.20032122-321922610.1016/S0927‑7757(02)00305‑9
    [Google Scholar]
  50. DuttR. KaushikD. SinhaS. ThapaS. SinghS. VermaR. PandeyP. MittalV. RahmanM.H. Development of Biocompatible Nanoparticles of Tizanidine Hydrochloride in Orodispersible Films: In vitro Characterization, Ex vivo Permeation, and Cytotoxic Study on Carcinoma Cells.Curr. Drug Deliv.202219101061107210.2174/1567201819666220321111338 35319369
    [Google Scholar]
  51. ValenzuelaR. MontielH. GutiérrezM.P. BetancourtI. RodriíguezF.O. FanninP.C. GiannitsisA.T. Characterization of soft ferromagnetic materials by inductance spectroscopy and magnetoimpedance.J. Magn. Magn. Mater.2005294223924410.1016/j.jmmm.2005.03.040
    [Google Scholar]
  52. ShokriZ. ZeynizadehB. HosseiniS.A. One-pot reductive-acetylation of nitroarenes with NaBH 4 catalyzed by separable core-shell Fe 3 O 4 @Cu(OH) x nanoparticles.J. Colloid Interface Sci.20174859910510.1016/j.jcis.2016.09.019 27662020
    [Google Scholar]
  53. EhsanimehrS. MoghadamP.N. DehaenW. Shafiei- Irannejad, V. PEI grafted Fe3O4@SiO2@SBA-15 labeled FA as a pH-sensitive mesoporous magnetic and biocompatible nanocarrier for targeted delivery of doxorubicin to MCF-7 cell line, Colloids Surf. A Physicochem.Eng.2021615126302
    [Google Scholar]
  54. GaleottiF. BertiniF. ScaviaG. BolognesiA. A controlled approach to iron oxide nanoparticles functionalization for magnetic polymer brushes.J. Colloid Interface Sci.2011360254054710.1016/j.jcis.2011.04.076 21596386
    [Google Scholar]
  55. LeeM.H. KimJ.Y. HanJ.H. BhuniyaS. SesslerJ.L. KangC. KimJ.S. Direct fluorescence monitoring of the delivery and cellular uptake of a cancer-targeted RGD peptide-appended naphthalimide theragnostic prodrug.J. Am. Chem. Soc.201213430126681267410.1021/ja303998y 22642558
    [Google Scholar]
  56. LiZ. ZhangC. WangB. WangH. ChenX. MöhwaldH. CuiX. Sonochemical fabrication of dual-targeted redox-responsive smart microcarriers.ACS Appl. Mater. Interfaces2014624221662217310.1021/am5057097 25478992
    [Google Scholar]
  57. MolaparastM. EhsanimehrS. KahyaeiM. MahboubiN. Shafiei-IrannejadV. Polymeric complex based on poly (styrene-alt-maleic anhydride)- targeted with folic acid for doxorubicin delivery to HT-29 colorectal cancer cells.Int. J. Polym. Mater.202372318119310.1080/00914037.2021.1999953
    [Google Scholar]
  58. EhsanimehrS. MoghadamP.N. DehaenW. Shafiei-IrannejadV. Redox and pH‐responsive NCC/L‐cysteine/CM‐β‐CD/FA contains disulfide bond‐bridged as nanocarriers for biosafety and anti‐tumor efficacy system.Stärke2021739-10210006110.1002/star.202100061
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018340056240924183806
Loading
/content/journals/cdd/10.2174/0115672018340056240924183806
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test