Skip to content
2000
Volume 22, Issue 2
  • ISSN: 1573-403X
  • E-ISSN: 1875-6557

Abstract

In clinical practice, mortality risk assessment in patients with myocardial infarction often relies on scales such as GRACE and TIMI. However, these scales were developed based on cohorts assembled many years ago. Since then, numerous changes have occurred, ranging from shifts in MI patient profiles to the introduction of new antiplatelet medications and the adoption of more restrictive lipid therapy targets. To address this issue, researchers are working to develop new stratification tools. Artificial intelligence (AI), which finds applications in nearly every area of medicine, also presents solutions to this problem. This review includes sixteen papers that contain machine learning and deep learning models used to prognosticate mortality risk at different points. Machine learning (ML) models, such as random forest, gradient boosting, and support vector machines, have demonstrated good to excellent performance. However, no single algorithm appears to be top-performing. Although artificial neural networks are considered one of the most promising algorithms, they do not invariably outperform other ML methods. The adaptability of AI models to various scenarios and their ability to handle complex datasets reassures us of their potential in cardiology. Concerning variables that influence the risk of mortality, most are well-established factors, such as age, left-ventricular ejection fraction, lipid parameters, and B-type natriuretic peptide. Additionally, less apparent indicators include platelet parameters, neutrophil count, and blood urea nitrogen. In conclusion, utilizing AI-based models in myocardial infarction risk stratification presents a significant opportunity to develop effective and tailored tools.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/ccr/10.2174/011573403X380162250706094642
2025-07-11
2026-01-28
Loading full text...

Full text loading...

/deliver/fulltext/ccr/22/2/CCR-22-2-07.html?itemId=/content/journals/ccr/10.2174/011573403X380162250706094642&mimeType=html&fmt=ahah

References

  1. SalariN. MorddarvanjoghiF. AbdolmalekiA. The global prevalence of myocardial infarction: A systematic review and meta-analysis.BMC Cardiovasc. Disord.202323120610.1186/s12872‑023‑03231‑w 37087452
    [Google Scholar]
  2. Health at a Glance 2021.2021Available from: https://www.oecd-ilibrary.org/social-issues-migration-health/health-at-a-glance-2021_ae3016b9-en
  3. FoxK.A.A. DabbousO.H. GoldbergR.J. Prediction of risk of death and myocardial infarction in the six months after presentation with acute coronary syndrome: Prospective multinational observational study (GRACE).BMJ20063337578109110.1136/bmj.38985.646481.55 17032691
    [Google Scholar]
  4. FerenciT. HáriP. VájerP. JánosiA. External validation of the GRACE risk score in patients with myocardial infarction in Hungary.Int. J. Cardiol. Heart Vasc.20234610121010.1016/j.ijcha.2023.101210 37168416
    [Google Scholar]
  5. Abu-AssiE. García-AcuñaJ.M. Peña-GilC. González-JuanateyJ.R. Validation of the GRACE risk score for predicting death within 6 months of follow-up in a contemporary cohort of patients with acute coronary syndrome.Rev. Esp. Cardiol.201063664064810.1016/S0300‑8932(10)70156‑1 20515621
    [Google Scholar]
  6. FoxK.A.A. FitzGeraldG. PuymiratE. Should patients with acute coronary disease be stratified for management according to their risk? Derivation, external validation and outcomes using the updated GRACE risk score.BMJ Open201442e00442510.1136/bmjopen‑2013‑004425 24561498
    [Google Scholar]
  7. SabatineM.S. AntmanE.M. The thrombolysis in myocardial infarction risk score in unstable angina/non–ST-segment elevation myocardial infarction.J. Am. Coll. Cardiol.2003414S89S9510.1016/S0735‑1097(02)03019‑X 12644346
    [Google Scholar]
  8. ChinC.T. ChenA.Y. WangT.Y. Risk adjustment for in-hospital mortality of contemporary patients with acute myocardial infarction: The Acute Coronary Treatment and Intervention Outcomes Network (ACTION) Registry®-Get With The Guidelines (GWTG)™ acute myocardial infarction mortality model and risk score.Am. Heart J.20111611113122.e210.1016/j.ahj.2010.10.004 21167342
    [Google Scholar]
  9. KabilM.F. Abo DenaA.S. El-SherbinyI.M. Chapter Three - Ticagrelor.Profiles of Drug Substances, Excipients and Related Methodology. Al-MajedA.A. Academic Press202291111
    [Google Scholar]
  10. De BackerG. AmbrosioniE. Borch-JohnsenK. European guidelines on cardiovascular disease prevention in clinical practice.Atherosclerosis2003171114515510.1016/j.atherosclerosis.2003.10.001 14686332
    [Google Scholar]
  11. CatapanoA.L. GrahamI. De BackerG. 2016 ESC/EAS guidelines for the management of dyslipidaemias.Eur. Heart J.201637392999305810.1093/eurheartj/ehw272 27567407
    [Google Scholar]
  12. MachF. BaigentC. CatapanoA.L. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk.Eur. Heart J.202041111118810.1093/eurheartj/ehz455 31504418
    [Google Scholar]
  13. HeilbronerS.P. MiottoR. Deep Learning in medicine.Clin. J. Am. Soc. Nephrol.202318339739910.2215/CJN.0000000000000080 36735512
    [Google Scholar]
  14. JoT. Machine Learning Foundations: Supervised, Unsupervised, and Advanced Learning.ChamSpringer International Publishing202110.1007/978‑3‑030‑65900‑4
    [Google Scholar]
  15. NaeemS. AliA. AnamS. AhmedM.M. An unsupervised Machine Learning algorithms: Comprehensive review.Int J Comput Digit Syst202313191192110.12785/ijcds/130172
    [Google Scholar]
  16. Sidey-GibbonsJ.A.M. Sidey-GibbonsC.J. Machine learning in medicine: A practical introduction.BMC Med. Res. Methodol.20191916410.1186/s12874‑019‑0681‑4 30890124
    [Google Scholar]
  17. UddinS. KhanA. HossainM.E. MoniM.A. Comparing different supervised machine learning algorithms for disease prediction.BMC Med. Inform. Decis. Mak.201919128110.1186/s12911‑019‑1004‑8 31864346
    [Google Scholar]
  18. BatistaG.E.A.P.A. PratiR.C. MonardM.C. A study of the behavior of several methods for balancing machine learning training data.SIGKDD Explor.200461202910.1145/1007730.1007735
    [Google Scholar]
  19. BurzykowskiT. GeubbelmansM. RousseauA.J. ValkenborgD. Validation of machine learning algorithms.Am. J. Orthod. Dentofacial Orthop.2023164229529710.1016/j.ajodo.2023.05.007 37517861
    [Google Scholar]
  20. PieszkoK. HiczkiewiczJ. BudzianowskiJ. Clinical applications of artificial intelligence in cardiology on the verge of the decade.Cardiol. J.202128346047210.5603/CJ.a2020.0093 32648252
    [Google Scholar]
  21. ArulkumaranK. DeisenrothM.P. BrundageM. BharathA.A. Deep reinforcement learning: A brief survey.IEEE Signal Process. Mag.2017346263810.1109/MSP.2017.2743240
    [Google Scholar]
  22. ChazalF. MichelB. An introduction to topological data analysis: Fundamental and practical aspects for data scientists.Front. Artif. Intell.2021466796310.3389/frai.2021.667963 34661095
    [Google Scholar]
  23. HuberS. Persistent Homology in Data Science.Data Science – Analytics and Applications. HaberP. LampoltshammerT. MayrM. PlankensteinerK. WiesbadenSpringer Fachmedien2021818810.1007/978‑3‑658‑32182‑6_13
    [Google Scholar]
  24. De LaraM.L.D. Persistent homology classification algorithm.PeerJ Comput. Sci.20239e119510.7717/peerj‑cs.1195 37346603
    [Google Scholar]
  25. StoltzfusJ.C. Logistic regression: A brief primer.Acad. Emerg. Med.201118101099110410.1111/j.1553‑2712.2011.01185.x 21996075
    [Google Scholar]
  26. ThanhN.T. LuanV.T. VietD.C. TungT.H. ThienV. A machine learning-based risk score for prediction of mechanical ventilation in children with dengue shock syndrome: A retrospective cohort study.PLoS One20241912e031528110.1371/journal.pone.0315281 39642139
    [Google Scholar]
  27. OgutuS. MohammedM. MwambiH. Cytokine profiles as predictors of HIV incidence using machine learning survival models and statistical interpretable techniques.Sci. Rep.20241412989510.1038/s41598‑024‑81510‑y 39622992
    [Google Scholar]
  28. López-RuedaA. Enhancing mortality prediction in patients with spontaneous intracerebral hemorrhage: Radiomics and supervised machine learning on non-contrast computed tomography.Eur. J. Radiol. Open20241310061810.1016/j.ejro.2024.100618 39687913
    [Google Scholar]
  29. Mc LooneS. IrwinG. Improving neural network training solutions using regularisation.Neurocomputing2001371-4719010.1016/S0925‑2312(00)00314‑3
    [Google Scholar]
  30. PengY. NagataM.H. An empirical overview of nonlinearity and overfitting in machine learning using COVID-19 data.Chaos Solitons Fractals202013911005510.1016/j.chaos.2020.110055 32834608
    [Google Scholar]
  31. ZhangA. LiptonZ.C. LiM. SmolaA.J. Dive into Deep Learning.Cambridge, New YorkCambridge University Press2023
    [Google Scholar]
  32. HastieT. Ridge regularization: An essential concept in data science.Technometrics202062442643310.1080/00401706.2020.1791959 36033922
    [Google Scholar]
  33. LiY. LuF. YinY. Applying logistic LASSO regression for the diagnosis of atypical Crohn’s disease.Sci. Rep.20221211134010.1038/s41598‑022‑15609‑5 35790774
    [Google Scholar]
  34. TayJ.K. NarasimhanB. HastieT. Elastic net regularization paths for all generalized linear models.J. Stat. Softw.20231061110.18637/jss.v106.i01 37138589
    [Google Scholar]
  35. de VilleB. Decision trees.Wiley Interdiscip. Rev. Comput. Stat.20135644845510.1002/wics.1278
    [Google Scholar]
  36. SongY. Decision tree methods: Applications for classification and prediction.Shanghai Jingshen Yixue201527130135
    [Google Scholar]
  37. SaricaA. CerasaA. QuattroneA. Random forest algorithm for the classification of neuroimaging data in Alzheimer’s disease: A systematic review.Front. Aging Neurosci.2017932910.3389/fnagi.2017.00329 29056906
    [Google Scholar]
  38. BreimanL. Random forests.Mach. Learn.200145153210.1023/A:1010933404324
    [Google Scholar]
  39. BühlmannP. YuB. Analyzing bagging.Ann. Stat.200230492796110.1214/aos/1031689014
    [Google Scholar]
  40. AlghamdiM.M. AlazwaryN.H. AlsowayanW.A. AlgamdiM. AlohaliA.F. YasawyM.A. Developing a machine learning model with enhanced performance for predicting COVID-19 from patients presenting to the emergency room with acute respiratory symptoms.IET Syst. Biol.202418629831710.1049/syb2.12101
    [Google Scholar]
  41. LeungK.T. ParkerD.S. Empirical comparisons of various voting methods in bagging.Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data miningWashington, D.C.200359560010.1145/956750.9568
    [Google Scholar]
  42. GrandvaletY. Bagging equalizes influence.Mach. Learn.200455325127010.1023/B:MACH.0000027783.34431.42
    [Google Scholar]
  43. LiK. YaoS. ZhangZ. Efficient gradient boosting for prognostic biomarker discovery.Bioinformatics20223861631163810.1093/bioinformatics/btab869 34978570
    [Google Scholar]
  44. GuptaA. SharmaS. GoyalS. RashidM. Novel XGBoost tuned machine learning model for software bug prediction.2020 International Conference on Intelligent Engineering and Management (ICIEM) London, UK, 17-19 June 2020, pp. 376-38010.1109/ICIEM48762.2020.9160152
    [Google Scholar]
  45. CaoY. MiaoQ.G. LiuJ.C. GaoL. Advance and prospects of adaboost algorithm.Acta Automatica Sinica201339674575810.1016/S1874‑1029(13)60052‑X
    [Google Scholar]
  46. DavagdorjK. PhamV.H. Theera-UmponN. RyuK.H. XGBoost-based framework for smoking-induced noncommunicable disease prediction.Int. J. Environ. Res. Public Health20201718651310.3390/ijerph17186513 32906777
    [Google Scholar]
  47. AmbeK. SuzukiM. AshikagaT. TohkinM. Development of quantitative model of a local lymph node assay for evaluating skin sensitization potency applying machine learning CatBoost.Regul. Toxicol. Pharmacol.202112510501910.1016/j.yrtph.2021.105019 34311055
    [Google Scholar]
  48. CervantesJ. Garcia-LamontF. Rodríguez-MazahuaL. LopezA. A comprehensive survey on support vector machine classification: Applications, challenges and trends.Neurocomputing202040818921510.1016/j.neucom.2019.10.118
    [Google Scholar]
  49. NakayamaY. YataK. AoshimaM. Support vector machine and its bias correction in high-dimension, low-sample-size settings.J. Stat. Plan. Inference201719188100
    [Google Scholar]
  50. ChauhanV.K. DahiyaK. SharmaA. Problem formulations and solvers in linear SVM: A review.Artif. Intell. Rev.201952280385510.1007/s10462‑018‑9614‑6
    [Google Scholar]
  51. YuanY. HuangT. A polynomial smooth support vector machine for classification.Advanced Data Mining and Applications. LiX. WangS. DongZ.Y. Berlin, HeidelbergSpringer200515716410.1007/11527503_19
    [Google Scholar]
  52. XuZ. DaiM. MengD. Fast and efficient strategies for model selection of Gaussian support vector machine.IEEE Trans. Syst. Man Cybern. B Cybern.20093951292130710.1109/TSMCB.2009.2015672 19342351
    [Google Scholar]
  53. LinH-T LinC-J A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods.Neural Comput200331-3216
    [Google Scholar]
  54. DagherI. Quadratic kernel-free non-linear support vector machine.J. Glob. Optim.2008411153010.1007/s10898‑007‑9162‑0
    [Google Scholar]
  55. MedowM.A. LuceyC.R. A qualitative approach to Bayes’ theorem.Evid. Based Med.201116616316710.1136/ebm‑2011‑0007 21862499
    [Google Scholar]
  56. AhmedM.S. ShahjamanM. RanaM.M. MollahM.N.H. Robustification of Naïve Bayes classifier and its application for microarray gene expression data analysis.BioMed Res. Int.2017201711710.1155/2017/3020627 28848763
    [Google Scholar]
  57. AnandM.V. KiranBala B, Srividhya SR, C K, Younus M, Rahman MH. Gaussian Naïve Bayes algorithm: A reliable technique involved in the assortment of the segregation in cancer.Mob. Inf. Syst.202220221710.1155/2022/2436946
    [Google Scholar]
  58. JiangL. WangS. LiC. ZhangL. Structure extended multinomial naive Bayes.Inf. Sci.201632934635610.1016/j.ins.2015.09.037
    [Google Scholar]
  59. RaschkaS. Naive Bayes and Text Classification I - Introduction and Theory. arXiv:141053292017
  60. KroghA. What are artificial neural networks?Nat. Biotechnol.200826219519710.1038/nbt1386 18259176
    [Google Scholar]
  61. ZakariaM. Artificial neural network: A brief overview.IJERA2014
    [Google Scholar]
  62. KriegeskorteN. GolanT. Neural network models and deep learning.Curr. Biol.2019297R231R23610.1016/j.cub.2019.02.034 30939301
    [Google Scholar]
  63. BizopoulosP. KoutsourisD. Deep learning in cardiology.IEEE Rev. Biomed. Eng.20191216819310.1109/RBME.2018.2885714 30530339
    [Google Scholar]
  64. FengY. TuY. Phases of learning dynamics in artificial neural networks: With or without mislabeled data. arXiv:2101065092021
  65. O’SheaK. NashR. An introduction to convolutional neural networks. arXiv:1511084582015
  66. SalehinejadH. SankarS. BarfettJ. ColakE. ValaeeS. Recent advances in recurrent neural networks. arXiv:1801010782018
  67. MoscaE. SzigetiF. TragianniS. GallagherD. GrohG. SHAP-Based Explanation Methods: A Review for NLP Interpretability.Proceedings of the 29th International Conference on Computational Linguistics. CalzolariN HuangC-R KimH PustejovskyJ WannerL ChoiK-S Gyeongju, Republic of Korea: International Committee on Computational Linguistics 2022; pp. 4593-603
    [Google Scholar]
  68. MishraS. SturmB.L. DixonS. Local interpretable model-agnostic explanations for music content analysis.18th International Society for Music Information Retrieval Conference.Suzhou, China2017
    [Google Scholar]
  69. MontavonG. BinderA. LapuschkinS. SamekW. MüllerK-R. Layer-Wise Relevance Propagation: An Overview.Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. SamekW. MontavonG. VedaldiA. HansenL.K. MüllerK-R. ChamSpringer International Publishing201919320910.1007/978‑3‑030‑28954‑6_10
    [Google Scholar]
  70. SheraziS.W.A. JeongY.J. JaeM.H. BaeJ.W. LeeJ.Y. A machine learning–based 1-year mortality prediction model after hospital discharge for clinical patients with acute coronary syndrome.Health Inf J.20202621289130410.1177/1460458219871780 31566458
    [Google Scholar]
  71. ZhuX. XieB. ChenY. ZengH. HuJ. Machine learning in the prediction of in-hospital mortality in patients with first acute myocardial infarction.Clin. Chim. Acta202455411777610.1016/j.cca.2024.117776 38216028
    [Google Scholar]
  72. LeeH.C. ParkJ.S. ChoeJ.C. Prediction of 1-year mortality from acute myocardial infarction using machine learning.Am. J. Cardiol.2020133233110.1016/j.amjcard.2020.07.048 32811651
    [Google Scholar]
  73. KheraR. HaimovichJ. HurleyN.C. Use of machine learning models to predict death after acute myocardial infarction.JAMA Cardiol.20216663364110.1001/jamacardio.2021.0122 33688915
    [Google Scholar]
  74. OliveiraM. SeringaJ. PintoF.J. HenriquesR. MagalhãesT. Machine learning prediction of mortality in acute myocardial infarction.BMC Med. Inform. Decis. Mak.20232317010.1186/s12911‑023‑02168‑6 37072766
    [Google Scholar]
  75. AzizF. MalekS. IbrahimK.S. Short- and long-term mortality prediction after an acute ST-elevation myocardial infarction (STEMI) in Asians: A machine learning approach.PLoS One2021168e025489410.1371/journal.pone.0254894 34339432
    [Google Scholar]
  76. ChenP. WangB. ZhaoL. Machine learning for predicting intrahospital mortality in ST-elevation myocardial infarction patients with type 2 diabetes mellitus.BMC Cardiovasc. Disord.202323158510.1186/s12872‑023‑03626‑9 38012550
    [Google Scholar]
  77. MansoorH. ElgendyI.Y. SegalR. BavryA.A. BianJ. Risk prediction model for in-hospital mortality in women with ST-elevation myocardial infarction: A machine learning approach.Heart Lung201746640541110.1016/j.hrtlng.2017.09.003 28992993
    [Google Scholar]
  78. SongL. LiY. NieS. Using machine learning to predict adverse events in acute coronary syndrome: A retrospective study.Clin. Cardiol.202346121594160210.1002/clc.24127 37654030
    [Google Scholar]
  79. JeongJ.H. LeeK.S. ParkS.M. Prediction of longitudinal clinical outcomes after acute myocardial infarction using a dynamic machine learning algorithm.Front. Cardiovasc. Med.202411134002210.3389/fcvm.2024.1340022 38646154
    [Google Scholar]
  80. KwonJ. JeonK.H. KimH.M. Deep-learning-based risk stratification for mortality of patients with acute myocardial infarction.PLoS One20191410e022450210.1371/journal.pone.0224502 31671144
    [Google Scholar]
  81. HathawayQ.A. JamthikarA.D. RajivN. Cardiac ultrasomics for acute myocardial infarction risk stratification and prediction of all-cause mortality: A feasibility study.Echo Res. Pract.20241112210.1186/s44156‑024‑00057‑w 39278898
    [Google Scholar]
  82. SafaeiM. SundararajanE.A. DrissM. BoulilaW. Shapi’iA. A systematic literature review on obesity: Understanding the causes & consequences of obesity and reviewing various machine learning approaches used to predict obesity.Comput. Biol. Med.202113610475410.1016/j.compbiomed.2021.104754 34426171
    [Google Scholar]
  83. DongJ. FengT. Thapa-ChhetryB. Machine learning model for early prediction of acute kidney injury (AKI) in pediatric critical care.Crit. Care202125128810.1186/s13054‑021‑03724‑0 34376222
    [Google Scholar]
  84. StarkG.F. Predicting breast cancer risk using personal health data and machine learning models.PLoS ONE20191412e022676510.1371/journal.pone.0226765
    [Google Scholar]
  85. EchefuG. BatalikL. LukanA. The digital revolution in medicine: Applications in cardio-oncology.Curr. Treat. Options Cardiovasc. Med.2025271210.1007/s11936‑024‑01059‑x 39610711
    [Google Scholar]
  86. DebernehH.M. KimI. Prediction of type 2 diabetes based on] machine learning algorithm.Int. J. Environ. Res. Public Health2021186331710.3390/ijerph18063317 33806973
    [Google Scholar]
  87. Ambale-VenkateshB. YangX. WuC.O. Cardiovascular event prediction by machine learning.Circ. Res.201712191092110110.1161/CIRCRESAHA.117.311312 28794054
    [Google Scholar]
  88. YouJ. GuoY. KangJ.J. Development of machine learning-based models to predict 10-year risk of cardiovascular disease: A prospective cohort study.Stroke Vasc. Neurol.20238647548510.1136/svn‑2023‑002332 37105576
    [Google Scholar]
  89. MayourianJ. La CavaW.G. VaidA. Pediatric ECG-based deep learning to predict left ventricular dysfunction and remodeling.Circulation20241491291793110.1161/CIRCULATIONAHA.123.067750 38314583
    [Google Scholar]
  90. OoM.M. GaoC. ColeC. Artificial intelligence‐assisted automated heart failure detection and classification from electronic health records.ESC Heart Fail.20241152769277710.1002/ehf2.14828 38700133
    [Google Scholar]
  91. LauE.S. Di AchilleP. KopparapuK. Deep Learning–enabled assessment of left heart structure and function predicts cardiovascular outcomes.J. Am. Coll. Cardiol.202382201936194810.1016/j.jacc.2023.09.800 37940231
    [Google Scholar]
  92. PirruccelloJ.P. Di AchilleP. ChoiS.H. Deep learning of left atrial structure and function provides link to atrial fibrillation risk.Nat. Commun.2024151430410.1038/s41467‑024‑48229‑w 38773065
    [Google Scholar]
  93. HollmannN. MüllerS. PuruckerL. Accurate predictions on small data with a tabular foundation model.Nature2025637804531932610.1038/s41586‑024‑08328‑6 39780007
    [Google Scholar]
  94. McElfreshD. When do neural nets outperform boosted trees on tabular data? Advances in neural information processing systems.2023367633676369https://arxiv.org/abs/2305.02997
    [Google Scholar]
  95. BalkiI. AmirabadiA. LevmanJ. Sample-size determination methodologies for machine learning in medical imaging research: A systematic review.Can. Assoc. Radiol. J.201970434435310.1016/j.carj.2019.06.002 31522841
    [Google Scholar]
  96. CuiZ. GongG. The effect of machine learning regression algorithms and sample size on individualized behavioral prediction with functional connectivity features.Neuroimage201817862263710.1016/j.neuroimage.2018.06.001 29870817
    [Google Scholar]
  97. VabalasA. GowenE. PoliakoffE. CassonA.J. Machine learning algorithm validation with a limited sample size.PLoS One20191411e022436510.1371/journal.pone.0224365 31697686
    [Google Scholar]
  98. RajputD. WangW.J. ChenC.C. Evaluation of a decided sample size in machine learning applications.BMC Bioinformatics20232414810.1186/s12859‑023‑05156‑9 36788550
    [Google Scholar]
  99. ElorantaS. BomanM. Predictive models for clinical decision making: Deep dives in practical machine learning.J. Intern. Med.2022292227829510.1111/joim.13483 35426190
    [Google Scholar]
  100. PatelB. SenguptaP. Machine learning for predicting cardiac events: What does the future hold?Expert Rev. Cardiovasc. Ther.2020182778410.1080/14779072.2020.1732208 32066289
    [Google Scholar]
  101. MohammadM.A. OlesenK.K.W. KoulS. Development and validation of an artificial neural network algorithm to predict mortality and admission to hospital for heart failure after myocardial infarction: A nationwide population-based study.Lancet Digit. Health202241e37e4510.1016/S2589‑7500(21)00228‑4 34952674
    [Google Scholar]
  102. KasimS. MalekS. SongC. In-hospital mortality risk stratification of Asian ACS patients with artificial intelligence algorithm.PLoS One20221712e027894410.1371/journal.pone.0278944 36508425
    [Google Scholar]
  103. HadannyA. ShouvalR. WuJ. Predicting 30-day mortality after ST elevation myocardial infarction: Machine learning-based random forest and its external validation using two independent nationwide datasets.J. Cardiol.202178543944610.1016/j.jjcc.2021.06.002 34154875
    [Google Scholar]
  104. NiedzielaJ.T. CieślaD. WojakowskiW. Is neural network better than logistic regression in death prediction in patients after ST-segment elevation myocardial infarction?Kardiol. Pol.202179121353136110.33963/KP.a2021.0142 34704605
    [Google Scholar]
  105. ShakhgeldyanK.I. KuksinN.S. DomzhalovI.G. RublevV.Y. GeltserB.I. Interpretable machine learning for in-hospital mortality risk prediction in patients with ST-elevation myocardial infarction after percutaneous coronary interventions.Comput. Biol. Med.202417010795310.1016/j.compbiomed.2024.107953 38224666
    [Google Scholar]
/content/journals/ccr/10.2174/011573403X380162250706094642
Loading
/content/journals/ccr/10.2174/011573403X380162250706094642
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test