Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-403X
  • E-ISSN: 1875-6557

Abstract

Recent advancements have emerged in understanding the epidemiology and optimal therapeutic options for left ventricular thrombi (LVT). With early percutaneous interventions in acute myocardial infarction, the prevalence of LVT has decreased. However, the best strategies for prevention, risk stratification, and management remain unclear, especially among non-ischemic cardiomyopathy disorders. This review outlines these advancements and provides an overview of the diagnostic and therapeutic implications of LVT in ischemic and non-ischemic cardiomyopathies. Significant gaps in the current evidence persist, particularly regarding the optimal timing for LVT screening and the need for prophylactic anticoagulation, highlighting opportunities for prospective cohort studies. Furthermore, a better understanding of the unique risk factors that contribute to increased LVT risk would lead to more comprehensive algorithms that may quantify the risk of LVT development, aiding in developing preventive strategies targeted at reducing rates of LVT. Until more definitive evidence is available, clinicians should custom LVT screening, preventive measures, and management strategies based on individual patient risk factors.

Loading

Article metrics loading...

/content/journals/ccr/10.2174/011573403X364065250429095440
2025-05-09
2025-10-12
Loading full text...

Full text loading...

References

  1. LevineG.N. McEvoyJ.W. FangJ.C. Management of patients at risk for and with left ventricular thrombus: A scientific statement from the American Heart Association.Circulation202214615e205e22310.1161/CIR.0000000000001092 36106537
    [Google Scholar]
  2. AbdelnabiM. BenjanuwattraJ. OkashaO. AlmaghrabyA. SalehY. GergesF. Switching from warfarin to direct-acting oral anticoagulants: It is time to move forward!Egypt. Heart J.20227411810.1186/s43044‑022‑00259‑9 35347478
    [Google Scholar]
  3. CamajA. FusterV. GiustinoG. Left ventricular thrombus following acute myocardial infarction: JACC state-of-the-art review.J. Am. Coll. Cardiol.202279101010102210.1016/j.jacc.2022.01.011 35272796
    [Google Scholar]
  4. AbdelnabiM. SalehY. FareedA. Comparative study of oral anticoagulation in left ventricular Thrombi (No-LVT trial).J. Am. Coll. Cardiol.202177121590159210.1016/j.jacc.2021.01.049 33766266
    [Google Scholar]
  5. O’GaraP.T. KushnerF.G. AscheimD.D. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: A report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines.Circulation20131274e362e42510.1161/CIR.0b013e3182742c84 23247304
    [Google Scholar]
  6. IbanezB. JamesS. AgewallS. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC).Eur. Heart J.201839211917710.1093/eurheartj/ehx393 28886621
    [Google Scholar]
  7. GuyattG.H. AklE.A. CrowtherM. GuttermanD.D. SchunemannH.J. Executive summary: Antithrombotic therapy and prevention of Thrombosis, 9th ed: American college of chest physicians evidence- based clinical practice guidelines.Chest20121412 Suppl7S47S10.1378/chest.1412S3 22315257
    [Google Scholar]
  8. GhadriJ.R. WittsteinI.S. PrasadA. International expert consensus document on takotsubo syndrome (Part II): Diagnostic workup, outcome, and management.Eur. Heart J.201839222047206210.1093/eurheartj/ehy077 29850820
    [Google Scholar]
  9. TsaoC.W. AdayA.W. AlmarzooqZ.I. Heart disease and stroke statistics—2022 update: A report from the American Heart Association.Circulation20221458e153e63910.1161/CIR.0000000000001052 35078371
    [Google Scholar]
  10. HabashF. VallurupalliS. Challenges in management of left ventricular thrombus.Ther. Adv. Cardiovasc. Dis.201711820321310.1177/1753944717711139 28589748
    [Google Scholar]
  11. McCarthyC.P. VaduganathanM. McCarthyK.J. JanuzziJ.L.Jr BhattD.L. McEvoyJ.W. Left ventricular thrombus after acute myocardial infarction.JAMA Cardiol.20183764264910.1001/jamacardio.2018.1086 29800958
    [Google Scholar]
  12. LattucaB. BouziriN. KerneisM. Antithrombotic therapy for patients with left ventricular mural thrombus.J. Am. Coll. Cardiol.202075141676168510.1016/j.jacc.2020.01.057 32273033
    [Google Scholar]
  13. BulluckH. ChanM.H.H. ParadiesV. Incidence and predictors of left ventricular thrombus by cardiovascular magnetic resonance in acute ST-segment elevation myocardial infarction treated by primary percutaneous coronary intervention: A meta-analysis.J. Cardiovasc. Magn. Reson.20182017210.1186/s12968‑018‑0494‑3 30404623
    [Google Scholar]
  14. ByrneR.A. RosselloX. CoughlanJ.J. 2023 ESC Guidelines for the management of acute coronary syndromes.Eur. Heart J.202344383720382610.1093/eurheartj/ehad191 37622654
    [Google Scholar]
  15. WeinsaftJ.W. KimR.J. RossM. Contrast-enhanced anatomic imaging as compared to contrast-enhanced tissue characterization for detection of left ventricular thrombus.JACC Cardiovasc. Imaging20092896997910.1016/j.jcmg.2009.03.017 19679285
    [Google Scholar]
  16. VelangiP.S. ChooC. ChenK.H.A. Long-term embolic outcomes after detection of left ventricular thrombus by late gadolinium enhancement cardiovascular magnetic resonance imaging: A matched cohort study.Circ. Cardiovasc. Imaging20191211e00972310.1161/CIRCIMAGING.119.009723 31707810
    [Google Scholar]
  17. WeinsaftJ.W. KimH.W. CrowleyA.L. LV thrombus detection by routine echocardiography: Insights into performance characteristics using delayed enhancement CMR.JACC Cardiovasc. Imaging20114770271210.1016/j.jcmg.2011.03.017 21757159
    [Google Scholar]
  18. TzolosE. BingR. AndrewsJ. Noninvasive in vivo coronary artery thrombus imaging.JACC Cardiovasc. Imaging202316682083210.1016/j.jcmg.2022.10.002 36526577
    [Google Scholar]
  19. Izquierdo-GarciaD. DésogèreP. PhilipA.L. Detection and characterization of thrombosis in humans using fibrin-targeted positron emission tomography and magnetic resonance.JACC Cardiovasc. Imaging202215350451510.1016/j.jcmg.2021.08.009 34656469
    [Google Scholar]
  20. WuH-S. DongJ.Z. DuX. Risk factors for left ventricular thrombus formation in patients with dilated cardiomyopathy. Seminars in Thrombosis and Hemostasis.Thieme Medical Publishers, Inc.202310.1055/s‑0042‑1756197
    [Google Scholar]
  21. HuangY. ZhouW.W. LiY.X. ChenX.Z. GuiC. The use of d-dimer in the diagnosis and risk assessment of intracardiac thrombus among patients with dilated cardiomyopathy.Sci. Rep.20231311807510.1038/s41598‑023‑45077‑4 37872215
    [Google Scholar]
  22. YouJ. WangX. WuJ. Predictors and prognosis of left ventricular thrombus in post-myocardial infarction patients with left ventricular dysfunction after percutaneous coronary intervention.J. Thorac. Dis.20181084912492210.21037/jtd.2018.07.69 30233865
    [Google Scholar]
  23. ShachamY. Leshem-RubinowE. Ben AssaE. Comparison of C-reactive protein and fibrinogen levels in patients having anterior wall ST-Segment elevation myocardial infarction with versus without left ventricular thrombus (from a primary percutaneous coronary intervention cohort).Am. J. Cardiol.20131121576010.1016/j.amjcard.2013.02.052 23562384
    [Google Scholar]
  24. LechnerI. ReindlM. TillerC. Association between inflammation and left ventricular thrombus formation following ST-elevation myocardial infarction.Int. J. Cardiol.20223611610.1016/j.ijcard.2022.05.009 35533756
    [Google Scholar]
  25. LitmanowiczB. PerelmanM.G. Laufer-PerlM. The role of inflammation in early left ventricular thrombus formation following ST‐elevation myocardial infarction—A matched case‐control study.Clin. Cardiol.20244710e7003110.1002/clc.70031 39412036
    [Google Scholar]
  26. GottdienerJ.S. GayJ.A. VanVoorheesL. DiBiancoR. FletcherR.D. Frequency and embolic potential of left ventricular thrombus in dilated cardiomyopathy: Assessment by 2-dimensional echocardiography.Am. J. Cardiol.198352101281128510.1016/0002‑9149(83)90588‑X 6650417
    [Google Scholar]
  27. MassussiM. ScottiA. LipG.Y.H. ProiettiR. Left ventricular thrombosis: New perspectives on an old problem.Eur. Heart J. Cardiovasc. Pharmacother.20217215816710.1093/ehjcvp/pvaa066 32569361
    [Google Scholar]
  28. TowbinJ.A. McKennaW.J. AbramsD.J. 2019 HRS expert consensus statement on evaluation, risk stratification, and management of arrhythmogenic cardiomyopathy.Heart Rhythm20191611e301e37210.1016/j.hrthm.2019.05.007 31078652
    [Google Scholar]
  29. RitterM. OechslinE. SütschG. AttenhoferC. SchneiderJ. JenniR. Isolated noncompaction of the myocardium in adults.Mayo Clin. Proc.1997721263110.4065/72.1.26 9005281
    [Google Scholar]
  30. KleindorferD.O. TowfighiA. ChaturvediS. 2021 guideline for the prevention of stroke in patients with stroke and transient ischemic attack: A guideline from the American Heart Association/American Stroke association.Stroke2021527e364e46710.1161/STR.0000000000000375 34024117
    [Google Scholar]
  31. BozkurtB. ColvinM. CookJ. Current diagnostic and treatment strategies for specific dilated cardiomyopathies: A scientific statement from the American Heart Association.Circulation201613423e579e64610.1161/CIR.0000000000000455 27832612
    [Google Scholar]
  32. BauersachsJ. ArrigoM. Hilfiker-KleinerD. Current management of patients with severe acute peripartum cardiomyopathy: Practical guidance from the Heart Failure Association of the European Society of Cardiology Study Group on peripartum cardiomyopathy.Eur. J. Heart Fail.20161891096110510.1002/ejhf.586 27338866
    [Google Scholar]
  33. KitkungvanD. YusufS.W. MoudgilR. Echocardiographic measures associated with the presence of left ventricular thrombus in patients with chemotherapy‐related cardiac dysfunction.Echocardiography201835101512151810.1111/echo.14087 30005128
    [Google Scholar]
  34. FengD. SyedI.S. MartinezM. Intracardiac thrombosis and anticoagulation therapy in cardiac amyloidosis.Circulation2009119182490249710.1161/CIRCULATIONAHA.108.785014 19414641
    [Google Scholar]
  35. NunesM.C.P. KreuserL.J. RibeiroA.L. Prevalence and risk factors of embolic cerebrovascular events associated with Chagas heart disease.Glob. Heart201510315115710.1016/j.gheart.2015.07.006 26407510
    [Google Scholar]
  36. OnoR. IwahanaT. KatoH. OkadaS. KobayashiY. Literature reviews of stroke with hypereosinophilic syndrome.Int. J. Cardiol. Heart Vasc.20213710091510.1016/j.ijcha.2021.100915 34888412
    [Google Scholar]
  37. SalihM. IbrahimR. TirunagiriD. Al-aniH. AnanthasubramaniamK. Loeffler’s endocarditis and hypereosinophilic syndrome.Cardiol. Rev.202129315015510.1097/CRD.0000000000000324 32520731
    [Google Scholar]
  38. Cruz RodriguezJ.B. OkajimaK. GreenbergB.H. Management of left ventricular thrombus: A narrative review.Ann. Transl. Med.20219652010.21037/atm‑20‑7839 33850917
    [Google Scholar]
  39. KidoK. GuglinM. Anticoagulation therapy in specific cardiomyopathies: Isolated left ventricular noncompaction and peripartum cardiomyopathy.J. Cardiovasc. Pharmacol. Ther.2019241313610.1177/1074248418783745 29911432
    [Google Scholar]
  40. DingK.J. CammannV.L. SzawanK.A. Intraventricular thrombus formation and embolism in takotsubo syndrome.Arterioscler. Thromb. Vasc. Biol.202040127928710.1161/ATVBAHA.119.313491 31766870
    [Google Scholar]
  41. ZhouX.D. ChenQ.F. KatsourasC.S. Clinical outcome after left ventricular thrombus resolution: Who needs long‐term or lifetime use of anticoagulants?J. Am. Heart Assoc.2023128e02907010.1161/JAHA.122.029070 37066808
    [Google Scholar]
  42. SalehY. AbdelnabiM. AbdelkarimO. EshakN. AlmaghrabyA. Abstract 14209: Natural history of resolved left ventricular thrombi.Circulation2021144Suppl. 1A14209A910.1161/circ.144.suppl_1.14209
    [Google Scholar]
  43. ZąbczykM. MeusR. MalinowskiK.P. NatorskaJ. UndasA. A prothrombotic state in patients with a history of left ventricular thrombus.Am. J. Cardiol.201912381358136310.1016/j.amjcard.2019.01.007 30717886
    [Google Scholar]
  44. BawaskarP. Evolution of left ventricular thrombus on serial cardiovascular magnetic resonance imaging.Eur. Heart J. Cardiovasc. Imaging202426234935810.1093/ehjci/jeae271 39437323
    [Google Scholar]
  45. KumarP. RaviR. SundarG. ShiachC. Direct oral anticoagulants: An overview for the interventional radiologist.Cardiovasc. Intervent. Radiol.201740332133010.1007/s00270‑016‑1521‑0 27913856
    [Google Scholar]
  46. SamamaM.M. The mechanism of action of rivaroxaban – An oral, direct Factor Xa inhibitor – Compared with other anticoagulants.Thromb. Res.2011127649750410.1016/j.thromres.2010.09.008 20888031
    [Google Scholar]
  47. TauneV.S. ZabczykM. HeS. Effects of dabigatran, rivaroxaban, and apixaban on fibrin network permeability, thrombin generation, and fibrinolysis.Scand. J. Clin. Lab. Invest.202484425726710.1080/00365513.2024.2369993 38953609
    [Google Scholar]
  48. LinA. KolossváryM. IšgumI. Maurovich-HorvatP. SlomkaP.J. DeyD. Artificial intelligence: Improving the efficiency of cardiovascular imaging.Expert Rev. Med. Devices202017656557710.1080/17434440.2020.1777855 32510252
    [Google Scholar]
  49. ShuS. RenJ. SongJ. Clinical application of machine learning-based artificial intelligence in the diagnosis, prediction, and classification of cardiovascular diseases.Circ. J.20218591416142510.1253/circj.CJ‑20‑1121 33883384
    [Google Scholar]
  50. LeopoldJ.A. LoscalzoJ. Emerging role of precision medicine in cardiovascular disease.Circ. Res.201812291302131510.1161/CIRCRESAHA.117.310782 29700074
    [Google Scholar]
  51. RobinsonA.A. JainA. GentryM. McNamaraR.L. Left ventricular thrombi after STEMI in the primary PCI era: A systematic review and meta-analysis.Int. J. Cardiol.201622155455910.1016/j.ijcard.2016.07.069 27424314
    [Google Scholar]
  52. KeeleyE.C. David HillisL. Left ventricular mural thrombus after acute myocardial infarction.Clin. Cardiol.1996192838610.1002/clc.4960190203 8821415
    [Google Scholar]
  53. KurisuS. InoueI. KawagoeT. Incidence and treatment of left ventricular apical thrombosis in Tako-tsubo cardiomyopathy.Int. J. Cardiol.20111463e58e6010.1016/j.ijcard.2008.12.208 19193453
    [Google Scholar]
  54. GianstefaniS. DouiriA. DelithanasisI. Incidence and predictors of early left ventricular thrombus after ST-elevation myocardial infarction in the contemporary era of primary percutaneous coronary intervention.Am. J. Cardiol.201411371111111610.1016/j.amjcard.2013.12.015 24485697
    [Google Scholar]
  55. MaronM.S. FinleyJ.J. BosJ.M. Prevalence, clinical significance, and natural history of left ventricular apical aneurysms in hypertrophic cardiomyopathy.Circulation2008118151541154910.1161/CIRCULATIONAHA.108.781401 18809796
    [Google Scholar]
  56. ShachamY. Leshem-RubinowE. Ben AssaE. Frequency and correlates of early left ventricular thrombus formation following anterior wall acute myocardial infarction treated with primary percutaneous coronary intervention.Am. J. Cardiol.2013111566767010.1016/j.amjcard.2012.11.016 23261006
    [Google Scholar]
  57. FrantzS. HofmannU. FraccarolloD. Monocytes/macrophages prevent healing defects and left ventricular thrombus formation after myocardial infarction.FASEB J.201327387188110.1096/fj.12‑214049 23159933
    [Google Scholar]
  58. AcarZ. ZıyrekM. KorkmazL. KırısA. SahınS. CelıkS. Mean platelet volume at admission is a determinant of left ventricular thrombus formation after primary percutaneous coronary intervention for first anterior wall myocardial infarction.Acta Cardiol.201469660360910.1080/AC.69.6.1000002 25643430
    [Google Scholar]
/content/journals/ccr/10.2174/011573403X364065250429095440
Loading
/content/journals/ccr/10.2174/011573403X364065250429095440
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test