Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-403X
  • E-ISSN: 1875-6557

Abstract

Cardiovascular disease (CVD) Continues to be the leading cause of mortality worldwide, underscoring the critical need for effective prevention and management strategies. The ability to predict cardiovascular risk accurately and cost-effectively is central to improving patient outcomes and reducing the global burden of CVD. While useful, traditional tools used for risk assessment are often limited in their scope and fail to adequately account for atypical presentations and complex patient profiles. These limitations highlight the necessity for more advanced approaches, particularly integrating artificial intelligence (AI) into cardiovascular risk prediction. Our review explores the transformative role of AI in enhancing the accuracy, efficiency, and accessibility of cardiovascular risk prediction models. The implementation of AI-driven risk assessment tools has shown promising results, not only in improving CVD mortality rates but also in enhancing quality of life (QOL) markers and reducing healthcare costs. Machine learning (ML) algorithms predicted 2-year survival rates after MI with improved accuracy compared to traditional models. Deep learning (DL) forecasted hypertension risk with a 91.7% accuracy based on electronic health records. Furthermore, AI-driven ECG (Electrocardiography) analysis has demonstrated high precision in identifying left ventricular systolic dysfunction, even with noisy single-lead data from wearable devices. These tools enable more personalized treatment strategies, foster greater patient engagement, and support informed decision-making by healthcare providers. Unfortunately, the widespread adoption of AI in CVD risk assessment remains a challenge, largely due to a lack of education and acceptance among healthcare professionals. To overcome these barriers, it is crucial to promote broader education on the benefits and applications of AI in cardiovascular risk prediction. By fostering a greater understanding and acceptance of these technologies, we can accelerate their integration into clinical practice, ultimately aiming to mitigate the global impact of CVD.

Loading

Article metrics loading...

/content/journals/ccr/10.2174/011573403X351048250329170744
2025-04-17
2025-10-11
Loading full text...

Full text loading...

References

  1. Cardiovascular diseases (CVDs). 2021. Available from:https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
  2. Mohd FaizalA.S. ThevarajahT.M. KhorS.M. ChangS.W. A review of risk prediction models in cardiovascular disease: Conventional approach vs. artificial intelligent approach.Comput. Methods Programs Biomed.202120710619010.1016/j.cmpb.2021.106190 34077865
    [Google Scholar]
  3. CookN.R. RidkerP.M. Calibration of the pooled cohort equations for atherosclerotic cardiovascular disease.Ann. Intern. Med.20161651178679410.7326/M16‑1739 27723890
    [Google Scholar]
  4. YadlowskyS. HaywardR.A. SussmanJ.B. McClellandR.L. MinY.I. BasuS. Clinical implications of revised pooled cohort equations for estimating atherosclerotic cardiovascular disease risk.Ann. Intern. Med.20181691202910.7326/M17‑3011 29868850
    [Google Scholar]
  5. D’AgostinoR.B.Sr PencinaM.J. MassaroJ.M. CoadyS. Cardiovascular disease risk assessment: Insights from framingham.Glob. Heart201381112310.1016/j.gheart.2013.01.001 23750335
    [Google Scholar]
  6. HemannB.A. BimsonW.F. TaylorA.J. The Framingham Risk Score: An appraisal of its benefits and limitations.Am. Heart Hosp. J.200752919610.1111/j.1541‑9215.2007.06350.x 17478974
    [Google Scholar]
  7. LiY. SperrinM. BelmonteM. PateA. AshcroftD.M. van StaaT.P. Do population-level risk prediction models that use routinely collected health data reliably predict individual risks?Sci. Rep.2019911122210.1038/s41598‑019‑47712‑5 31375726
    [Google Scholar]
  8. HobbsF.D.R. JukemaJ.W. Da SilvaP.M. McCormackT. CatapanoA.L. Barriers to cardiovascular disease risk scoring and primary prevention in Europe.QJM20101031072773910.1093/qjmed/hcq122 20685842
    [Google Scholar]
  9. GrahamI. AtarD. Borch-JohnsenK. European guidelines on cardiovascular disease prevention in clinical practice: Full text. Fourth Joint Task Force of the European Society of Cardiology and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of nine societies and by invited experts).Eur. J. Cardiovasc. Prev. Rehabil.20071414Suppl. 2S1S11310.1097/01.hjr.0000277983.23934.c9 17726407
    [Google Scholar]
  10. DashS. ShakyawarS.K. SharmaM. KaushikS. Big data in healthcare: Management, analysis and future prospects.J. Big Data2019615410.1186/s40537‑019‑0217‑0
    [Google Scholar]
  11. El KhatibM. HamidiS. Al AmeeriI. Al ZaabiH. Al MarqabR. Digital disruption and big data in healthcare - Opportunities and challenges.Clinicoecon. Outcomes Res.20221456357410.2147/CEOR.S369553 36052095
    [Google Scholar]
  12. QuaziS. Artificial intelligence and machine learning in precision and genomic medicine.Med. Oncol.202239812010.1007/s12032‑022‑01711‑1 35704152
    [Google Scholar]
  13. SarkerI.H. Machine learning: Algorithms, real-world applications and research directions.SN Comput. Sci.20212316010.1007/s42979‑021‑00592‑x 33778771
    [Google Scholar]
  14. LiuW. LaranjoL. KlimisH. Machine-learning versus traditional approaches for atherosclerotic cardiovascular risk prognostication in primary prevention cohorts: A systematic review and meta-analysis.Eur. Heart J. Qual. Care Clin. Outcomes202394qcad01710.1093/ehjqcco/qcad017 36869800
    [Google Scholar]
  15. WengS.F. Can machine-learning improve cardiovascular risk prediction using routine clinical data?PLoS One2017124e017494410.1371/journal.pone.0174944 28376093
    [Google Scholar]
  16. JohriA.M. MantellaL.E. JamthikarA.D. SabaL. LairdJ.R. SuriJ.S. Role of artificial intelligence in cardiovascular risk prediction and outcomes: Comparison of machine-learning and conventional statistical approaches for the analysis of carotid ultrasound features and intra-plaque neovascularization.Int. J. Cardiovasc. Imaging202137113145315610.1007/s10554‑021‑02294‑0 34050838
    [Google Scholar]
  17. RajkomarA. OrenE. ChenK. Scalable and accurate deep learning with electronic health records.NPJ Digit. Med.2018111810.1038/s41746‑018‑0029‑1 31304302
    [Google Scholar]
  18. SchorkN.J. Artificial Intelligence and personalized medicine.Cancer Treat Res20191782658310.1007/978‑3‑030‑16391‑4_11 31209850
    [Google Scholar]
  19. DalalS. GoelP. OnyemaE.M. Application of machine learning for cardiovascular disease risk prediction.Comput. Intell. Neurosci.202320231941866610.1155/2023/9418666
    [Google Scholar]
  20. van SmedenM. HeinzeG. Van CalsterB. Critical appraisal of artificial intelligence-based prediction models for cardiovascular disease.Eur. Heart J.202243312921293010.1093/eurheartj/ehac238 35639667
    [Google Scholar]
  21. MoazemiS. VahdatiS. LiJ. Artificial intelligence for clinical decision support for monitoring patients in cardiovascular ICUs: A systematic review.Front. Med.202310110941110.3389/fmed.2023.1109411 37064042
    [Google Scholar]
  22. WolffJ. PaulingJ. KeckA. BaumbachJ. Success factors of Artificial Intelligence implementation in healthcare.Front. Digit. Health2021359497110.3389/fdgth.2021.594971 34713083
    [Google Scholar]
  23. ChomutareT. TejedorM. SvenningT.O. Artificial Intelligence implementation in healthcare: A theory-based scoping review of barriers and facilitators.Int. J. Environ. Res. Public Health202219231635910.3390/ijerph192316359 36498432
    [Google Scholar]
  24. Van StaaT.P. GullifordM. NgE.S.W. GoldacreB. SmeethL. Prediction of cardiovascular risk using Framingham, ASSIGN and QRISK2: How well do they predict individual rather than population risk?PLoS One2014910e10645510.1371/journal.pone.0106455 25271417
    [Google Scholar]
  25. SofogianniA. StalikasN. AntzaC. TziomalosK. Cardiovascular risk prediction models and scores in the era of personalized medicine.J. Pers. Med.2022127118010.3390/jpm12071180 35887677
    [Google Scholar]
  26. KawadaT. Reynolds risk score as a risk assessment tool for cardiovascular disease after 10 years: Its strong relationship with blood pressure.J. Clin. Hypertens.201214857157210.1111/j.1751‑7176.2012.00644.x 22863168
    [Google Scholar]
  27. van der HeijdenA.A.W.A. OrtegonM.M. NiessenL.W. NijpelsG. DekkerJ.M. Prediction of coronary heart disease risk in a general, pre-diabetic, and diabetic population during 10 years of follow-up: Accuracy of the Framingham, SCORE, and UKPDS risk functions: The hoorn study.Diabetes Care200932112094209810.2337/dc09‑0745 19875606
    [Google Scholar]
  28. YanL.D. Lookens PierreJ. RouzierV. Comparing six cardiovascular risk prediction models in Haiti: Implications for identifying high-risk individuals for primary prevention.BMC Public Health202222154910.1186/s12889‑022‑12963‑x 35305599
    [Google Scholar]
  29. Lloyd-JonesD.M. Strengths and limitations of the ASCVD risk score and what should go in the risk discussion.2014Available from: https://www.acc.org/Latest-in-Cardiology/Articles/2014/08/25/14/48/Strengths-and-Limitations-of-the-ASCVD-Risk-Score-and-What-Should-Go-in-the-Risk-Discussion
    [Google Scholar]
  30. FumoJ. Types of machine learning algorithms you should know.2017Available from: https://towardsdatascience.com/types-ofmachine-learning-algorithms-you-should-know-953a08248861
    [Google Scholar]
  31. CuocoloR. PerilloT. De RosaE. UggaL. PetrettaM. Current applications of big data and machine learning in cardiology.J. Geriatr. Cardiol.201916860160710.11909/j.issn.1671‑5411.2019.08.002 31555327
    [Google Scholar]
  32. MarimuthuM. AbinayaM. S K, Madhankumar K, Pavithra V. A review on heart disease prediction using machine learning and data analytics approach.Int. J. Comput. Appl.201818118202510.5120/ijca2018917863
    [Google Scholar]
  33. MoghaddasiH. NourianS. Automatic assessment of mitral regurgitation severity based on extensive textural features on 2D echocardiography videos.Comput. Biol. Med.201673475510.1016/j.compbiomed.2016.03.026 27082766
    [Google Scholar]
  34. KhamisH. ZurakhovG. AzarV. RazA. FriedmanZ. AdamD. Automatic apical view classification of echocardiograms using a discriminative learning dictionary.Med. Image Anal.201736152110.1016/j.media.2016.10.007 27816858
    [Google Scholar]
  35. SenguptaP.P. HuangY.M. BansalM. Cognitive Machine-Learning algorithm for cardiac imaging.Circ. Cardiovasc. Imaging201696e00433010.1161/CIRCIMAGING.115.004330 27266599
    [Google Scholar]
  36. AlaaA.M. BoltonT. Di AngelantonioE. RuddJ.H.F. Van Der SchaarM. Cardiovascular disease risk prediction using automated machine learning: A prospective study of 423,604 UK Biobank participants.PLoS One2019145e021365310.1371/journal.pone.0213653 31091238
    [Google Scholar]
  37. ZreikM. LessmannN. van HamersveltR.W. Deep learning analysis of the myocardium in coronary CT angiography for identification of patients with functionally significant coronary artery stenosis.Med. Image Anal.201844728510.1016/j.media.2017.11.008 29197253
    [Google Scholar]
  38. SabutS. PandeyO. MishraB.S.P. MohantyM. Detection of ventricular arrhythmia using hybrid time–frequency-based features and deep neural network.Phys. Eng. Sci. Med.202144113514510.1007/s13246‑020‑00964‑2 33417159
    [Google Scholar]
  39. Martínez-SellésM. Marina-BreysseM. Current and future use of Artificial Intelligence in electrocardiography.J. Cardiovasc. Dev. Dis.202310417510.3390/jcdd10040175 37103054
    [Google Scholar]
  40. KrittanawongC. ZhangH. WangZ. AydarM. KitaiT. Artificial Intelligence in precision cardiovascular medicine.J. Am. Coll. Cardiol.201769212657266410.1016/j.jacc.2017.03.571 28545640
    [Google Scholar]
  41. AttiaZ.I. NoseworthyP.A. Lopez-JimenezF. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: A retrospective analysis of outcome prediction.Lancet20193941020186186710.1016/S0140‑6736(19)31721‑0 31378392
    [Google Scholar]
  42. AttiaZ.I. KapaS. Lopez-JimenezF. Screening for cardiac contractile dysfunction using an artificial intelligence–enabled electrocardiogram.Nat. Med.2019251707410.1038/s41591‑018‑0240‑2 30617318
    [Google Scholar]
  43. KakadiarisI.A. VrigkasM. YenA.A. KuznetsovaT. BudoffM. NaghaviM. Machine Learning outperforms ACC/AHA CVD risk calculator in MESA.J. Am. Heart Assoc.2018722e00947610.1161/JAHA.118.009476 30571498
    [Google Scholar]
  44. McConnachieA. WalkerA. RobertsonM. Long-term impact on healthcare resource utilization of statin treatment, and its cost effectiveness in the primary prevention of cardiovascular disease: A record linkage study.Eur. Heart J.201435529029810.1093/eurheartj/eht232 23839541
    [Google Scholar]
  45. LiuR. WangM. ZhengT. An artificial intelligence-based risk prediction model of myocardial infarction.BMC Bioinformatics202223121710.1186/s12859‑022‑04761‑4 35672659
    [Google Scholar]
  46. WallertJ. TomasoniM. MadisonG. HeldC. Predicting two-year survival versus non-survival after first myocardial infarction using machine learning and Swedish national register data.BMC Med. Inform. Decis. Mak.20171719910.1186/s12911‑017‑0500‑y 28679442
    [Google Scholar]
  47. Al-KhatibS.M. StevensonW.G. AckermanM.J. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: Executive summary.Circulation201813813e210e27110.1161/CIR.0000000000000548 29084733
    [Google Scholar]
  48. MehtaR.H. StarrA.Z. LopesR.D. Incidence of and outcomes associated with ventricular tachycardia or fibrillation in patients undergoing primary percutaneous coronary intervention.JAMA2009301171779178910.1001/jama.2009.600 19417195
    [Google Scholar]
  49. WangS. LiJ. SunL. Application of machine learning to predict the occurrence of arrhythmia after acute myocardial infarction.BMC Med. Inform. Decis. Mak.202121130110.1186/s12911‑021‑01667‑8 34724938
    [Google Scholar]
  50. HeldE. CapeJ. TintleN. Comparing machine learning and logistic regression methods for predicting hypertension using a combination of gene expression and next-generation sequencing data.BMC Proc.201610S7Suppl. 73410.1186/s12919‑016‑0020‑2 27980626
    [Google Scholar]
  51. LiY.H. ZhangG.G. WangN. Systematic characterization and prediction of human hypertension genes.Hypertension201769234935510.1161/HYPERTENSIONAHA.116.08573 27895194
    [Google Scholar]
  52. LiC. SunD. LiuJ. A prediction model of essential hypertension based on genetic and environmental risk factors in Northern Han Chinese.Int. J. Med. Sci.201916679379910.7150/ijms.33967 31337952
    [Google Scholar]
  53. MaxwellA. LiR. YangB. Deep learning architectures for multi-label classification of intelligent health risk prediction.BMC Bioinformatics201718S14Suppl. 1452310.1186/s12859‑017‑1898‑z 29297288
    [Google Scholar]
  54. YeC. FuT. HaoS. Prediction of incident hypertension within the next year: Prospective study using statewide electronic health records and machine learning.J. Med. Internet Res.2018201e2210.2196/jmir.9268 29382633
    [Google Scholar]
  55. CavallariL.H. WeitzelK. Pharmacogenomics in cardiology-Genetics and drug response: 10 years of progress.Future Cardiol.201511328128610.2217/fca.15.20 26021633
    [Google Scholar]
  56. PirmohamedM. BurnsideG. ErikssonN. A randomized trial of genotype-guided dosing of warfarin.N. Engl. J. Med.2013369242294230310.1056/NEJMoa1311386 24251363
    [Google Scholar]
  57. SynN.L. WongA.L.A. LeeS.C. Genotype-guided versus traditional clinical dosing of warfarin in patients of Asian ancestry: A randomized controlled trial.BMC Med.201816110410.1186/s12916‑018‑1093‑8 29986700
    [Google Scholar]
  58. WangT.J. EvansJ.C. BenjaminE.J. LevyD. LeRoyE.C. VasanR.S. Natural history of asymptomatic left ventricular systolic dysfunction in the community.Circulation2003108897798210.1161/01.CIR.0000085166.44904.79 12912813
    [Google Scholar]
  59. KhunteA. SanghaV. OikonomouE.K. Detection of left ventricular systolic dysfunction from single-lead electrocardiography adapted for portable and wearable devices.NPJ Digit. Med.20236112410.1038/s41746‑023‑00869‑w 37433874
    [Google Scholar]
  60. KhanB. FatimaH. QureshiA. Drawbacks of Artificial Intelligence and their potential solutions in the healthcare sector.Biomed. Mater. Devices20231810.1007/s44174‑023‑00063‑2 36785697
    [Google Scholar]
  61. KellyC.J. KarthikesalingamA. SuleymanM. CorradoG. KingD. Key challenges for delivering clinical impact with artificial intelligence.BMC Med.201917119510.1186/s12916‑019‑1426‑2 31665002
    [Google Scholar]
  62. FriedrichS. GroßS. KönigI.R. Applications of artificial intelligence/machine learning approaches in cardiovascular medicine: A systematic review with recommendations.Eur. Heart J. Digit. Health20212342443610.1093/ehjdh/ztab054 36713608
    [Google Scholar]
  63. VandenberkB. ChewD.S. PrasanaD. GuptaS. ExnerD.V. Successes and challenges of artificial intelligence in cardiology.Front. Digit. Health20235120139210.3389/fdgth.2023.1201392 37448836
    [Google Scholar]
  64. KoulaouzidisG. JadczykT. IakovidisD.K. KoulaouzidisA. BisnaireM. CharisopoulouD. Artificial Intelligence in cardiology—A narrative review of current status.J. Clin. Med.20221113391010.3390/jcm11133910 35807195
    [Google Scholar]
  65. ChatzopoulouF. KyritsisK.A. PapagiannopoulosC.I. Dissecting miRNA–gene networks to map clinical utility roads of pharmacogenomics-guided therapeutic decisions in cardiovascular precision medicine.Cells202211460710.3390/cells11040607 35203258
    [Google Scholar]
  66. KrittanawongC. VirkH.U.H. BangaloreS. Machine learning prediction in cardiovascular diseases: A meta-analysis.Sci. Rep.20201011605710.1038/s41598‑020‑72685‑1 32994452
    [Google Scholar]
  67. ShahzadR. AyubB. SiddiquiM.A.R. Quality of reporting of randomised controlled trials of artificial intelligence in healthcare: A systematic review.BMJ Open2022129e06151910.1136/bmjopen‑2022‑061519 36691151
    [Google Scholar]
/content/journals/ccr/10.2174/011573403X351048250329170744
Loading
/content/journals/ccr/10.2174/011573403X351048250329170744
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test