Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-403X
  • E-ISSN: 1875-6557

Abstract

Introduction

The presence of both cardiovascular disease (CVD) and depression is common, and their complex connection poses difficulties in therapy and affects patient outcomes. Thus, this study aims to examine the complex correlation between depression and cardiovascular disease (CVD), with a specific focus on potential biomarkers and innovative therapeutic approaches.

Methods

Publications were considered between 2015-2024 from standard databases like Google Scholar, PubMed-Medline, and Scopus using standard keywords, “Depression”, “Cardiovascular Disease”, “Biomarkers”, and “Therapeutic Approaches”. Recent studies have discovered several potential biomarkers linked to depression and cardiovascular disease (CVD), including neuroendocrine factors, inflammatory markers, and signs of oxidative stress. Therapeutic approaches for depression and cardiovascular disease have emerged, with a focus on tackling their connections from multiple dimensions.

Results and Discussion

Emerging research suggests that depression has an impact on both the prognosis and risk of CVD. Conversely, depression can be caused by CVD, which triggers a series of events that lead to higher rates of illness and death.

Conclusion

A comprehensive understanding of the fundamental pathophysiological pathways is essential for the identification of biomarkers that can serve as diagnostic tools or therapy targets. Among these interventions, exercise and dietary adjustments have shown promising impacts on cardiovascular health and results, as well as mental health. Ultimately, the selection of diagnostic techniques and treatments hinges on comprehending the complex interplay between depression and CVD. Researchers are developing novel therapeutic techniques to enhance the cardiovascular and mental health outcomes of individuals with both depression and CVD.

Loading

Article metrics loading...

/content/journals/ccr/10.2174/011573403X337113250212093810
2025-03-20
2025-10-12
Loading full text...

Full text loading...

References

  1. XueqinL. YumeiH. ZhouS. JinfangC. Advances in understanding therapeutic mechanisms of exercise interventions for individuals with comorbid depression and cardiovascular diseases: A narrative review.Heart Mind (Mumbai)84292299
    [Google Scholar]
  2. Di CesareM. PerelP. TaylorS. The heart of the world.Glob. Heart20241911110.5334/gh.1288 38273998
    [Google Scholar]
  3. HalarisA. Inflammation-associated co-morbidity between depression and cardiovascular disease.Curr. Top. Behav. Neurosci.201631457010.1007/7854_2016_28 27830572
    [Google Scholar]
  4. CorrellC.U. SolmiM. VeroneseN. Prevalence, incidence and mortality from cardiovascular disease in patients with pooled and specific severe mental illness: A large‐scale meta‐analysis of 3,211,768 patients and 113,383,368 controls.World Psychiatry201716216318010.1002/wps.20420 28498599
    [Google Scholar]
  5. ZhangY. ChenY. MaL. Depression and cardiovascular disease in elderly: Current understanding.J. Clin. Neurosci.2018471510.1016/j.jocn.2017.09.022 29066229
    [Google Scholar]
  6. DickensC. Depression in people with coronary heart disease: Prognostic significance and mechanisms.Curr. Cardiol. Rep.201517108310.1007/s11886‑015‑0640‑6 26277367
    [Google Scholar]
  7. ThombsB.D. BassE.B. FordD.E. Prevalence of depression in survivors of acute myocardial infarction.J. Gen. Intern. Med.2006211303810.1111/j.1525‑1497.2005.00269.x 16423120
    [Google Scholar]
  8. ChenX. ZengM. ChenC. ZhuD. ChenL. JiangZ. Efficacy of psycho-cardiology therapy in patients with acute myocardial infarction complicated with mild anxiety and depression.Front. Cardiovasc. Med.20239103125510.3389/fcvm.2022.1031255 36776943
    [Google Scholar]
  9. CarusoG. FrestaC.G. GrassoM. Inflammation as the common biological link between depression and cardiovascular diseases: Can carnosine exert a protective role?Curr. Med. Chem.202027111782180010.2174/0929867326666190712091515 31296155
    [Google Scholar]
  10. MelnikB.C. JohnS. SchmitzG. Milk consumption during pregnancy increases birth weight, a risk factor for the development of diseases of civilization.J. Transl. Med.20151311310.1186/s12967‑014‑0377‑9 25592553
    [Google Scholar]
  11. GlassmanA.H. ShapiroP.A. Depression and the course of coronary artery disease.Am. J. Psychiatry1998155141110.1176/ajp.155.1.4
    [Google Scholar]
  12. GrippoA.J. JohnsonA.K. Stress, depression and cardiovascular dysregulation: A review of neurobiological mechanisms and the integration of research from preclinical disease models.Stress200912112110.1080/10253890802046281 19116888
    [Google Scholar]
  13. NandamL.S. BrazelM. ZhouM. JhaveriD.J. Cortisol and major depressive disorder-translating findings from humans to animal models and back.Front. Psychiatry20201097410.3389/fpsyt.2019.00974 32038323
    [Google Scholar]
  14. AmadioP. ZaràM. SandriniL. IeraciA. BarbieriS.S. Depression and cardiovascular disease: The viewpoint of platelets.Int. J. Mol. Sci.20202120756010.3390/ijms21207560 33066277
    [Google Scholar]
  15. GiustiL. BianchiniV. AggioA. Twelve-month outcomes in overweight/obese users with mental disorders following a multi-nlm treatment including diet, physical activity, and positive thinking: The real-world “An Apple a Day” controlled trial.Front. Psychiatry20221390375910.3389/fpsyt.2022.903759 36081460
    [Google Scholar]
  16. NumakawaT. RichardsM. NakajimaS. The role of brain-derived neurotrophic factor in comorbid depression: Possible linkage with steroid hormones, cytokines, and nutrition.Front. Psychiatry2014513610.3389/fpsyt.2014.00136 25309465
    [Google Scholar]
  17. KawashimaH. NumakawaT. KumamaruE. Glucocorticoid attenuates brain-derived neurotrophic factor-dependent upregulation of glutamate receptors via the suppression of microRNA-132 expression.Neuroscience201016541301131110.1016/j.neuroscience.2009.11.057 19958814
    [Google Scholar]
  18. BathinaS. DasU.N. Brain-derived neurotrophic factor and its clinical implications.Arch. Med. Sci.2015661164117810.5114/aoms.2015.56342 26788077
    [Google Scholar]
  19. XuF. ZengY. HuangH. XuF. MicroRNA-132 may play a role in coexistence of depression and cardiovascular disease: A hypothesis.Med. Sci. Monit.20131943844310.12659/MSM.883935 23748239
    [Google Scholar]
  20. SapolskyR. RivierC. YamamotoG. PlotskyP. ValeW. Interleukin-1 stimulates the secretion of hypothalamic corticotropin-releasing factor.Science1987238482652252410.1126/science.2821621 2821621
    [Google Scholar]
  21. KanyS. VollrathJ.T. ReljaB. Cytokines in inflammatory disease.Int. J. Mol. Sci.20192023600810.3390/ijms20236008 31795299
    [Google Scholar]
  22. JeeY.H. ChangH. JungK.J. JeeS.H. Cohort study on the effects of depression on atherosclerotic cardiovascular disease risk in Korea.BMJ Open201996e02691310.1136/bmjopen‑2018‑026913 31227532
    [Google Scholar]
  23. ParkD.H. ChoJ.J. YoonJ.L. KimM.Y. JuY.S. The impact of depression on cardiovascular disease: A nationwide population-based cohort study in Korean elderly.Korean J. Fam. Med.202041529930510.4082/kjfm.18.0134 32380798
    [Google Scholar]
  24. MelinE.O. ThulesiusH.O. HillmanM. SvenssonR. Landin-OlssonM. ThunanderM. Lower HDL-cholesterol, a known marker of cardiovascular risk, was associated with depression in type 1 diabetes: A cross sectional study.Lipids Health Dis.20191816510.1186/s12944‑019‑1009‑4 30885233
    [Google Scholar]
  25. GhazizadehH. Yaghooti-KhorasaniM. AsadiZ. Association between Dietary Inflammatory Index (DII®) and depression and anxiety in the Mashhad Stroke and Heart Atherosclerotic Disorder (MASHAD) study population.BMC Psychiatry202020128210.1186/s12888‑020‑02663‑4 32503468
    [Google Scholar]
  26. KhandakerG.M. ZuberV. ReesJ.M.B. Shared mechanisms between coronary heart disease and depression: Findings from a large UK general population-based cohort.Mol. Psychiatry20202571477148610.1038/s41380‑019‑0395‑3 30886334
    [Google Scholar]
  27. ZhangY. LiX. ChanV.K.Y. Depression duration and risk of incident cardiovascular disease: A population-based six-year cohort study.J. Affect. Disord.202230518819510.1016/j.jad.2022.03.005 35283180
    [Google Scholar]
  28. LiG.H.Y. CheungC.L. ChungA.K.K. Evaluation of bi-directional causal association between depression and cardiovascular diseases: A Mendelian randomization study.Psychol. Med.20225291765177610.1017/S0033291720003566 33032663
    [Google Scholar]
  29. Rafieian-KopaeiM. SetorkiM. DoudiM. BaradaranA. NasriH. Atherosclerosis: Process, indicators, risk factors and new hopes.Int. J. Prev. Med.201458927946 25489440
    [Google Scholar]
  30. PaisP. KamathD.Y. XavierD. SigamaniA. High sensitivity C-reactive protein (hsCRP) & cardiovascular disease: An Indian perspective.Indian J. Med. Res.2015142326126810.4103/0971‑5916.166582 26458341
    [Google Scholar]
  31. JungY.E. KangK.Y. Elevated hs-CRP level is associated with depression in younger adults: Results from the Korean National Health and Nutrition Examination Survey (KNHANES 2016).Psychoneuroendocrinology201910910439710.1016/j.psyneuen.2019.104397 31377557
    [Google Scholar]
  32. TanakaT. NarazakiM. KishimotoT. IL-6 in inflammation, immunity, and disease.Cold Spring Harb. Perspect. Biol.2014610a01629510.1101/cshperspect.a016295 25190079
    [Google Scholar]
  33. ParameswaranN. PatialS. Tumor necrosis factor-α signaling in macrophages.Crit. Rev. Eukaryot. Gene Expr.20102028710310.1615/CritRevEukarGeneExpr.v20.i2.10 21133840
    [Google Scholar]
  34. PapanicolaouD.A. WilderR.L. ManolagasS.C. ChrousosG.P. The pathophysiologic roles of interleukin-6 in human disease.Ann. Intern. Med.1998128212713710.7326/0003‑4819‑128‑2‑199801150‑00009 9441573
    [Google Scholar]
  35. SchroecksnadelK. FrickB. WinklerC. FuchsD. Crucial role of interferon-gamma and stimulated macrophages in cardiovascular disease.Curr. Vasc. Pharmacol.20064320521310.2174/157016106777698379 16842138
    [Google Scholar]
  36. BraigD. NeroT.L. KochH.G. Transitional changes in the CRP structure lead to the exposure of proinflammatory binding sites.Nat. Commun.201781418810.1038/ncomms14188
    [Google Scholar]
  37. YuE. SharmaS. Physiology, Calcium.Treasure Island, FLStatPearls2024 29489276
    [Google Scholar]
  38. RozanskiA. BlumenthalJ.A. DavidsonK.W. SaabP.G. KubzanskyL. The epidemiology, pathophysiology, and management of psychosocial risk factors in cardiac practice.J. Am. Coll. Cardiol.200545563765110.1016/j.jacc.2004.12.005 15734605
    [Google Scholar]
  39. RuguliesR. Depression as a predictor for coronary heart disease.Am. J. Prev. Med.2002231516110.1016/S0749‑3797(02)00439‑7 12093424
    [Google Scholar]
  40. RidkerP.M. HennekensC.H. BuringJ.E. RifaiN. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women.N. Engl. J. Med.20003421283684310.1056/NEJM200003233421202 10733371
    [Google Scholar]
  41. CortiR. FusterV. BadimonJ.J. Pathogenetic concepts of acute coronary syndromes.J. Am. Coll. Cardiol.2003414Suppl. SS7S1410.1016/S0735‑1097(02)02833‑4 12644335
    [Google Scholar]
  42. ShimboD. ChaplinW. CrossmanD. HaasD. DavidsonK.W. Role of depression and inflammation in incident coronary heart disease events.Am. J. Cardiol.20059671016102110.1016/j.amjcard.2005.05.064 16188535
    [Google Scholar]
  43. FordD.E. ErlingerT.P. Depression and C-reactive protein in US adults.Arch. Intern. Med.200416491010101410.1001/archinte.164.9.1010 15136311
    [Google Scholar]
  44. TingE.Y.C. YangA.C. TsaiS.J. Role of interleukin-6 in depressive disorder.Int. J. Mol. Sci.2020216219410.3390/ijms21062194 32235786
    [Google Scholar]
  45. YangL. ZhaoY. WangY. The effects of psychological stress on depression.Curr. Neuropharmacol.201513449450410.2174/1570159X1304150831150507 26412069
    [Google Scholar]
  46. DarcyJ. TsengY.H. The link between stress and IL-6 is heating up.Cell Metab.202032215215310.1016/j.cmet.2020.07.011 32755607
    [Google Scholar]
  47. KellerA.S. LeikaufJ.E. Holt-GosselinB. StavelandB.R. WilliamsL.M. Paying attention to attention in depression.Transl. Psychiatry20199127910.1038/s41398‑019‑0616‑1 31699968
    [Google Scholar]
  48. Villar-FincheiraP. Sanhueza-OlivaresF. Norambuena-SotoI. Role of interleukin-6 in vascular health and disease.Front. Mol. Biosci.2021864173410.3389/fmolb.2021.641734 33786327
    [Google Scholar]
  49. Reina-CoutoM. Pereira-TerraP. Quelhas-SantosJ. Silva-PereiraC. Albino-TeixeiraA. SousaT. Inflammation in human heart failure: Major mediators and therapeutic targets.Front. Physiol.20211274649410.3389/fphys.2021.746494 34707513
    [Google Scholar]
  50. AnsarW. GhoshS. Inflammation and inflammatory diseases, markers, and mediators: Role of CRP in some inflammatory diseases.Biology of C Reactive Protein in Health and Disease.Springer201667
    [Google Scholar]
  51. JangD. LeeA.H. ShinH.Y. The role of tumor necrosis factor alpha (TNF-α) in autoimmune disease and current TNF-α inhibitors in therapeutics.Int. J. Mol. Sci.2021225271910.3390/ijms22052719 33800290
    [Google Scholar]
  52. RobertoM. PatelR.R. BajoM. Cytokines in the CNS.Handb. Exp. Pharmacol.201824839710.1007/164_2017_77 29236160
    [Google Scholar]
  53. AbernethyA. RazaS. SunJ.L. Pro‐Inflammatory biomarkers in stable versus acutely decompensated heart failure with preserved ejection fraction.J. Am. Heart Assoc.201878e00738510.1161/JAHA.117.007385 29650706
    [Google Scholar]
  54. LymperopoulosA. RengoG. KochW.J. Adrenergic nervous system in heart failure: Pathophysiology and therapy.Circ. Res.2013113673975310.1161/CIRCRESAHA.113.300308 23989716
    [Google Scholar]
  55. HillhouseT.M. PorterJ.H. A brief history of the development of antidepressant drugs: From monoamines to glutamate.Exp. Clin. Psychopharmacol.201523112110.1037/a0038550 25643025
    [Google Scholar]
  56. HoppmannU. EnglerH. KrauseS. Systemic catecholaminergic deficiency in depressed patients with and without coronary artery disease.J. Clin. Med.202110598610.3390/jcm10050986 33801190
    [Google Scholar]
  57. Mohd AzmiN.A.S. JulianaN. AzmaniS. Cortisol on circadian rhythm and its effect on cardiovascular system.Int. J. Environ. Res. Public Health202118267610.3390/ijerph18020676 33466883
    [Google Scholar]
  58. YoungE.A. HaskettR.F. GrunhausL. Increased evening activation of the hypothalamic-pituitary-adrenal axis in depressed patients.Arch. Gen. Psychiatry199451970170710.1001/archpsyc.1994.03950090033005 8080346
    [Google Scholar]
  59. CarrollB.J. CurtisG.C. DaviesB.M. MendelsJ. SugermanA.A. Urinary free cortisol excretion in depression.Psychol. Med.197661435010.1017/S0033291700007480 935296
    [Google Scholar]
  60. BrownE.S. VargheseF.P. McEwenB.S. Association of depression with medical illness: Does cortisol play a role?Biol. Psychiatry20045511910.1016/S0006‑3223(03)00473‑6 14706419
    [Google Scholar]
  61. Agabiti-RoseiE. AlicandriC. BeschiM. Relationships between plasma catecholamines, renin, age and blood pressure in essential hypertension.Cardiology198370630831610.1159/000173613 6370432
    [Google Scholar]
  62. McEwenB.S. Mood disorders and allostatic load.Biol. Psychiatry200354320020710.1016/S0006‑3223(03)00177‑X 12893096
    [Google Scholar]
  63. WolkowitzO.M. EpelE.S. ReusV.I. Stress hormone-related psychopathology: Pathophysiological and treatment implications.World J. Biol. Psychiatry20012311514310.3109/15622970109026799 12587196
    [Google Scholar]
  64. DziurkowskaE. WesolowskiM. Cortisol as a biomarker of mental disorder severity.J. Clin. Med.20211021520410.3390/jcm10215204 34768724
    [Google Scholar]
  65. AllenM.J. SharmaS. Physiology, adrenocorticotropic hormone (ACTH).Treasure Island, FLStatPearls Publishing2023
    [Google Scholar]
  66. ZiweiZ. HuaY. LiuA. Bidirectional association between depressive symptoms and cardiovascular disease in the middle-aged and elderly Chinese: A 5-year longitudinal study.BMJ Open2023137e07117510.1136/bmjopen‑2022‑071175 37407047
    [Google Scholar]
  67. JiaZ. LiS. Risk of cardiovascular disease mortality in relation to depression and 14 common risk factors.Int. J. Gen. Med.20211444144910.2147/IJGM.S292140 33603451
    [Google Scholar]
  68. BauneB.T. StuartM. GilmourA. The relationship between subtypes of depression and cardiovascular disease: A systematic review of biological models.Transl. Psychiatry201223e9210.1038/tp.2012.18 22832857
    [Google Scholar]
  69. Henao PérezM. López MedinaD.C. Lemos HoyosM. Ríos ZapataP. Depression and the risk of adverse outcomes at 5 years in patients with coronary heart disease.Heliyon2020611e0542510.1016/j.heliyon.2020.e05425 33210006
    [Google Scholar]
  70. HuffmanJ.C. CelanoC.M. BeachS.R. MotiwalaS.R. JanuzziJ.L. Depression and cardiac disease: Epidemiology, mechanisms, and diagnosis.Cardiovasc. Psychiatry Neurol.2013201311410.1155/2013/695925 23653854
    [Google Scholar]
  71. RawashdehS.I. IbdahR. KheirallahK.A. Prevalence estimates, severity, and risk factors of depressive symptoms among coronary artery disease patients after ten days of percutaneous coronary intervention.Clin. Pract. Epidemiol. Ment. Health202117110311310.2174/1745017902117010103 34733349
    [Google Scholar]
  72. AyerbeL. AyisS. WolfeC.D.A. RuddA.G. Natural history, predictors and outcomes of depression after stroke: Systematic review and meta-analysis.Br. J. Psychiatry20132021142110.1192/bjp.bp.111.107664 23284148
    [Google Scholar]
  73. de BekkerA. GeerlingsM.I. Uitewaal-PoslawskyI.E. de Man-van GinkelJ.M. Determinants of the natural course of depressive symptoms in stroke survivors in the Netherlands: The SMART-Medea study.J. Stroke Cerebrovasc. Dis.202231310627210.1016/j.jstrokecerebrovasdis.2021.106272 34995905
    [Google Scholar]
  74. DumanR.S. LiN. A neurotrophic hypothesis of depression: Role of synaptogenesis in the actions of NMDA receptor antagonists.Philos. Trans. R. Soc. Lond. B Biol. Sci.201236716012475248410.1098/rstb.2011.0357 22826346
    [Google Scholar]
  75. KuhlmannS.L. TschornM. AroltV. Serum brain-derived neurotrophic factor and stability of depressive symptoms in coronary heart disease patients: A prospective study.Psychoneuroendocrinology20177719620210.1016/j.psyneuen.2016.12.015 28092760
    [Google Scholar]
  76. SenS. DumanR. SanacoraG. Serum brain-derived neurotrophic factor, depression, and antidepressant medications: Meta-analyses and implications.Biol. Psychiatry200864652753210.1016/j.biopsych.2008.05.005 18571629
    [Google Scholar]
  77. EjiriJ. InoueN. KobayashiS. Possible role of brain-derived neurotrophic factor in the pathogenesis of coronary artery disease.Circulation2005112142114212010.1161/CIRCULATIONAHA.104.476903 16186425
    [Google Scholar]
  78. KaessB.M. PreisS.R. LiebW. Circulating brain-derived neurotrophic factor concentrations and the risk of cardiovascular disease in the community.J. Am. Heart Assoc.201543e00154410.1161/JAHA.114.001544 25762803
    [Google Scholar]
  79. ZhouC. ZhongJ. ZouB. Meta-analyses of comparative efficacy of antidepressant medications on peripheral BDNF concentration in patients with depression.PLoS One2017122e017227010.1371/journal.pone.0172270 28241064
    [Google Scholar]
  80. FioranelliM. SpadaforaL. BernardiM. Impact of low-dose Brain-Derived Neurotrophic Factor (BDNF) on atrial fibrillation recurrence.Minerva. Cardiol. Angiol.202371667368010.23736/S2724‑5683.23.06324‑X 37337698
    [Google Scholar]
  81. PicóC. PalouM. PomarC.A. RodríguezA.M. PalouA. Leptin as a key regulator of the adipose organ.Rev. Endocr. Metab. Disord.2022231133010.1007/s11154‑021‑09687‑5 34523036
    [Google Scholar]
  82. CasadoM.E. Collado-PérezR. FragoL.M. BarriosV. Recent advances in the knowledge of the mechanisms of leptin physiology and actions in neurological and metabolic pathologies.Int. J. Mol. Sci.2023242142210.3390/ijms24021422 36674935
    [Google Scholar]
  83. GeT. FanJ. YangW. CuiR. LiB. Leptin in depression: A potential therapeutic target.Cell Death Dis.2018911109610.1038/s41419‑018‑1129‑1 30367065
    [Google Scholar]
  84. IrvingA.J. HarveyJ. Leptin regulation of hippocampal synaptic function in health and disease.Philos. Trans. R. Soc. Lond. B Biol. Sci.201436916332013015510.1098/rstb.2013.0155 24298156
    [Google Scholar]
  85. Vilariño-GarcíaT. Polonio-GonzálezM.L. Pérez-PérezA. Role of leptin in obesity, cardiovascular disease, and type 2 diabetes.Int. J. Mol. Sci.2024252338
    [Google Scholar]
  86. ZouX. ZhongL. ZhuC. Role of leptin in mood disorder and neurodegenerative disease.Front. Neurosci.20191337810.3389/fnins.2019.00378 31130833
    [Google Scholar]
  87. KohK.K. ParkS.M. QuonM.J. Leptin and cardiovascular disease: Response to therapeutic interventions.Circulation2008117253238324910.1161/CIRCULATIONAHA.107.741645 18574061
    [Google Scholar]
  88. PrayR. RiskinS. The history and faults of the body mass index and where to look next: A literature review.Cureus20231511e4823010.7759/cureus.48230 38050494
    [Google Scholar]
  89. Seoane-CollazoP. Martínez-SánchezN. MilbankE. ContrerasC. Incendiary leptin.Nutrients202012247210.3390/nu12020472 32069871
    [Google Scholar]
  90. ZanchiD. DepoorterA. EgloffL. The impact of gut hormones on the neural circuit of appetite and satiety: A systematic review.Neurosci. Biobehav. Rev.20178045747510.1016/j.neubiorev.2017.06.013 28669754
    [Google Scholar]
  91. DoddG.T. DecherfS. LohK. Leptin and insulin act on POMC neurons to promote the browning of white fat.Cell20151601-28810410.1016/j.cell.2014.12.022 25594176
    [Google Scholar]
  92. WallaceA.M. McMahonA.D. PackardC.J. Plasma leptin and the risk of cardiovascular disease in the west of Scotland coronary prevention study (WOSCOPS).Circulation2001104253052305610.1161/hc5001.101061 11748099
    [Google Scholar]
  93. WolkR. BergerP. LennonR.J. BrilakisE.S. JohnsonB.D. SomersV.K. Plasma leptin and prognosis in patients with established coronary atherosclerosis.J. Am. Coll. Cardiol.20044491819182410.1016/j.jacc.2004.07.050 15519013
    [Google Scholar]
  94. SöderbergS. AhrénB. JanssonJ.H. Leptin is associated with increased risk of myocardial infarction.J. Intern. Med.1999246440941810.1046/j.1365‑2796.1999.00571.x 10583712
    [Google Scholar]
  95. WallanderM. SöderbergS. NorhammarA. Leptin-a predictor of abnormal glucose tolerance and prognosis in patients with myocardial infarction and without previously known Type 2 diabetes.Diabet. Med.200825894995510.1111/j.1464‑5491.2008.02509.x 18959608
    [Google Scholar]
  96. SöderbergS. ColquhounD. KeechA. Leptin, but not adiponectin, is a predictor of recurrent cardiovascular events in men: Results from the LIPID study.Int. J. Obes.200933112313010.1038/ijo.2008.224 19050671
    [Google Scholar]
  97. SöderbergS. AhrénB. StegmayrB. Leptin is a risk marker for first-ever hemorrhagic stroke in a population-based cohort.Stroke199930232833710.1161/01.STR.30.2.328 9933268
    [Google Scholar]
  98. ChaiS.B. SunF. NieX.L. WangJ. Leptin and coronary heart disease: A systematic review and meta-analysis.Atherosclerosis2014233131010.1016/j.atherosclerosis.2013.11.069 24529114
    [Google Scholar]
  99. Freitas LimaL.C. BragaV.A. do Socorro de França SilvaM. Adipokines, diabetes and atherosclerosis: An inflammatory association.Front. Physiol.2015630410.3389/fphys.2015.00304 26578976
    [Google Scholar]
  100. IslamS. IslamT. NaharZ. Altered serum adiponectin and interleukin-8 levels are associated in the pathophysiology of major depressive disorder: A case-control study.PLoS One20221711e027661910.1371/journal.pone.0276619 36409748
    [Google Scholar]
  101. SongH.J. OhS. QuanS. Gender differences in adiponectin levels and body composition in older adults: Hallym aging study.BMC Geriatr.2014141810.1186/1471‑2318‑14‑8 24460637
    [Google Scholar]
  102. YeungA.Y. TadiP. Physiology, obesity neurohormonal appetite and satiety control.Treasure Island, FLStatPearls2023
    [Google Scholar]
  103. GajewskaA. StrzeleckiD. Gawlik-KotelnickaO. Ghrelin as a biomarker of immunometabolic depression and its connection with dysbiosis.Nutrients20231518396010.3390/nu15183960 37764744
    [Google Scholar]
  104. AkaluY. MollaM.D. DessieG. Physiological effect of ghrelin on body systems.Int. J. Endocrinol.202020201138513810.1155/2020/1385138
    [Google Scholar]
  105. BădescuS.V. TătaruC. KobylinskaL. The association between diabetes mellitus and depression.J. Med. Life201692120125 27453739
    [Google Scholar]
  106. LinE.H.B. RutterC.M. KatonW. Depression and advanced complications of diabetes: A prospective cohort study.Diabetes Care201033226426910.2337/dc09‑1068 19933989
    [Google Scholar]
  107. WongN.D. BudoffM.J. FerdinandK. Atherosclerotic cardiovascular disease risk assessment: An American Society for Preventive Cardiology clinical practice statement.Am. J. Prev. Cardiol.20221010033510.1016/j.ajpc.2022.100335 35342890
    [Google Scholar]
  108. YangW. CaiX. HuJ. The metabolic score for insulin resistance (METS-IR) predicts cardiovascular disease and its subtypes in patients with hypertension and obstructive sleep apnea.Clin. Epidemiol.20231517718910.2147/CLEP.S395938 36815173
    [Google Scholar]
  109. EddyD. SchlessingerL. KahnR. PeskinB. SchiebingerR. Relationship of insulin resistance and related metabolic variables to coronary artery disease: A mathematical analysis.Diabetes Care200932236136610.2337/dc08‑0854 19017770
    [Google Scholar]
  110. SaishoY. Metformin and inflammation: Its potential beyond glucose-lowering effect.Endocr. Metab. Immune Disord. Drug Targets201515319620510.2174/1871530315666150316124019 25772174
    [Google Scholar]
  111. IsodaK. YoungJ.L. ZirlikA. Metformin inhibits proinflammatory responses and nuclear factor-kappaB in human vascular wall cells.Arterioscler. Thromb. Vasc. Biol.200626361161710.1161/01.ATV.0000201938.78044.75 16385087
    [Google Scholar]
  112. AfshariK. DehdashtianA. HaddadiN.S. Anti-inflammatory effects of Metformin improve the neuropathic pain and locomotor activity in spinal cord injured rats: Introduction of an alternative therapy.Spinal Cord201856111032104110.1038/s41393‑018‑0168‑x 29959433
    [Google Scholar]
  113. KhedrS.A. ElmelgyA.A. El-KharashiO.A. Metformin potentiates cognitive and antidepressant effects of fluoxetine in rats exposed to chronic restraint stress and high fat diet: Potential involvement of hippocampal c-Jun repression.Naunyn Schmiedebergs Arch. Pharmacol.2018391440742210.1007/s00210‑018‑1466‑8 29379991
    [Google Scholar]
  114. PogginiS. GoliaM.T. AlboniS. Combined fluoxetine and metformin treatment potentiates antidepressant efficacy increasing IGF2 expression in the dorsal hippocampus.Neural Plast.20192019111210.1155/2019/4651031 30804991
    [Google Scholar]
  115. van SteeM.F. de GraafA.A. GroenA.K. Actions of metformin and statins on lipid and glucose metabolism and possible benefit of combination therapy.Cardiovasc. Diabetol.20181719410.1186/s12933‑018‑0738‑4 29960584
    [Google Scholar]
  116. FærchK. AmadidH. NielsenL.B. Protocol for a randomised controlled trial of the effect of dapagliflozin, metformin and exercise on glycaemic variability, body composition and cardiovascular risk in prediabetes (the PRE-D Trial).BMJ Open201775e01380210.1136/bmjopen‑2016‑013802 28592573
    [Google Scholar]
  117. WurmR. ReslM. NeuholdS. Cardiovascular safety of metformin and sulfonylureas in patients with different cardiac risk profiles.Heart2016102191544155110.1136/heartjnl‑2015‑308711 27226327
    [Google Scholar]
  118. JongC.B. ChenK.Y. HsiehM.Y. Metformin was associated with lower all-cause mortality in type 2 diabetes with acute coronary syndrome: A Nationwide registry with propensity score-matched analysis.Int. J. Cardiol.201929115215710.1016/j.ijcard.2019.03.021 30905518
    [Google Scholar]
  119. CampbellJ.M. BellmanS.M. StephensonM.D. LisyK. Metformin reduces all-cause mortality and diseases of ageing independent of its effect on diabetes control: A systematic review and meta-analysis.Ageing Res. Rev.201740314410.1016/j.arr.2017.08.003 28802803
    [Google Scholar]
  120. VarjabedianL. BourjiM. PourafkariL. NaderN.D. Cardioprotection by Metformin: Beneficial effects beyond glucose reduction.Am. J. Cardiovasc. Drugs201818318119310.1007/s40256‑018‑0266‑3 29478240
    [Google Scholar]
  121. MathewJ. SankarP. VaracalloM. Physiology, blood plasma.Treasure Island, FLStatPearls2025
    [Google Scholar]
  122. Al-MarwaniS. BatiehaA. KhaderY. El-KhateebM. JaddouH. AjlouniK. Association between albumin and depression: A population-based study.BMC Psychiatry202323178010.1186/s12888‑023‑05174‑0 37880606
    [Google Scholar]
  123. UpadhyayR.K. Emerging risk biomarkers in cardiovascular diseases and disorders.J. Lipids2015201515010.1155/2015/971453 25949827
    [Google Scholar]
  124. FanaliG. di MasiA. TrezzaV. MarinoM. FasanoM. AscenziP. Human serum albumin: From bench to bedside.Mol. Aspects Med.201233320929010.1016/j.mam.2011.12.002 22230555
    [Google Scholar]
  125. DaneshJ. CollinsR. ApplebyP. PetoR. Association of fibrinogen, C-reactive protein, albumin, or leukocyte count with coronary heart disease: Meta-analyses of prospective studies.JAMA1998279181477148210.1001/jama.279.18.1477 9600484
    [Google Scholar]
  126. GabayC. KushnerI. Acute-phase proteins and other systemic responses to inflammation.N. Engl. J. Med.1999340644845410.1056/NEJM199902113400607 9971870
    [Google Scholar]
  127. SchalkB.W.M. VisserM. BremmerM.A. PenninxB.W.J.H. BouterL.M. DeegD.J.H. Change of serum albumin and risk of cardiovascular disease and all-cause mortality: Longitudinal aging study amsterdam.Am. J. Epidemiol.20061641096997710.1093/aje/kwj312 16980573
    [Google Scholar]
  128. GopalD.M. KalogeropoulosA.P. GeorgiopoulouV.V. Serum albumin concentration and heart failure risk.Am. Heart J.2010160227928510.1016/j.ahj.2010.05.022 20691833
    [Google Scholar]
  129. KurtulA. MuratS.N. YarliogluesM. Usefulness of serum albumin concentration to predict high coronary SYNTAX score and in-hospital mortality in patients with acute coronary syndrome.Angiology2016671344010.1177/0003319715575220 25783433
    [Google Scholar]
  130. OduncuV. ErkolA. KarabayC.Y. The prognostic value of serum albumin levels on admission in patients with acute ST-segment elevation myocardial infarction undergoing a primary percutaneous coronary intervention.Coron. Artery Dis.2013242889410.1097/MCA.0b013e32835c46fd 23249632
    [Google Scholar]
  131. ChienS.C. ChenC.Y. LeuH.B. Association of low serum albumin concentration and adverse cardiovascular events in stable coronary heart disease.Int. J. Cardiol.20172411510.1016/j.ijcard.2017.04.003 28413113
    [Google Scholar]
  132. DelvaN.C. StanwoodG.D. Dysregulation of brain dopamine systems in major depressive disorder.Exp. Biol. Med. (Maywood)202124691084109310.1177/1535370221991830 33593109
    [Google Scholar]
  133. SaddorisM.P. SugamJ.A. CacciapagliaF. CarelliR.M. Rapid dopamine dynamics in the accumbens core and shell Learning and action.Front. Biosci. (Elite Ed.)2013E5127328810.2741/E615 23276989
    [Google Scholar]
  134. GavrilovicL. SpasojevicN. ZivkovicM. DronjakS. Effect of immobilization stress on gene expression of catecholamine biosynthetic enzymes in heart auricles of socially isolated rats.Braz. J. Med. Biol. Res.200942121185119010.1590/S0100‑879X2009005000040 19893991
    [Google Scholar]
  135. CubellsJ.F. SchroederJ.P. BarrieE.S. Human bacterial artificial chromosome (BAC) transgenesis fully rescues noradrenergic function in dopamine β-hydroxylase knockout mice.PLoS One2016115e015486410.1371/journal.pone.0154864 27148966
    [Google Scholar]
  136. GowerA. TiberiM. The intersection of central dopamine system and stroke: Potential avenues aiming at enhancement of motor recovery.Front. Synaptic Neurosci.2018101810.3389/fnsyn.2018.00018 30034335
    [Google Scholar]
  137. TianH. HuZ. XuJ. WangC. The molecular pathophysiology of depression and the new therapeutics.MedComm202233e15610.1002/mco2.156 35875370
    [Google Scholar]
  138. KaufmanJ. DeLorenzoC. ChoudhuryS. ParseyR.V. The 5-HT1A receptor in major depressive disorder.Eur. Neuropsychopharmacol.201626339741010.1016/j.euroneuro.2015.12.039 26851834
    [Google Scholar]
  139. SiepmannT. PenzlinA.I. KepplingerJ. Selective serotonin reuptake inhibitors to improve outcome in acute ischemic stroke: possible mechanisms and clinical evidence.Brain Behav.2015510e0037310.1002/brb3.373 26516608
    [Google Scholar]
  140. WijeratneT. SalesC. Understanding why post-stroke depression may be the norm rather than the exception: The Anatomical and neuroinflammatory correlates of post-stroke depression.J. Clin. Med.2021108167410.3390/jcm10081674 33919670
    [Google Scholar]
  141. NagatomoT. RashidM. Abul MuntasirH. KomiyamaT. Functions of 5-HT2A receptor and its antagonists in the cardiovascular system.Pharmacol. Ther.20041041598110.1016/j.pharmthera.2004.08.005 15500909
    [Google Scholar]
  142. CeladaP. PuigM. Amargós-BoschM. AdellA. ArtigasF. The therapeutic role of 5-HT1A and 5-HT2A receptors in depression.J. Psychiatry Neurosci.2004294252265 15309042
    [Google Scholar]
  143. WilliamsM.S. ZiegelsteinR.C. McCannU.D. GouldN.F. AshvetiyaT. VaidyaD. Platelet serotonin signaling in patients with cardiovascular disease and comorbid depression.Psychosom. Med.201981435236210.1097/PSY.0000000000000689 30855555
    [Google Scholar]
  144. NeumannJ. HofmannB. DheinS. GergsU. Cardiac roles of serotonin (5-HT) and 5-HT-Receptors in health and disease.Int. J. Mol. Sci.2023245476510.3390/ijms24054765 36902195
    [Google Scholar]
  145. ZhaoX. MooreD.L. Neural stem cells: Developmental mechanisms and disease modeling.Cell Tissue Res.201837111610.1007/s00441‑017‑2738‑1 29196810
    [Google Scholar]
  146. BonaguidiM.A. StadelR.P. BergD.A. SunJ. MingG. SongH. Diversity of neural precursors in the adult mammalian brain.Cold Spring Harb. Perspect. Biol.201684a01883810.1101/cshperspect.a018838 26988967
    [Google Scholar]
  147. KimS. ChangM.Y. Application of human brain organoids-opportunities and challenges in modeling human brain development and neurodevelopmental diseases.Int. J. Mol. Sci.202324151252810.3390/ijms241512528 37569905
    [Google Scholar]
  148. HoultonJ. AbumariaN. HinkleyS.F.R. ClarksonA.N. Therapeutic Potential of neurotrophins for repair after brain injury: A helping hand from biomaterials.Front. Neurosci.20191379010.3389/fnins.2019.00790 31427916
    [Google Scholar]
  149. HussainG. AkramR. AnwarH. Adult neurogenesis.Neural Regen. Res.202419161510.4103/1673‑5374.375317 37488837
    [Google Scholar]
  150. PriesterC. MacDonaldA. DharM. BowA. Examining the characteristics and applications of mesenchymal, induced pluripotent, and embryonic stem cells for tissue engineering approaches across the germ layers.Pharmaceuticals2020131134410.3390/ph13110344 33114710
    [Google Scholar]
  151. MedhekarS.K. ShendeV.S. ChincholkarA.B. Recent stem cell advances: Cord blood and induced pluripotent stem cell for cardiac regeneration: A review.Int. J. Stem Cells201691213010.15283/ijsc.2016.9.1.21 27426082
    [Google Scholar]
  152. JinY. LiS. YuQ. ChenT. LiuD. Application of stem cells in regeneration medicine.MedComm202344e29110.1002/mco2.291 37337579
    [Google Scholar]
  153. Der SarkissianS. LévesqueT. NoiseuxN. Optimizing stem cells for cardiac repair: Current status and new frontiers in regenerative cardiology.World J. Stem Cells20179192510.4252/wjsc.v9.i1.9 28154736
    [Google Scholar]
  154. KawaguchiN. NakanishiT. Stem Cell studies in cardiovascular biology and medicine: A possible key role of macrophages.Biology202211112210.3390/biology11010122 35053119
    [Google Scholar]
  155. RadosavljevicM. Svob StracD. JancicJ. SamardzicJ. The role of pharmacogenetics in personalizing the antidepressant and anxiolytic therapy.Genes2023145109510.3390/genes14051095 37239455
    [Google Scholar]
  156. BaumannP. UlrichS. EckermannG. The AGNP-TDM expert group consensus guidelines: Focus on therapeutic monitoring of antidepressants.Dialogues Clin. Neurosci.20057323124710.31887/DCNS.2005.7.3/pbaumann 16156382
    [Google Scholar]
  157. WongW.L.E. FabbriC. LaplaceB. The effects of CYP2C19 genotype on proxies of SSRI antidepressant response in the UK biobank.Pharmaceuticals2023169127710.3390/ph16091277 37765085
    [Google Scholar]
  158. ForsterJ. DuisJ. ButlerM.G. Pharmacogenetic Testing of cytochrome p450 drug metabolizing enzymes in a case series of patients with prader-willi syndrome.Genes202112215210.3390/genes12020152 33498922
    [Google Scholar]
  159. ZiębaA. MatosiukD. KaczorA.A. The role of genetics in the development and pharmacotherapy of depression and its impact on drug discovery.Int. J. Mol. Sci.2023243294610.3390/ijms24032946 36769269
    [Google Scholar]
  160. ZhuM. LiY. LuoB. CuiJ. LiuY. LiuY. Comorbidity of type 2 diabetes mellitus and depression: Clinical evidence and rationale for the exacerbation of cardiovascular disease.Front. Cardiovasc. Med.2022986111010.3389/fcvm.2022.861110 35360021
    [Google Scholar]
  161. MacchiC. FaveroC. CeresaA. Depression and cardiovascular risk-association among Beck depression inventory, PCSK9 levels and insulin resistance.Cardiovasc. Diabetol.202019118710.1186/s12933‑020‑01158‑6 33143700
    [Google Scholar]
  162. XiongJ. LipsitzO. NasriF. Impact of COVID-19 pandemic on mental health in the general population: A systematic review.J. Affect. Disord.2020277556410.1016/j.jad.2020.08.001 32799105
    [Google Scholar]
  163. GuptaS. GautamS. KumarU. Potential role of yoga intervention in the management of chronic non-malignant pain.Evid. Based Complement. Alternat. Med.20222022544867110.1155/2022/5448671
    [Google Scholar]
  164. KinserP.A. GoehlerL.E. TaylorA.G. How might yoga help depression? A neurobiological perspective.Explore (NY)20128211812610.1016/j.explore.2011.12.005 22385566
    [Google Scholar]
  165. SharmaK. Basu-RayI. SayalN. Yoga as a preventive intervention for cardiovascular diseases and associated comorbidities: Open-label single arm study.Front. Public Health20221084313410.3389/fpubh.2022.843134 35769774
    [Google Scholar]
  166. CanoyD. NazarzadehM. CoplandE. How much lowering of blood pressure is required to prevent cardiovascular disease in patients with and without previous cardiovascular disease?Curr. Cardiol. Rep.202224785186010.1007/s11886‑022‑01706‑4 35524880
    [Google Scholar]
  167. O’LearyD.H. PolakJ.F. KronmalR.A. ManolioT.A. BurkeG.L. WolfsonS.K.Jr Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults.N. Engl. J. Med.19993401142210.1056/NEJM199901073400103 9878640
    [Google Scholar]
  168. KnapenJ. VancampfortD. MoriënY. MarchalY. Exercise therapy improves both mental and physical health in patients with major depression.Disabil. Rehabil.201537161490149510.3109/09638288.2014.972579 25342564
    [Google Scholar]
  169. FanousY. DorianP. The prevention and management of sudden cardiac arrest in athletes.CMAJ201919128E787E79110.1503/cmaj.190166 31308007
    [Google Scholar]
  170. PatelH. AlkhawamH. MadaniehR. ShahN. KosmasC.E. VittorioT.J. Aerobic vs anaerobic exercise training effects on the cardiovascular system.World J. Cardiol.20179213413810.4330/wjc.v9.i2.134 28289526
    [Google Scholar]
  171. WelfordP. ÖsthJ. HoyS. Effects of Yoga and aerobic exercise on verbal fluency in physically inactive older adults: Randomized controlled trial (FitForAge).Clin. Interv. Aging20231853354510.2147/CIA.S359185 37021083
    [Google Scholar]
  172. ThimmJ.C. AntonsenL. Effectiveness of cognitive behavioral group therapy for depression in routine practice.BMC Psychiatry201414129210.1186/s12888‑014‑0292‑x 25330912
    [Google Scholar]
  173. ShivakumarG. BrandonA.R. SnellP.G. Antenatal depression: A rationale for studying exercise.Depress. Anxiety201128323424210.1002/da.20777 21394856
    [Google Scholar]
  174. MurtaghE.M. MurphyM.H. Boone-HeinonenJ. Walking: The first steps in cardiovascular disease prevention.Curr. Opin. Cardiol.201025549049610.1097/HCO.0b013e32833ce972 20625280
    [Google Scholar]
  175. ParkH.S. LeeS.N. SungD.H. ChoiH.S. KwonT.D. ParkG.D. The effect of power nordic walking on spine deformation and visual analog pain scale in elderly women with low back pain.J. Phys. Ther. Sci.201426111809181210.1589/jpts.26.1809 25435707
    [Google Scholar]
  176. RippeJ.M. Lifestyle strategies for risk factor reduction, prevention, and treatment of cardiovascular disease.Am. J. Lifestyle Med.201913220421210.1177/1559827618812395 30800027
    [Google Scholar]
  177. BrownK. DeCoffeD. MolcanE. GibsonD.L. Diet-induced dysbiosis of the intestinal microbiota and the effects on immunity and disease.Nutrients2012481095111910.3390/nu4081095 23016134
    [Google Scholar]
  178. RiccioniG. The role of direct renin inhibitors in the treatment of the hypertensive diabetic patient.Ther. Adv. Endocrinol. Metab.20134513914510.1177/2042018813490779 24143271
    [Google Scholar]
  179. FinicelliM. Di SalleA. GalderisiU. PelusoG. The Mediterranean diet: An update of the clinical trials.Nutrients20221414295610.3390/nu14142956 35889911
    [Google Scholar]
  180. AlAliM. AlqubaisyM. AljaafariM.N. Nutraceuticals: Transformation of conventional foods into health promoters/disease preventers and safety considerations.Molecules2021269254010.3390/molecules26092540 33925346
    [Google Scholar]
  181. YangR. WangL. JinK. Omega-3 polyunsaturated fatty acids supplementation Alleviate anxiety rather than depressive symptoms among first-diagnosed, drug-naïve major depressive disorder patients: A randomized clinical trial.Front. Nutr.2022987615210.3389/fnut.2022.876152 35903448
    [Google Scholar]
/content/journals/ccr/10.2174/011573403X337113250212093810
Loading
/content/journals/ccr/10.2174/011573403X337113250212093810
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test