Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-403X
  • E-ISSN: 1875-6557

Abstract

Background

Supraventricular tachycardia (SVT) is very common in daily clinical practice, especially in the emergency department, with rapid onset and urgent management. The review highlights the recent genetic predispositions and mechanisms in SVT.

Methods

Through analysis of epidemiology, familial clustering, and gene mutations of the relevant literature, the review elucidates the genetic properties and potential pathophysiology of SVT.

Results

There are many pathophysiological mechanisms related to atrioventricular node reentrant tachycardia (AVNRT) and atrioventricular reentrant tachycardia (AVRT). Currently, there is relatively little research on inappropriate sinus tachycardia (IST), atrial tachycardia (AT), and congenital junctional ectopic tachycardia (CJET). It seems that every type of SVT has gene mutations in ion channels, with three types of SVT having gene mutations in signaling pathways, and others including gene mutations in beta-adrenergic-receptor autoantibodies, autonomic nervous system, and AV node structure.

Conclusion

SVT has certain genetic characteristics and is often associated with other heart diseases. From the analysis of mutated genes in SVT, it appears to be a type of cardiac ion channel disease. Unlike common ion channel diseases, it is more insidious and more susceptible to external factors. The confirmation of the genetic basis of SVT provides direction for future hazard stratification assessment and gene targeted therapy drug research.

Loading

Article metrics loading...

/content/journals/ccr/10.2174/011573403X320610250108113731
2025-01-20
2025-08-13
Loading full text...

Full text loading...

References

  1. JosephsonM.E. WellensH.J.J. Differential diagnosis of supraventricular tachycardia.Cardiol. Clin.19908341144210.1016/S0733‑8651(18)30348‑52205383
    [Google Scholar]
  2. ZaitiA.S.S. MagdicK.S. Paroxysmal supraventricular tachycardia.Crit. Care Nurs. Clin. North Am.201628330931610.1016/j.cnc.2016.04.00527484659
    [Google Scholar]
  3. GollobM.H. GreenM.S. TangA.S.L. GollobT. KaribeA. HassanA-S. AhmadF. LozadoR. ShahG. FananapazirL. BachinskiL.L. TapscottT. GonzalesO. BegleyD. MohiddinS. RobertsR. Identification of a gene responsible for familial Wolff-Parkinson-White syndrome.N. Engl. J. Med.2001344241823183110.1056/NEJM20010614344240311407343
    [Google Scholar]
  4. WolfC.M. AradM. AhmadF. SanbeA. BernsteinS.A. TokaO. KonnoT. MorleyG. RobbinsJ. SeidmanJ.G. SeidmanC.E. BerulC.I. Reversibility of PRKAG2 glycogen-storage cardiomyopathy and electrophysiological manifestations.Circulation2008117214415410.1161/CIRCULATIONAHA.107.72675218158359
    [Google Scholar]
  5. PangY. XuY. ChenQ. ChengK. LingY. JangJ. GeJ. ZhuW. FLRT3 and TGF ‐β/ SMAD4 signalling: Impacts on apoptosis, autophagy and ion channels in supraventricular tachycardia.J. Cell. Mol. Med.2024287e1823710.1111/jcmm.1823738509727
    [Google Scholar]
  6. AliM. HajiA.Q. KichlooA. GrubbB.P. KanjwalK. Inappropriate sinus tachycardia: A review.Rev. Cardiovasc. Med.20212241331133910.31083/j.rcm220413934957774
    [Google Scholar]
  7. ShabtaieS.A. WittC.M. AsirvathamS.J. Natural history and clinical outcomes of inappropriate sinus tachycardia.J. Cardiovasc. Electrophysiol.202031113714310.1111/jce.1428831749258
    [Google Scholar]
  8. ChenS.A. ChiangC.E. YangC.J. ChengC.C. WuT.J. WangS.P. ChiangB.N. ChangM.S. Sustained atrial tachycardia in adult patients. electrophysiological characteristics, pharmacological response, possible mechanisms, and effects of radiofrequency ablation.Circulation19949031262127810.1161/01.CIR.90.3.12628087935
    [Google Scholar]
  9. MemonD. LarkinE. VargheseM. Congenital junctional ectopic tachycardia in the paediatric emergency department.Cardiol. Young20223291510151210.1017/S104795112100518735027094
    [Google Scholar]
  10. Ashraf M GoyalA. Junctional Ectopic Tachycardia.In: StatPearlsTreasure Island (FL)StatPearls Publishing;April 7, 2023
    [Google Scholar]
  11. HayesJ.J. SharmaP.P. SmithP.N. VidailletH.J. Familial atrioventricular nodal reentry tachycardia.Pacing Clin. Electrophysiol.2004271737610.1111/j.1540‑8159.2004.00388.x14720158
    [Google Scholar]
  12. StromT. HörtnagelK. HofmannS. GekelerF. ScharfeC. RablW. GerbitzK.D. MeitingerT. Diabetes insipidus, diabetes mellitus, optic atrophy and deafness (DIDMOAD) caused by mutations in a novel gene (wolframin) coding for a predicted transmembrane protein.Hum. Mol. Genet.19987132021202810.1093/hmg/7.13.20219817917
    [Google Scholar]
  13. SmithC.J.A. CrockP.A. KingB.R. MeldrumC.J. ScottR.J. Phenotype-genotype correlations in a series of wolfram syndrome families.Diabetes Care20042782003200910.2337/diacare.27.8.200315277431
    [Google Scholar]
  14. HofmannS. PhilbrookC. GerbitzK.D. BauerM.F. Wolfram syndrome: Structural and functional analyses of mutant and wild-type wolframin, the WFS1 gene product.Hum. Mol. Genet.200312162003201210.1093/hmg/ddg21412913071
    [Google Scholar]
  15. OsmanA.A. SaitoM. MakepeaceC. PermuttM.A. SchlesingerP. MuecklerM. Wolframin expression induces novel ion channel activity in endoplasmic reticulum membranes and increases intracellular calcium.J. Biol. Chem.200327852527555276210.1074/jbc.M31033120014527944
    [Google Scholar]
  16. FrischD.R. KwakuK.F. AlloccoD.J. ZimetbaumP.J. Atrioventricular nodal reentrant tachycardia in two siblings with Wolfram syndrome.J. Cardiovasc. Electrophysiol.20061791029103110.1111/j.1540‑8167.2006.00522.x16948749
    [Google Scholar]
  17. NamgungJ. KwakJ.J. ChoeH. KwonS.U. DohJ.H. LeeS.Y. LeeW.R. Familial occurrence of atrioventricular nodal reentrant tachycardia in a mother and her son.Korean Circ. J.2012421071872110.4070/kcj.2012.42.10.71823170103
    [Google Scholar]
  18. BarakeW. CaldwellJ. BaranchukA. Atrioventricular nodal re-entry tachycardia in identical twins: A case report and literature review.Indian Pacing Electrophysiol. J.2013131455110.1016/S0972‑6292(16)30589‑723329875
    [Google Scholar]
  19. StecS. DeutschK. KrajkaZ.A. The world’s largest family with familial atrio-ventricular nodal reentry tachycardia.Kardiol. Pol.20157312133910.5603/KP.2015.024926727677
    [Google Scholar]
  20. MichowitzY. BelhassenB. Response by michowitz and belhassen to letter regarding article, “familial occurrence of atrioventricular nodal reentrant tachycardia”.Circ. Arrhythm. Electrophysiol.2017105e00529110.1161/CIRCEP.117.00529128473455
    [Google Scholar]
  21. MichowitzY. HeuslerA.A. ReinsteinE. BrodieT.O. GlickA. BelhassenB. Familial occurrence of atrioventricular nodal reentrant tachycardia.Circ. Arrhythm. Electrophysiol.2017102e00468010.1161/CIRCEP.116.00468028213508
    [Google Scholar]
  22. ChenX. YanC. LuoR. ZhuY. QianM. LiuX. LiuM. IkedaT. LiX. Clinical report of 8 families with atrioventricular nodal reentrant tachycardia from China.Kardiol. Pol.202179218518710.33963/KP.1573933415965
    [Google Scholar]
  23. AndreasenL. AhlbergG. TangC. AndreasenC. HartmannJ.P. HansenT.J. BehrE.R. PehrsonS. HaunsøS. LuCamp WeekeP.E. JespersenT. OlesenM.S. SvendsenJ.H. Next-generation sequencing of AV nodal reentrant tachycardia patients identifies broad spectrum of variants in ion channel genes.Eur. J. Hum. Genet.201826566066810.1038/s41431‑017‑0092‑029396561
    [Google Scholar]
  24. AndreasenL. AhlbergG. ÆgisdottirH.M. SveinbjörnssonG. LundegaardP.R. HartmannJ.P. MüllerP.C. TurdeghalH.K. GhouseJ. PehrsonS. JensenH.K. RiahiS. HansenJ. SandgaardN. SørensenE. BanasikK. SækmoseS.G. BruunM.T. HjalgrimH. ErikstrupC. PedersenO.B. WittigM. HaunsøS. OstrowskiS.R. FrankeA. BrunakS. KantersJ.K. EllervikC. BundgaardH. UllumH. GudbjartssonD.F. ThorsteinsdottirU. HolmH. ArnarD.O. StefanssonK. SvendsenJ.H. OlesenM.S. Genetic variants close to ttn, nkx2-5, and myh6 associate with avnrt.Circ. Res.20221311086286510.1161/CIRCRESAHA.122.32155636205134
    [Google Scholar]
  25. AegisdottirH.M. AndreasenL. ThorolfsdottirR.B. SveinbjornssonG. JonsdottirA.B. StefansdottirL. ThorleifssonG. SigurdssonA. HalldorssonG.H. BarcJ. SimonetF. TraganteV. OddssonA. FerkingstadE. SvendsenJ.H. GhouseJ. AhlbergG. MüllerP.C. TurdeghalH.K. BustamanteM. UlfarssonM.O. HelgadottirA. GretarsdottirS. SaevarsdottirS. JonsdottirI. ErikstrupC. UllumH. SørensenE. BrunakS. JønsC. ZhengC. BezzinaC.R. KnowltonK.U. NadauldL.D. SulemP. OstrowskiS.R. PedersenO.B. ArnarD.O. GudbjartssonD.F. OlesenM.S. BundgaardH. HolmH. StefanssonK. BanasikK. BayJ. BoldsenJ.K. BrodersenT. BrunakS. DemurB.A. ChristoffersenL.A.N. DidriksenM. DinhK.M. DowsettJ. ErikstrupC. FeenstraB. GellerF. GudbjartssonD. HansenT.F. MikkelsenH.D. HindhedeL. HjalgrimH. StemannJ.H.V. JensenB.A. SchorkJ.A. KaspersenK. KjerulffB.D. KongstadM. MikkelsenS. MikkelsenC. NissenI. NyegaardM. OstrowskiS.R. PedersenO.B. QuinnL.J.E. RafnarÞ. RohdeP.D. RostgaardK. SchwinnM. StefanssonK. StefánssonH. SørensenE. ThorsteinsdóttirU. ThørnerL.W. BruunT.M. UllumH. WergeT. WestergaardD. Genome-wide association study of accessory atrioventricular pathways.JAMA Cardiol.2024911105310.1001/jamacardio.2024.2684
    [Google Scholar]
  26. HasdemirC. PayzinS. KocabasU. SahinH. YildirimN. AlpA. AydinM. PfeifferR. BurashnikovE. WuY. AntzelevitchC. High prevalence of concealed Brugada syndrome in patients with atrioventricular nodal reentrant tachycardia.Heart Rhythm20151271584159410.1016/j.hrthm.2015.03.01525998140
    [Google Scholar]
  27. LeeT.Y. HogarthK. SzaboE. MaynesJ.T. Sex‐specific arrhythmias caused by cardiac sodium channel na v 1.5 mutation alters cardiomyocyte metabolism.FASEB J.202236S1fasebj.2022.36.S1.0R30210.1096/fasebj.2022.36.S1.0R302
    [Google Scholar]
  28. VanninenS.U.M. NikusK. SetäläA.K. Electrocardiogram changes and atrial arrhythmias in individuals carrying sodium channel SCN5A D1275N mutation.Ann. Med.201749649650310.1080/07853890.2017.130751528294644
    [Google Scholar]
  29. PodliesnaS. DelanneJ. MillerL. TesterD.J. UzunyanM. YanoS. KlerkM. CannonB.C. KhongphatthanayothinA. LaurentG. BertauxG. EicherF.S. WuS. YenH.Y. GaoH. WildeA.A.M. FaivreL. AckermanM.J. LodderE.M. BezzinaC.R. Supraventricular tachycardias, conduction disease, and cardiomyopathy in 3 families with the same rare variant in TNNI3K (p.Glu768Lys).Heart Rhythm20191619810510.1016/j.hrthm.2018.07.01530010057
    [Google Scholar]
  30. PhamC. MartínM.N. LodderE.M. The diverse roles of tnni3k in cardiac disease and potential for treatment.Int. J. Mol. Sci.20212212642210.3390/ijms2212642234203974
    [Google Scholar]
  31. CalkinsH. SousaJ. AtassiE.R. RosenheckS. Buitleird.M. KouW.H. KadishA.H. LangbergJ.J. MoradyF. Diagnosis and cure of the Wolff-Parkinson-White syndrome or paroxysmal supraventricular tachycardias during a single electrophysiologic test.N. Engl. J. Med.1991324231612161810.1056/NEJM1991060632423022030717
    [Google Scholar]
  32. KayG.N. EpsteinA. DaileyS.M. PlumbV.J. Role of radiofrequency ablation in the management of supraventricular arrhythmias: Experience in 760 consecutive patients.J. Cardiovasc. Electrophysiol.19934437139210.1111/j.1540‑8167.1993.tb01277.x8269306
    [Google Scholar]
  33. FarshidiA. JosephsonM.E. HorowitzL.N. Electrophysiologic characteristics of concealed bypass tracts: Clinical and electrocardiographic correlates.Am. J. Cardiol.19784161052106010.1016/0002‑9149(78)90857‑3307339
    [Google Scholar]
  34. ChoJ.G. KimJ.W. AhnY.K. BaeY. KimJ.H. KimS.H. ParkJ.H. JeongM.H. ParkJ.C. KangJ.C. Radiofrequency catheter ablation in familial paroxysmal supraventricular tachycardia due to accessory atrioventricular pathways.Jpn. Circ. J.1998621288388610.1253/jcj.62.8839890199
    [Google Scholar]
  35. MassumiR.A. Familial Wolff-Parkinson-White syndrome with cardiomyopathy.Am. J. Med.196743695195510.1016/0002‑9343(67)90254‑94228766
    [Google Scholar]
  36. Al-KhatibS.M. PritchettE.L. Clinical features of Wolff-Parkinson-White syndrome.Am Heart J19991383 pt 140313
    [Google Scholar]
  37. ChiaB.L. YewF.C. ChayS.O. TanA.T.H. Familial wolff-parkinson-white syndrome.J. Electrocardiol.198215219519810.1016/S0022‑0736(82)80016‑27069337
    [Google Scholar]
  38. VidailletH.J.Jr PressleyJ.C. HenkeE. HarrellF.E.Jr GermanL.D. Familial occurrence of accessory atrioventricular pathways (preexcitation syndrome).N. Engl. J. Med.19873172656910.1056/NEJM1987070931702013587328
    [Google Scholar]
  39. SidhuJ.S. RajawatY.S. RamiT.G. GollobM.H. WangZ. YuanR. MarianA.J. DeMayoF.J. WeilbacherD. TaffetG.E. DaviesJ.K. CarlingD. KhouryD.S. RobertsR. Transgenic mouse model of ventricular preexcitation and atrioventricular reentrant tachycardia induced by an AMP-activated protein kinase loss-of-function mutation responsible for Wolff-Parkinson-White syndrome.Circulation20051111212910.1161/01.CIR.0000151291.32974.D515611370
    [Google Scholar]
  40. MacRaeC.A. GhaisasN. KassS. DonnellyS. BassonC.T. WatkinsH.C. AnanR. ThierfelderL.H. McGarryK. RowlandE. Familial hypertrophic cardiomyopathy with wolff-parkinson-white syndrome maps to a locus on chromosome 7q3.J. Clin. Invest.19959631216122010.1172/JCI1181547657794
    [Google Scholar]
  41. MurphyR.T. MogensenJ. McGarryK. BahlA. EvansA. OsmanE. SyrrisP. GormanG. FarrellM. HoltonJ.L. HannaM.G. HughesS. ElliottP.M. MacRaeC.A. McKennaW.J. Adenosine monophosphate-activated protein kinase disease mimicks hypertrophic cardiomyopathy and Wolff-Parkinson-White syndrome.J. Am. Coll. Cardiol.200545692293010.1016/j.jacc.2004.11.05315766830
    [Google Scholar]
  42. GollobM.H. SegerJ.J. GollobT.N. TapscottT. GonzalesO. BachinskiL. RobertsR. Novel PRKAG2 mutation responsible for the genetic syndrome of ventricular preexcitation and conduction system disease with childhood onset and absence of cardiac hypertrophy.Circulation2001104253030303310.1161/hc5001.10211111748095
    [Google Scholar]
  43. KoneruJ.N. WoodM.A. EllenbogenK.A. Rare forms of preexcitation: A case study and brief overview of familial forms of preexcitation.Circ. Arrhythm. Electrophysiol.201254e82e8710.1161/CIRCEP.111.96891722895604
    [Google Scholar]
  44. AradM. MaronB.J. GorhamJ.M. JohnsonW.H.Jr SaulJ.P. AtaydeP.A.R. SpiritoP. WrightG.B. KanterR.J. SeidmanC.E. SeidmanJ.G. Glycogen storage diseases presenting as hypertrophic cardiomyopathy.N. Engl. J. Med.2005352436237210.1056/NEJMoa03334915673802
    [Google Scholar]
  45. TanH.L. van der WalA.C. CampianM.E. KruyswijkH.H. ten Hove JansenB. Doornv.D.J. OskamH.J. BeckerA.E. WildeA.A.M. Nodoventricular accessory pathways in PRKAG2-dependent familial preexcitation syndrome reveal a disorder in cardiac development.Circ. Arrhythm. Electrophysiol.20081427628110.1161/CIRCEP.108.78286219808419
    [Google Scholar]
  46. CheungP.C. SaltI.P. DaviesS.P. HardieD.G. CarlingD. Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding.Biochem. J.2000345Pt 3659669
    [Google Scholar]
  47. KüblerW. SchömigA. SengesJ. The conduction and cardiac sympathetic systems: Metabolic aspects.J. Am. Coll. Cardiol.198556Suppl.157B161B10.1016/S0735‑1097(85)80548‑93998332
    [Google Scholar]
  48. AradM. MoskowitzI.P. PatelV.V. AhmadF. AtaydeP.A.R. SawyerD.B. WalterM. LiG.H. BurgonP.G. MaguireC.T. StapletonD. SchmittJ.P. GuoX.X. PizardA. KupershmidtS. RodenD.M. BerulC.I. SeidmanC.E. SeidmanJ.G. Transgenic mice overexpressing mutant prkag2 define the cause of wolff-parkinson-white syndrome in glycogen storage cardiomyopathy.Circulation2003107222850285610.1161/01.CIR.0000075270.13497.2B12782567
    [Google Scholar]
  49. LightP.E. WallaceC.H.R. DyckJ.R.B. Constitutively active adenosine monophosphate-activated protein kinase regulates voltage-gated sodium channels in ventricular myocytes.Circulation2003107151962196510.1161/01.CIR.0000069269.60167.0212682004
    [Google Scholar]
  50. LalaniS.R. ThakuriaJ.V. CoxG.F. WangX. BiW. BrayM.S. ShawC. CheungS.W. ChinaultA.C. BoggsB.A. OuZ. BrundageE.K. LupskiJ.R. GentileJ. WaisbrenS. PursleyA. MaL. KhajaviM. ZapataG. FriedmanR. KimJ.J. TowbinJ.A. StankiewiczP. SchnittgerS. HansmannI. AiT. SoodS. WehrensX.H. MartinJ.F. BelmontJ.W. PotockiL. 20p12.3 microdeletion predisposes to Wolff-Parkinson-White syndrome with variable neurocognitive deficits.J. Med. Genet.200846316817510.1136/jmg.2008.06100218812404
    [Google Scholar]
  51. WeyhrauchD.L. YeD. BoczekN.J. TesterD.J. GavrilovaR.H. PattersonM.C. WiebenE.D. AckermanM.J. Whole exome sequencing and heterologous cellular electrophysiology studies elucidate a novel loss-of-function mutation in the cacna1a-encoded neuronal p/q-type calcium channel in a child with congenital hypotonia and developmental delay.Pediatr. Neurol.201655465110.1016/j.pediatrneurol.2015.10.01426739101
    [Google Scholar]
  52. WisingP. Familial, Congenital Sinus Tachycardia.Acta Med. Scand.19411083-429930510.1111/j.0954‑6820.1941.tb18795.x
    [Google Scholar]
  53. BaruscottiM. BucchiA. MilanesiR. PainaM. BarbutiA. RusconeG.T. BiancoE. SerdozV.L. CappatoR. DiFrancescoD. A gain-of-function mutation in the cardiac pacemaker HCN4 channel increasing cAMP sensitivity is associated with familial Inappropriate Sinus Tachycardia.Eur. Heart J.201738428028810.1093/eurheartj/ehv58228182231
    [Google Scholar]
  54. BaruscottiM. BiancoE. BucchiA. DiFrancescoD. Current understanding of the pathophysiological mechanisms responsible for inappropriate sinus tachycardia: Role of the If "funny" current.J. Inter. Card Electro.20164611928
    [Google Scholar]
  55. StillA.M. HuikuriH. AiraksinenK.J. KoistinenM.J. KettunenR. HartikainenJ. MitraniR.D. CastellanosA. MyerburgR.J. RaatikainenM.J.P. Impaired negative chronotropic response to adenosine in patients with inappropriate sinus tachycardia.J. Cardiovasc. Electrophysiol.200213655756210.1046/j.1540‑8167.2002.00557.x12108496
    [Google Scholar]
  56. NattelS. Inappropriate sinus tachycardia and beta-receptor autoantibodies: A mechanistic breakthrough?Heart Rhythm20063101187118810.1016/j.hrthm.2006.07.01917018349
    [Google Scholar]
  57. AhmedA. PothineniN.V.K. CharateR. GargJ. ElbeyM. Asmundisd.C. LaMeirM. RomeyaA. ShivamurthyP. OlshanskyB. RussoA. GopinathannairR. LakkireddyD. Inappropriate sinus tachycardia: Etiology, pathophysiology, and management.J. Am. Coll. Cardiol.202279242450246210.1016/j.jacc.2022.04.01935710196
    [Google Scholar]
  58. BaruscottiM. BarbutiA. BucchiA. The cardiac pacemaker current.J. Mol. Cell. Cardiol.2010481556410.1016/j.yjmcc.2009.06.01919591835
    [Google Scholar]
  59. ChialeP.A. GarroH.A. SchmidbergJ. SánchezR.A. AcunzoR.S. LagoM. LevyG. LevinM. Inappropriate sinus tachycardia may be related to an immunologic disorder involving cardiac β andrenergic receptors.Heart Rhythm20063101182118610.1016/j.hrthm.2006.06.01117018348
    [Google Scholar]
  60. CappatoR. CastelvecchioS. RicciC. BiancoE. SerdozV.L. RusconeG.T. PittalisM. AmbroggiD.L. BaruscottiM. GaetaM. FurlanelloF. FrancescoD.D. LupoP.P. Clinical efficacy of ivabradine in patients with inappropriate sinus tachycardia: A prospective, randomized, placebo-controlled, double-blind, crossover evaluation.J. Am. Coll. Cardiol.201260151323132910.1016/j.jacc.2012.06.03122981555
    [Google Scholar]
  61. ScheinmanM.M. VedanthamV. Ivabradine.J. Am. Coll. Cardiol.201260151330133210.1016/j.jacc.2012.06.03222981552
    [Google Scholar]
  62. OlshanskyB. SullivanR.M. Inappropriate sinus tachycardia.J. Am. Coll. Cardiol.201361879380110.1016/j.jacc.2012.07.07423265330
    [Google Scholar]
  63. PellegriniC.N. ScheinmanM.M. Epidemiology and definition of inappropriate sinus tachycardia.J. Interv. Card. Electrophysiol.2016461293210.1007/s10840‑015‑0039‑826310298
    [Google Scholar]
  64. LiZ. WangQ. SunX. ZhangY. CuiC. ChenH. ChenM. Atrial tachycardia with concomitant prolonged hv interval with an scn5a missense variant (p.r367h).JACC Clin. Electrophysiol.20239344845210.1016/j.jacep.2022.11.01836752468
    [Google Scholar]
  65. HayakawaI. AbeY. OnoH. KubotaM. Severe congenital RYR1-associated myopathy complicated with atrial tachycardia and sinus node dysfunction: A case report.Ital. J. Pediatr.201945116510.1186/s13052‑019‑0756‑131856875
    [Google Scholar]
  66. TheisJ.L. ZimmermannM.T. LarsenB.T. RybakovaI.N. LongP.A. EvansJ.M. MiddhaS. Andraded.M. MossR.L. WiebenE.D. MichelsV.V. OlsonT.M. TNNI3K mutation in familial syndrome of conduction system disease, atrial tachyarrhythmia and dilated cardiomyopathy.Hum. Mol. Genet.201423215793580410.1093/hmg/ddu29724925317
    [Google Scholar]
  67. DagresN. GutersohnA. WienekeH. SackS. ErbelR. A new hereditary form of ectopic atrial tachycardia with autosomal dominant inheritance.Int. J. Cardiol.2004932-331131310.1016/S0167‑5273(03)00164‑514975569
    [Google Scholar]
  68. BalajiS. SullivanI.D. ShinebourneE.A. Familial neonatal atrial tachycardia.Heart199676217818010.1136/hrt.76.2.1788795484
    [Google Scholar]
  69. BrodskyM. WuD. DenesP. RosenK.M. Familial atrial tachyarrhythmia with short PR interval.Arch. Intern. Med.1977137216516910.1001/archinte.1977.03630140021008836114
    [Google Scholar]
  70. ZhaoY. MengX.M. WeiY.J. ZhaoX.W. LiuD.Q. CaoH.Q. LiewC.C. DingJ.F. Cloning and characterization of a novel cardiac-specific kinase that interacts specifically with cardiac troponin I.J. Mol. Med.200381529730410.1007/s00109‑003‑0427‑x12721663
    [Google Scholar]
  71. MilanoA. LodderE.M. BezzinaC.R. TNNI3K in cardiovascular disease and prospects for therapy.J. Mol. Cell. Cardiol.20158216717310.1016/j.yjmcc.2015.03.00825787061
    [Google Scholar]
  72. BensonD.W. WangD.W. DymentM. KnilansT.K. FishF.A. StrieperM.J. RhodesT.H. GeorgeA.L.Jr Congenital sick sinus syndrome caused by recessive mutations in the cardiac sodium channel gene (SCN5A).J. Clin. Invest.200311271019102810.1172/JCI20031806214523039
    [Google Scholar]
  73. GellensM.E. GeorgeA.L.Jr ChenL.Q. ChahineM. HornR. BarchiR.L. KallenR.G. Primary structure and functional expression of the human cardiac tetrodotoxin-insensitive voltage-dependent sodium channel.Proc. Natl. Acad. Sci. USA199289255455810.1073/pnas.89.2.5541309946
    [Google Scholar]
  74. AssemanP. BerzinB. DesryD. VilaremD. DurandP. DelmotteC. SarkisE.H. LekieffreJ. TheryC. Persistent sinus nodal electrograms during abnormally prolonged postpacing atrial pauses in sick sinus syndrome in humans: Sinoatrial block vs overdrive suppression.Circulation1983681334110.1161/01.CIR.68.1.336851052
    [Google Scholar]
  75. AssemanP. BerzinB. DesryD. BauchartJ.J. ReadeR. LeroyO. PonceletP. LekieffreJ. TheryC. Postextrasystolic sinoatrial exit block in human sick sinus syndrome: Demonstration by direct recording of sinus node electrograms.Am. Heart J.199112261633164310.1016/0002‑8703(91)90281‑L1720277
    [Google Scholar]
  76. VillainE. VetterV.L. GarciaJ.M. HerreJ. CifarelliA. GarsonA.Jr Evolving concepts in the management of congenital junctional ectopic tachycardia. A multicenter study.Circulation19908151544154910.1161/01.CIR.81.5.15442184944
    [Google Scholar]
  77. AlastiM. MirzaeeS. MachadoC. HealyS. BittingerL. AdamD. KotschetE. KrafchekJ. AlisonJ. Junctional ectopic tachycardia (JET).J. Arrhythm.202036583784410.1002/joa3.1241033024461
    [Google Scholar]
  78. DubinA.M. CuneoB.F. StrasburgerJ.F. WakaiR.T. Harev.G.F. RosenthalD.N. Congenital junctional ectopic tachycardia and congenital complete atrioventricular block: A shared etiology?Heart Rhythm20052331331510.1016/j.hrthm.2004.11.01615851326
    [Google Scholar]
  79. XiY. HoneywellC. ZhangD. SchwartzentruberJ. BeaulieuC.L. TetreaultM. HartleyT. MartonJ. VidalS.M. MajewskiJ. AravindL. GollobM. BoycottK.M. GowR.M. Whole exome sequencing identifies the TNNI3K gene as a cause of familial conduction system disease and congenital junctional ectopic tachycardia.Int. J. Cardiol.201518511411610.1016/j.ijcard.2015.03.13025791106
    [Google Scholar]
  80. WheelerF.C. TangH. MarksO.A. HadnottT.N. ChuP.L. MaoL. RockmanH.A. MarchukD.A. Tnni3k modifies disease progression in murine models of cardiomyopathy.PLoS Genet.200959e100064710.1371/journal.pgen.100064719763165
    [Google Scholar]
  81. AzamM. SeeligerM.A. GrayN.S. KuriyanJ. DaleyG.Q. Activation of tyrosine kinases by mutation of the gatekeeper threonine.Nat. Struct. Mol. Biol.200815101109111810.1038/nsmb.148618794843
    [Google Scholar]
  82. EyersP.A. CraxtonM. MorricelN. CohenP. GoedertM. Conversion of SB 203580-insensitive MAP kinase family members to drug-sensitive forms by a single amino-acid substitution.Chem. Biol.19985632132810.1016/S1074‑5521(98)90170‑39653550
    [Google Scholar]
  83. JosephR.E. AndreottiA.H. Controlling the activity of the Tec kinase Itk by mutation of the phenylalanine gatekeeper residue.Biochemistry201150222122910.1021/bi101379m21138328
    [Google Scholar]
  84. TakeshimaH. KomazakiS. NishiM. IinoM. KangawaK. Junctophilins: A novel family of junctional membrane complex proteins.Mol. Cell200061112210949023
    [Google Scholar]
  85. LandstromA.P. BeaversD.L. WehrensX.H.T. The junctophilin family of proteins: From bench to bedside.Trends Mol. Med.201420635336210.1016/j.molmed.2014.02.00424636942
    [Google Scholar]
  86. Oortv.R.J. GarbinoA. WangW. DixitS.S. LandstromA.P. GaurN. AlmeidaD.A.C. SkapuraD.G. RudyY. BurnsA.R. AckermanM.J. WehrensX.H.T. Disrupted junctional membrane complexes and hyperactive ryanodine receptors after acute junctophilin knockdown in mice.Circulation2011123997998810.1161/CIRCULATIONAHA.110.00643721339484
    [Google Scholar]
  87. YangQ. TadrosH.J. SunB. BidzimouM.T. EzekianJ.E. LiF. LudwigA. WehrensX.H.T. LandstromA.P. Junctional ectopic tachycardia caused by junctophilin-2 expression silencing is selectively sensitive to ryanodine receptor blockade.JACC Basic Transl. Sci.20238121577158810.1016/j.jacbts.2023.07.00838205351
    [Google Scholar]
  88. LandstromA.P. YangQ. Reduction in junctophilin 2 expression in cardiac nodal tissue results in intracellular calcium-driven increase in nodal cell automaticity.mCirc. Arrhythm. Electrophysiol.2023162e010858
    [Google Scholar]
  89. CatterallW.A. From ionic currents to molecular mechanisms: The structure and function of voltage-gated sodium channels.Neuron2000261132510.1016/S0896‑6273(00)81133‑210798388
    [Google Scholar]
  90. BalserJ. Structure and function of the cardiac sodium channels.Cardiovasc. Res.199942232733810.1016/S0008‑6363(99)00031‑010533571
    [Google Scholar]
  91. RobertsR. BrugadaR. Genetics and arrhythmias.Annu. Rev. Med.200354125726710.1146/annurev.med.54.073002.18211212525675
    [Google Scholar]
  92. KoitabashiN. KassD.A. Reverse remodeling in heart failure—mechanisms and therapeutic opportunities.Nat. Rev. Cardiol.20129314715710.1038/nrcardio.2011.17222143079
    [Google Scholar]
  93. DornG.W.II ForceT. Protein kinase cascades in the regulation of cardiac hypertrophy.J. Clin. Invest.2005115352753710.1172/JCI2417815765134
    [Google Scholar]
  94. DarbarD. RodenD.M. Pharmacogenetics of antiarrhythmic therapy.Expert Opin. Pharmacother.20067121583159010.1517/14656566.7.12.158316872261
    [Google Scholar]
/content/journals/ccr/10.2174/011573403X320610250108113731
Loading
/content/journals/ccr/10.2174/011573403X320610250108113731
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test