Skip to content
2000
Volume 28, Issue 15
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Renal cell carcinoma is the most common aggressive tumor of the genitourinary system. The main pathological subtype is clear cell renal cell carcinoma (ccRCC), and its treatment options are very limited. Therefore, identifying specific biomarkers of ccRCC is of great significance for diagnosis and prognosis.

Methods

First, we obtained transcriptome data and clinical data of 611 patients with renal clear cell carcinoma to analyze the relationship between hypoxia-related lncRNAs and overall survival (OS). We screened hypoxia-related lncRNAs through Pearson correlation and Cox regression analysis. Univariate and multivariate regression analysis were applied to assess survival-related risk factors. According to the median risk score, patients were divided into two groups. Next, a nomogram map was built, and GSEA was used for gene function annotation. RT-qPCR, Western Blot, and Flow Cytometry were used to determine the role of SNHG19 in RCC cells.

Results

By analyzing the co-expression of hypoxia genes and lncRNAs, 310 hypoxia-related genes were obtained. Four sHRlncRs (AC011445.2, PTOV1-AS2, AP004609.3, and SNHG19) with the highest prognostic values were included in the group to construct the HRRS model. The high-risk group had a shorter OS than the low-risk group. HRRS was considered to be an independent prognostic factor and associated with OS. The two groups showed different pathways in GSEA. Experiments showed that SNHG19 plays essential roles in the autophagy and apoptosis of RCC cells.

Conclusion

We constructed and validated a hypoxia-related lncRNA model for ccRCC patients. This study also provides new biomarkers for the poor prognosis of ccRCC patients.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cchts/10.2174/1386207326666230606152615
2024-09-25
2026-01-02
Loading full text...

Full text loading...

/deliver/fulltext/cchts/28/15/CCHTS-28-15-03.html?itemId=/content/journals/cchts/10.2174/1386207326666230606152615&mimeType=html&fmt=ahah

References

  1. ZhaoY. ChenH. XieY. ZhangC. HouY. JinM. Clinicopathologic features and prognostic factors in patients with renal cell carcinoma with sarcomatoid differentiation.Acta Pathol. Microbiol. Scand. Suppl.2020128537838610.1111/apm.13035 32048364
    [Google Scholar]
  2. GulatiS. VaishampayanU. Current state of systemic therapies for advanced renal cell carcinoma.Curr. Oncol. Rep.20202232610.1007/s11912‑020‑0892‑1 32048058
    [Google Scholar]
  3. JonaschE. GaoJ. RathmellW.K. Renal cell carcinoma.BMJ2014349g479710.1136/bmj.g4797 25385470
    [Google Scholar]
  4. JonaschE. WalkerC.L. RathmellW.K. Clear cell renal cell carcinoma ontogeny and mechanisms of lethality.Nat. Rev. Nephrol.202117424526110.1038/s41581‑020‑00359‑2 33144689
    [Google Scholar]
  5. RuanH. BaoL. SongZ. WangK. CaoQ. TongJ. ChengG. XuT. ChenX. LiuD. YangH. ChenK. ZhangX. High expression of TAZ serves as a novel prognostic biomarker and drives cancer progression in renal cancer.Exp. Cell Res.2019376218119110.1016/j.yexcr.2019.02.001 30731073
    [Google Scholar]
  6. MakhovP. JoshiS. GhataliaP. KutikovA. UzzoR.G. KolenkoV.M. Resistance to systemic therapies in clear cell renal cell carcinoma: Mechanisms and management strategies.Mol. Cancer Ther.20181771355136410.1158/1535‑7163.MCT‑17‑1299 29967214
    [Google Scholar]
  7. ZhaoX. LiuY. YuS. Long noncoding RNA AWPPH promotes hepatocellular carcinoma progression through YBX1 and serves as a prognostic biomarker.Biochim. Biophys. Acta Mol. Basis Dis.2017186371805181610.1016/j.bbadis.2017.04.014 28428004
    [Google Scholar]
  8. WangZ. QinB. Prognostic and clinicopathological significance of long noncoding RNA CTD-2510F5.4 in gastric cancer.Gastric Cancer201922469270410.1007/s10120‑018‑00911‑x 30560474
    [Google Scholar]
  9. XieY. ZhangY. DuL. JiangX. YanS. DuanW. LiJ. ZhanY. WangL. ZhangS. LiS. WangL. XuS. WangC. Circulating long noncoding RNA act as potential novel biomarkers for diagnosis and prognosis of non‐small cell lung cancer.Mol. Oncol.201812564865810.1002/1878‑0261.12188 29504701
    [Google Scholar]
  10. PengW. JiangA. Long noncoding RNA CCDC26 as a potential predictor biomarker contributes to tumorigenesis in pancreatic cancer.Biomed. Pharmacother.20168371271710.1016/j.biopha.2016.06.059 27470572
    [Google Scholar]
  11. LuX. KangY. Hypoxia and hypoxia-inducible factors: Master regulators of metastasis.Clin. Cancer Res.201016245928593510.1158/1078‑0432.CCR‑10‑1360 20962028
    [Google Scholar]
  12. ZhuG. WangS. ChenJ. WangZ. LiangX. WangX. JiangJ. LangJ. LiL. Long noncoding RNA HAS2-AS1 mediates hypoxia-induced invasiveness of oral squamous cell carcinoma.Mol. Carcinog.201756102210222210.1002/mc.22674 28485478
    [Google Scholar]
  13. LiH. WangX. WenC. HuoZ. WangW. ZhanQ. ChengD. ChenH. DengX. PengC. ShenB. Long noncoding RNA NORAD, a novel competing endogenous RNA, enhances the hypoxia-induced epithelial-mesenchymal transition to promote metastasis in pancreatic cancer.Mol. Cancer201716116910.1186/s12943‑017‑0738‑0 29121972
    [Google Scholar]
  14. EllingerJ. AlamJ. RothenburgJ. DengM. SchmidtD. SyringI. MierschH. PernerS. MüllerS.C. The long non-coding RNA lnc-ZNF180-2 is a prognostic biomarker in patients with clear cell renal cell carcinoma.Am. J. Cancer Res.20155927992807 26609485
    [Google Scholar]
  15. LiuH. YeT. YangX. LvP. WuX. ZhouH. ZengJ. TangK. YeZ. A panel of four-lncRNA signature as a potential biomarker for predicting survival in clear cell renal cell carcinoma.J. Cancer202011144274428310.7150/jca.40421 32368310
    [Google Scholar]
  16. BalachandranV.P. GonenM. SmithJ.J. DeMatteoR.P. Nomograms in oncology: More than meets the eye.Lancet Oncol.2015164e173e18010.1016/S1470‑2045(14)71116‑7 25846097
    [Google Scholar]
  17. PletcherJ.P. BhattacharjeeS. DoanJ.P. WynnR. SindhwaniP. NadimintyN. PetrosF.G. The emerging role of poly (ADP-Ribose) polymerase inhibitors as effective therapeutic agents in renal cell carcinoma.Front. Oncol.20211168144110.3389/fonc.2021.681441 34307148
    [Google Scholar]
  18. ZhangF. LiuL. WuP. LiS. WeiD. Overexpression of MAX dimerization protein 3 (MXD3) predicts poor prognosis in clear cell renal cell carcinoma.Transl. Androl. Urol.202110278579610.21037/tau‑20‑1187 33718080
    [Google Scholar]
  19. HeH. WangL. ZhouW. ZhangZ. WangL. XuS. WangD. DongJ. TangC. TangH. YiX. GeJ. MicroRNA expression profiling in clear cell renal cell carcinoma: Identification and functional validation of key miRNAs.PLoS One2015105e012567210.1371/journal.pone.0125672 25938468
    [Google Scholar]
  20. GrangeC. CollinoF. TapparoM. CamussiG. Oncogenic micro-RNAs and renal cell carcinoma.Front. Oncol.201444910.3389/fonc.2014.00049 24672771
    [Google Scholar]
  21. JinL. XuX. YeB. PanM. ShiZ. HuY. Elevated serum interleukin-35 levels correlate with poor prognosis in patients with clear cell renal cell carcinoma.Int. J. Clin. Exp. Med.20158101886118866 26770508
    [Google Scholar]
  22. FormisanoL. NapolitanoF. RosaR. D’AmatoV. ServettoA. MarcianoR. De PlacidoP. BiancoC. BiancoR. Mechanisms of resistance to mTOR inhibitors.Crit. Rev. Oncol. Hematol.202014710288610.1016/j.critrevonc.2020.102886 32014673
    [Google Scholar]
  23. ClarkD.J. DhanasekaranS.M. PetraliaF. PanJ. SongX. HuY. da Veiga LeprevostF. RevaB. LihT.S.M. ChangH.Y. MaW. HuangC. RickettsC.J. ChenL. KrekA. LiY. RykunovD. LiQ.K. ChenL.S. OzbekU. VasaikarS. WuY. YooS. ChowdhuryS. WyczalkowskiM.A. JiJ. SchnaubeltM. KongA. SethuramanS. AvtonomovD.M. AoM. ColapricoA. CaoS. ChoK.C. KalayciS. MaS. LiuW. RugglesK. CalinawanA. GümüşZ.H. GeiszlerD. KawalerE. TeoG.C. WenB. ZhangY. KeeganS. LiK. ChenF. EdwardsN. PierorazioP.M. ChenX.S. PavlovichC.P. HakimiA.A. BrominskiG. HsiehJ.J. AntczakA. OmelchenkoT. LubinskiJ. WiznerowiczM. LinehanW.M. KinsingerC.R. ThiagarajanM. BojaE.S. MesriM. HiltkeT. RoblesA.I. RodriguezH. QianJ. FenyöD. ZhangB. DingL. SchadtE. ChinnaiyanA.M. ZhangZ. OmennG.S. CieslikM. ChanD.W. NesvizhskiiA.I. WangP. ZhangH. HashimiA.S. PicoA.R. KarpovaA. CharamutA. PaulovichA.G. PerouA.M. MalovannayaA. Marrero-OliverasA. AgarwalA. HindenachB. PruetzB. KimB-J. DrukerB.J. NewtonC.J. BirgerC. JonesC.D. TognonC. ManiD.R. ValleyD.R. RohrerD.C. ZhouD.C. TansilD. CheslaD. HeimanD. WheelerD. TanD. ChanD. DemirE. MalcE. ModugnoF. GetzG. HostetterG. WilsonG.D. HartG.W. ZhuH. LiuH. CulpepperH. SunH. ZhouH. DayJ. SuhJ. HuangJ. McDermottJ. WhiteakerJ.R. TynerJ.W. EschbacherJ. ChenJ. McGeeJ. ZhuJ. KetchumK.A. RodlandK.D. ClauserK. RobinsonK. KrugK. HoadleyK.A. UmK.S. ElburnK. HollowayK. WangL-B. BlumenbergL. HannickL. QiL. SokollL.J. CornwellM.I. LoriauxM. DomagalskiM.J. GritsenkoM.A. AndersonM. MonroeM.E. EllisM.J. DyerM. AnuragM. BurkeM.C. BoruckiM. GilletteM.A. BirrerM.J. LewisM. IttmannM.M. SmithM. VernonM. ChaikinM. ChhedaM.G. KhanM. RocheN. EdwardsN.J. VatanianN. TignorN. BeckmannN. GradyP. CastroP. PiehowskiP. McGarveyP.B. MieczkowskiP. HariharanP. GaoQ. DhirR. KothadiaR.B. ThanguduR.R. MontgomeryR. JayasingheR.G. SmithR.D. EdwardsR. ZeltR. BremnerR. LiuR. HongR. MareeduS. PayneS.H. CottinghamS. MarkeyS.P. JewellS.D. PatelS. SatpathyS. RicheyS. DaviesS.R. CaiS. BocaS.M. PatilS. SenguptaS. CarterS. GabrielS. ThomasS.N. De YoungS. SteinS.E. CarrS.A. FoltzS.M. HilsenbeckS. KrubitT. LiuT. SkellyT. WestbrookT. BorateU. VelvulouU. PetyukV.A. BocikW.E. ChenX. ShiY. GeffenY. LuY. WangY. MaruvkaY. LiZ. ShiZ. TuZ. Integrated proteogenomic characterization of clear cell renal cell carcinoma.Cell20191794964983.e3110.1016/j.cell.2019.10.007 31675502
    [Google Scholar]
  24. MiaoR. GeC. ZhangX. HeY. MaX. XiangX. GuJ. FuY. QuK. LiuC. WuQ. LinT. Combined eight-long noncoding RNA signature: A new risk score predicting prognosis in elderly non-small cell lung cancer patients.Aging (Albany NY)201911246747910.18632/aging.101752 30659574
    [Google Scholar]
  25. LiuY. WangL. LiuH. LiC. HeJ. The prognostic significance of metabolic syndrome and a related six-lncRNA signature in esophageal squamous cell carcinoma.Front. Oncol.2020106110.3389/fonc.2020.00061 32133283
    [Google Scholar]
  26. ShenY. PengX. ShenC. Identification and validation of immune-related lncRNA prognostic signature for breast cancer.Genomics202011232640264610.1016/j.ygeno.2020.02.015 32087243
    [Google Scholar]
  27. Martens-UzunovaE.S. BöttcherR. CroceC.M. JensterG. VisakorpiT. CalinG.A. Long noncoding RNA in prostate, bladder, and kidney cancer.Eur. Urol.20146561140115110.1016/j.eururo.2013.12.003 24373479
    [Google Scholar]
  28. ChanK.K.L. ZhangQ.M. DianovG.L. Base excision repair fidelity in normal and cancer cells.Mutagenesis200621317317810.1093/mutage/gel020 16613912
    [Google Scholar]
  29. SweasyJ.B. LangT. DiMaioD. Is base excision repair a tumor suppressor mechanism?Cell Cycle20065325025910.4161/cc.5.3.2414 16418580
    [Google Scholar]
  30. Paz-ElizurT. SevilyaZ. Leitner-DaganY. ElingerD. RoismanL.C. LivnehZ. DNA repair of oxidative DNA damage in human carcinogenesis: Potential application for cancer risk assessment and prevention.Cancer Lett.20082661607210.1016/j.canlet.2008.02.032 18374480
    [Google Scholar]
  31. NemecA.A. WallaceS.S. SweasyJ.B. Variant base excision repair proteins: Contributors to genomic instability.Semin. Cancer Biol.201020532032810.1016/j.semcancer.2010.10.010 20955798
    [Google Scholar]
  32. WilsonD.M.III KimD. BerquistB.R. SigurdsonA.J. Variation in base excision repair capacity.Mutat. Res.20117111-210011210.1016/j.mrfmmm.2010.12.004 21167187
    [Google Scholar]
  33. WallaceS.S. MurphyD.L. SweasyJ.B. Base excision repair and cancer.Cancer Lett.20123271-2738910.1016/j.canlet.2011.12.038 22252118
    [Google Scholar]
  34. HoppeM.M. SundarR. TanD.S.P. JeyasekharanA.D. Biomarkers for homologous recombination deficiency in cancer.J. Natl. Cancer Inst.2018110770471310.1093/jnci/djy085 29788099
    [Google Scholar]
  35. ShanS. WuC. ShiJ. ZhangX. NiuJ. LiH. LiZ. Inhibitory effects of peroxidase from foxtail millet bran on colitis-associated colorectal carcinogenesis by the blockage of glycerophospholipid metabolism.J. Agric. Food Chem.202068318295830710.1021/acs.jafc.0c03257 32657580
    [Google Scholar]
  36. ElkhaledA. JalbertL. ConstantinA. YoshiharaH.A.I. PhillipsJ.J. MolinaroA.M. ChangS.M. NelsonS.J. Characterization of metabolites in infiltrating gliomas using ex vivo 1 H high‐resolution magic angle spinning spectroscopy.NMR Biomed.201427557859310.1002/nbm.3097 24596146
    [Google Scholar]
  37. EinsteinD.B. WesselsB. BangertB. FuP. NelsonA.D. CohenM. SagarS. LewinJ. SloanA. ZhengY. WilliamsJ. ColussiV. VinklerR. MaciunasR. Phase II trial of radiosurgery to magnetic resonance spectroscopy-defined high-risk tumor volumes in patients with glioblastoma multiforme.Int. J. Radiat. Oncol. Biol. Phys.201284366867410.1016/j.ijrobp.2012.01.020 22445005
    [Google Scholar]
  38. JacobsM.A. BarkerP.B. BottomleyP.A. BhujwallaZ. BluemkeD.A. Proton magnetic resonance spectroscopic imaging of human breast cancer: A preliminary study.J. Magn. Reson. Imaging2004191687510.1002/jmri.10427 14696222
    [Google Scholar]
  39. MeisamyS. BolanP.J. BakerE.H. BlissR.L. GulbahceE. EversonL.I. NelsonM.T. EmoryT.H. TuttleT.M. YeeD. GarwoodM. Neoadjuvant chemotherapy of locally advanced breast cancer: predicting response with in vivo (1)H MR spectroscopy--a pilot study at 4 T.Radiology2004233242443110.1148/radiol.2332031285 15516615
    [Google Scholar]
  40. BoothS.J. PicklesM.D. TurnbullL.W. In vivo magnetic resonance spectroscopy of gynaecological tumours at 3.0 Tesla.BJOG2009116230030310.1111/j.1471‑0528.2008.02007.x 19076962
    [Google Scholar]
  41. BelkićK. BelkićD. The challenge of ovarian cancer: Steps toward early detection through advanced signal processing in magnetic resonance spectroscopy.Isr. Med. Assoc. J.2017198517525 28825773
    [Google Scholar]
  42. TrousilS. LeeP. PinatoD.J. EllisJ.K. DinaR. AboagyeE.O. KeunH.C. SharmaR. Alterations of choline phospholipid metabolism in endometrial cancer are caused by choline kinase alpha overexpression and a hyperactivated deacylation pathway.Cancer Res.201474236867687710.1158/0008‑5472.CAN‑13‑2409 25267063
    [Google Scholar]
  43. KurhanewiczJ. SwansonM.G. NelsonS.J. VigneronD.B. Combined magnetic resonance imaging and spectroscopic imaging approach to molecular imaging of prostate cancer.J. Magn. Reson. Imaging200216445146310.1002/jmri.10172 12353259
    [Google Scholar]
  44. JiangM. ChenP. WangL. LiW. ChenB. LiuY. WangH. ZhaoS. YeL. HeY. ZhouC. cGAS-STING, an important pathway in cancer immunotherapy.J. Hematol. Oncol.20201318110.1186/s13045‑020‑00916‑z 32571374
    [Google Scholar]
  45. ZhangC. ZhuZ. GaoJ. YangL. DangE. FangH. ShaoS. ZhangS. XiaoC. YuanX. LiW. AbeR. QiaoH. WangG. FuM. Plasma exosomal miR-375-3p regulates mitochondria-dependent keratinocyte apoptosis by targeting XIAP in severe drug-induced skin reactions.Sci. Transl. Med.202012574eaaw614210.1126/scitranslmed.aaw6142 33328332
    [Google Scholar]
/content/journals/cchts/10.2174/1386207326666230606152615
Loading
/content/journals/cchts/10.2174/1386207326666230606152615
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test