Skip to content
2000
Volume 22, Issue 10
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background: Citrullination, an important post-translational modification of proteins, alters the molecular weight and electrostatic charge of the protein side chains. Citrulline, in protein sequences, is catalyzed by a class of Peptidyl Arginine Deiminases (PADs). Dependent on Ca2+, PADs include five isozymes: PAD 1, 2, 3, 4/5, and 6. Citrullinated proteins have been identified in many biological and pathological processes. Among them, abnormal protein citrullination modification can lead to serious human diseases, including multiple sclerosis and rheumatoid arthritis. Objective: It is important to identify the citrullination sites in protein sequences. The accurate identification of citrullination sites may contribute to the studies on the molecular functions and pathological mechanisms of related diseases. Methods and Results: In this study, after an encoded training set (containing 116 positive and 348 negative samples) into the feature matrix, the mRMR method was used to analyze the 941- dimensional features which were sorted on the basis of their importance. Then, a predictive model based on a self-normalizing neural network (SNN) was proposed to predict the citrullination sites in protein sequences. Incremental Feature Selection (IFS) and 10-fold cross-validation were used as the model evaluation method. Three classical machine learning models, namely random forest, support vector machine, and k-nearest neighbor algorithm, were selected and compared with the SNN prediction model using the same evaluation methods. SNN may be the best tool for citrullination site prediction. The maximum value of the Matthews Correlation Coefficient (MCC) reached 0.672404 on the basis of the optimal classifier of SNN. Conclusion: The results showed that the SNN-based prediction methods performed better when evaluated by some common metrics, such as MCC, accuracy, and F1-Measure. SNN prediction model also achieved a better balance in the classification and recognition of positive and negative samples from datasets compared with the other three models.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/1386207322666191129113508
2019-12-01
2025-09-22
Loading full text...

Full text loading...

/content/journals/cchts/10.2174/1386207322666191129113508
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test