Skip to content
2000
image of Impact of All-trans Retinoic Acid on Skeletal Development: Mechanisms of Growth Plate Closure

Abstract

Introduction

All-trans retinoic acid (ATRA), a therapeutic mainstay for acute promyelocytic leukemia, is associated with off-target effects on skeletal development, including premature growth plate closure. However, the molecular mechanisms underlying ATRA-induced growth plate senescence remain poorly understood.

Methods

Using Sprague-Dawley rats, ADTC5 chondrocyte cell lines, and integrated multi-omics approaches (transcriptome sequencing, weighted gene co-expression network analysis, molecular docking, and functional assays), we investigated how ATRA modulates growth plate development. Animal models were treated with graded ATRA doses, while studies included cell viability assays, RNA interference, and Western blot analysis to validate interactions in the signaling pathway.

Results

ATRA induced dose-dependent growth plate thinning (high-dose: 59.79 µm . control: 511.35 µm) and skeletal growth retardation in rats. Transcriptomic analysis identified ITGB2 as a pivotal gene, with molecular docking revealing a strong binding interaction (-240.25 kcal/mol) between ITGB2 and YAP mediated by hydrogen bonds/salt bridges. Functional experiments revealed that ATRA upregulated ITGB2, which activated YAP, a Hippo pathway effector, thereby suppressing Wnt/β-catenin signaling by inhibiting β-catenin. This led to downregulation of osteogenic markers (Runx2/SOX9) and enhanced growth plate closure. YAP knockdown reversed these effects, restoring β-catenin and downstream target gene expression (c-myc, cyclin D).

Discussion

Collectively, our findings identify the ITGB2-YAP signaling axis as a novel mechanism underlying ATRA-induced growth plate closure. These findings establish a foundational framework for developing therapeutic strategies, such as targeting ITGB2 or YAP, to potentially delay premature growth plate closure in pediatric patients undergoing ATRA treatment or with related skeletal disorders.

Conclusion

ATRA accelerates growth plate closure through the ITGB2-YAP axis, disrupting Wnt/β-catenin signaling. These findings establish a mechanistic framework for developing therapeutic strategies targeting ITGB2 or YAP to delay premature growth plate senescence in pediatric disorders.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073424590251103061707
2026-01-14
2026-01-29
Loading full text...

Full text loading...

References

  1. Oichi T. Otsuru S. Usami Y. Enomoto-Iwamoto M. Iwamoto M. Wnt signaling in chondroprogenitors during long bone development and growth. Bone 2020 137 115368 10.1016/j.bone.2020.115368 32380258
    [Google Scholar]
  2. López J.M. Bone development and growth. Int. J. Mol. Sci. 2024 25 12 6767 10.3390/ijms25126767 38928471
    [Google Scholar]
  3. Hallett S.A. Ono W. Ono N. Growth plate chondrocytes: Skeletal development, growth and beyond. Int. J. Mol. Sci. 2019 20 23 6009 10.3390/ijms20236009 31795305
    [Google Scholar]
  4. Zhang H. Alman B.A. Enchondromatosis and growth plate development. Curr. Osteoporos. Rep. 2021 19 1 40 49 10.1007/s11914‑020‑00639‑7 33306166
    [Google Scholar]
  5. Cho J.H. Jung H.W. Shim K.S. Growth plate closure and therapeutic interventions. Clin. Exp. Pediatr. 2024 67 11 553 559 10.3345/cep.2023.00346 39463341
    [Google Scholar]
  6. Fernández-Iglesias Á. López J.M. Santos F. Growth plate alterations in chronic kidney disease. Pediatr. Nephrol. 2020 35 3 367 374 10.1007/s00467‑018‑4160‑7 30552565
    [Google Scholar]
  7. Rickert K.D. Arrigoni P. Guzel C.R. Barber H.F. Alman B.A. Lark R.K. Growth modulation by stimulating the growth plate: A pilot study. Ultrasound Med. Biol. 2021 47 8 2339 2345 10.1016/j.ultrasmedbio.2021.03.036 34016487
    [Google Scholar]
  8. Ağırdil Y. The growth plate: A physiologic overview. EFORT Open Rev. 2020 5 8 498 507 10.1302/2058‑5241.5.190088 32953135
    [Google Scholar]
  9. Faienza M.F. Chiarito M. Brunetti G. D’Amato G. Growth plate gene involment and isolated short stature. Endocrine 2021 71 1 28 34 10.1007/s12020‑020‑02362‑w 32504378
    [Google Scholar]
  10. Allen D.B. Merchant N. Miller B.S. Backeljauw P.F. Evolution and future of growth plate therapeutics. Horm. Res. Paediatr. 2021 94 9-10 319 332 10.1159/000520812 34758467
    [Google Scholar]
  11. Panos J.A. Coenen M.J. Nagelli C.V. McGlinch E.B. Atasoy-Zeybek A. De Padilla C.L. Coghlan R.F. Johnstone B. Ferreira E. Porter R.M. De la Vega R.E. Evans C.H. IL-1Ra gene transfer potentiates BMP2-mediated bone healing by redirecting osteogenesis toward endochondral ossification. Mol. Ther. 2023 31 2 420 434 10.1016/j.ymthe.2022.10.007 36245128
    [Google Scholar]
  12. Millward D.J. Interactions between growth of muscle and stature: Mechanisms involved and their nutritional sensitivity to dietary protein: The protein-stat revisited. Nutrients 2021 13 3 729 10.3390/nu13030729 33668846
    [Google Scholar]
  13. Malik J. Swanson J. Okimoto R. Khaled S. Disturbance of growth in pediatric patients due to osteomyelitis caused by growth plate infection. Cureus 2023 15 12 50631 10.7759/cureus.50631 38226077
    [Google Scholar]
  14. Samsa W.E. Zhou X. Zhou G. Signaling pathways regulating cartilage growth plate formation and activity. Semin. Cell Dev. Biol. 2017 62 3 15 10.1016/j.semcdb.2016.07.008 27418125
    [Google Scholar]
  15. Pazos-Pérez A. Piñeiro-Ramil M. Franco-Trepat E. Guillán-Fresco M. López-López V. Jorge-Mora A. Alonso-Pérez A. Gómez R. Methylphenidate promotes premature growth plate closure: In vitro evidence. Int. J. Mol. Sci. 2023 24 4 4175 10.3390/ijms24044175 36835608
    [Google Scholar]
  16. Fan H.C. Wang S.Y. Peng Y.J. Lee H.S. Valproic acid impacts the growth of growth plate chondrocytes. Int. J. Environ. Res. Public Health 2020 17 10 3675 10.3390/ijerph17103675 32456093
    [Google Scholar]
  17. Liang C. Qiao G. Liu Y. Tian L. Hui N. Li J. Ma Y. Li H. Zhao Q. Cao W. Liu H. Ren X. Overview of all-trans-retinoic acid (ATRA) and its analogues: Structures, activities, and mechanisms in acute promyelocytic leukaemia. Eur. J. Med. Chem. 2021 220 113451 10.1016/j.ejmech.2021.113451 33895500
    [Google Scholar]
  18. Kutny M.A. Alonzo T.A. Abla O. Rajpurkar M. Gerbing R.B. Wang Y.C. Hirsch B.A. Raimondi S. Kahwash S. Hardy K.K. Hardy S. Meshinchi S. Gamis A.S. Kolb E.A. Feusner J.H. Gregory J. Assessment of arsenic trioxide and all-trans retinoic acid for the treatment of pediatric acute promyelocytic leukemia. JAMA Oncol. 2022 8 1 79 87 10.1001/jamaoncol.2021.5206 34762093
    [Google Scholar]
  19. Deng Q. Chen J. Potential therapeutic effect of all-trans retinoic acid on atherosclerosis. Biomolecules 2022 12 7 869 10.3390/biom12070869 35883425
    [Google Scholar]
  20. Bi G. Liang J. Bian Y. Shan G. Besskaya V. Wang Q. Zhan C. The immunomodulatory role of all-trans retinoic acid in tumor microenvironment. Clin. Exp. Med. 2022 23 3 591 606 10.1007/s10238‑022‑00860‑x 35829844
    [Google Scholar]
  21. Shimo T. Koyama E. Okui T. Masui M. Kunisada Y. Ibaragi S. Yoshioka N. Kurio N. Yoshida S. Sasaki A. Iwamoto M. Retinoic receptor signaling regulates hypertrophic chondrocyte-specific gene expression. In Vivo 2019 33 1 85 91 10.21873/invivo.11443 30587607
    [Google Scholar]
  22. Shang Y. Baumrucker C.R. Green M.H. The induction and activation of STAT1 by all-trans-retinoic acid are mediated by RARβ signaling pathways in breast cancer cells. Oncogene 1999 18 48 6725 6732 10.1038/sj.onc.1203084 10597280
    [Google Scholar]
  23. Wang L.N. Tang Y.L. Zhang Y.C. Zhang Z.H. Liu X.J. Ke Z.Y. Li Y. Tan H.Z. Huang L.B. Luo X.Q. Arsenic trioxide and all-trans-retinoic acid selectively exert synergistic cytotoxicity against FLT3-ITD AML cells via co-inhibition of FLT3 signaling pathways. Leuk. Lymphoma 2017 58 10 2426 2438 10.1080/10428194.2017.1289522 28276286
    [Google Scholar]
  24. Shen Q. Wang X. Bai H. Tan X. Liu X. Effects of high-dose all-trans retinoic acid on longitudinal bone growth of young rats. Growth Horm. IGF Res. 2022 62 101446 10.1016/j.ghir.2022.101446 35149382
    [Google Scholar]
  25. Feng X. Zhang M. Wang B. Zhou C. Mu Y. Li J. Liu X. Wang Y. Song Z. Liu P. CRABP2 regulates invasion and metastasis of breast cancer through hippo pathway dependent on ER status. J. Exp. Clin. Cancer Res. 2019 38 1 361 10.1186/s13046‑019‑1345‑2 31419991
    [Google Scholar]
  26. Von den Hoff H.W. Jos van Kampen G.P. van der Korst J.K. Proteoglycan depletion of intact articular cartilage by retinoic acid is irreversible and involves loss of hyaluronate. Osteoarthritis Cartilage 1993 1 3 157 166 10.1016/S1063‑4584(05)80086‑X 15449421
    [Google Scholar]
  27. Abaza Y. Kantarjian H. Garcia-Manero G. Estey E. Borthakur G. Jabbour E. Faderl S. O’Brien S. Wierda W. Pierce S. Brandt M. McCue D. Luthra R. Patel K. Kornblau S. Kadia T. Daver N. DiNardo C. Jain N. Verstovsek S. Ferrajoli A. Andreeff M. Konopleva M. Estrov Z. Foudray M. McCue D. Cortes J. Ravandi F. Long-term outcome of acute promyelocytic leukemia treated with all-trans-retinoic acid, arsenic trioxide, and gemtuzumab. Blood 2017 129 10 1275 1283 10.1182/blood‑2016‑09‑736686 28003274
    [Google Scholar]
  28. Levis M. Arsenic and all-trans retinoic acid for acute promyelocytic leukemia: Yes, it really is as good as it seems. Haematologica 2021 106 12 3031 3032 10.3324/haematol.2021.278984 34047181
    [Google Scholar]
  29. Breccia M. Foà R. Intravenous arsenic trioxide and all-trans retinoic acid as front-line therapy for low-risk acute promyelocytic leukemia. Expert Rev. Hematol. 2019 12 2 81 87 10.1080/17474086.2019.1562332 30572725
    [Google Scholar]
  30. Wang N. Tian W. Zhao J. Wang W. Mi F. Significance of CD8+T cells related gene ITGB2 in prognosis and tumor microenvironment of small cell lung cancer. Medicine 2025 104 7 41461 10.1097/MD.0000000000041461 39960961
    [Google Scholar]
  31. Zhang W. Lu Y. Shi H. Li X. Zhang Z. Deng X. Yang Y. Wan B. LncRNA ITGB2-AS1 promotes the progression of clear cell renal cell carcinoma by modulating miR-328-5p/HMGA1 axis. Hum. Cell 2021 34 5 1545 1557 10.1007/s13577‑021‑00563‑7 34170494
    [Google Scholar]
  32. Sun K. Guo J. Guo Z. Hou L. Liu H. Hou Y. He J. Guo F. Ye Y. The roles of the Hippo-YAP signalling pathway in cartilage and osteoarthritis. Ageing Res. Rev. 2023 90 102015 10.1016/j.arr.2023.102015 37454824
    [Google Scholar]
  33. Matthaios D. Tolia M. Mauri D. Kamposioras K. Karamouzis M. YAP/Hippo pathway and cancer immunity: It takes two to tango. Biomedicines 2021 9 12 1949 10.3390/biomedicines9121949 34944765
    [Google Scholar]
  34. Wei L. Gao J. Wang L. Tao Q. Tu C. Hippo/YAP signaling pathway: A new therapeutic target for diabetes mellitus and vascular complications. Ther. Adv. Endocrinol. Metab. 2023 14 20420188231220134 10.1177/20420188231220134 38152659
    [Google Scholar]
  35. Koinis F. Chantzara E. Samarinas M. Xagara A. Kratiras Z. Leontopoulou V. Kotsakis A. Emerging role of YAP and the hippo pathway in prostate cancer. Biomedicines 2022 10 11 2834 10.3390/biomedicines10112834 36359354
    [Google Scholar]
  36. Liu H. Dai X. Cao X. Yan H. Ji X. Zhang H. Shen S. Si Y. Zhang H. Chen J. Li L. Zhao J.C. Yu J. Feng X.H. Zhao B. PRDM 4 mediates YAP -induced cell invasion by activating leukocyte‐specific integrin β2 expression. EMBO Rep. 2018 19 6 45180 10.15252/embr.201745180 29669796
    [Google Scholar]
  37. Quinn H.M. Vogel R. Popp O. Mertins P. Lan L. Messerschmidt C. Landshammer A. Lisek K. Château-Joubert S. Marangoni E. Koren E. Fuchs Y. Birchmeier W. YAP and β-catenin cooperate to drive oncogenesis in basal breast cancer. Cancer Res. 2021 81 8 2116 2127 10.1158/0008‑5472.CAN‑20‑2801 33574090
    [Google Scholar]
  38. Pan J.X. Xiong L. Zhao K. Zeng P. Wang B. Tang F.L. Sun D. Guo H. Yang X. Cui S. Xia W.F. Mei L. Xiong W.C. YAP promotes osteogenesis and suppresses adipogenic differentiation by regulating β-catenin signaling. Bone Res. 2018 6 1 18 10.1038/s41413‑018‑0018‑7 29872550
    [Google Scholar]
  39. Liu J. Xiao Q. Xiao J. Niu C. Li Y. Zhang X. Zhou Z. Shu G. Yin G. Wnt/β-catenin signalling: Function, biological mechanisms, and therapeutic opportunities. Signal Transduct. Target. Ther. 2022 7 1 3 10.1038/s41392‑021‑00762‑6 34980884
    [Google Scholar]
  40. Ma Q. Yu J. Zhang X. Wu X. Deng G. Wnt/β-catenin signaling pathway-a versatile player in apoptosis and autophagy. Biochimie 2023 211 57 67 10.1016/j.biochi.2023.03.001 36907502
    [Google Scholar]
  41. Song P. Gao Z. Bao Y. Chen L. Huang Y. Liu Y. Dong Q. Wei X. Wnt/β-catenin signaling pathway in carcinogenesis and cancer therapy. J. Hematol. Oncol. 2024 17 1 46 10.1186/s13045‑024‑01563‑4 38886806
    [Google Scholar]
  42. Yu F.X. Zhao B. Guan K.L. Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell 2015 163 4 811 828 10.1016/j.cell.2015.10.044 26544935
    [Google Scholar]
  43. Tsai C.R. Martin J.F. Hippo signaling in cardiac fibroblasts during development, tissue repair, and fibrosis. Curr. Top. Dev. Biol. 2022 149 91 121 10.1016/bs.ctdb.2022.02.010 35606063
    [Google Scholar]
  44. Jahejo A.R. Zhang D. Niu S. Mangi R.A. Khan A. Qadir M.F. Khan A. Chen H. Tian W. Transcriptome-based screening of intracellular pathways and angiogenesis related genes at different stages of thiram induced tibial lesions in broiler chickens. BMC Genomics 2020 21 1 50 10.1186/s12864‑020‑6456‑9 31941444
    [Google Scholar]
  45. Jahejo A.R. Bukhari S.A.R. Rajput N. Kalhoro N.H. Leghari I.H. Raza S.H.A. Li Z. Liu W. Tian W. Transcriptome-based biomarker gene screening and evaluation of the extracellular fatty acid-binding protein (Ex-FABP) on immune and angiogenesis-related genes in chicken erythrocytes of tibial dyschondroplasia. BMC Genomics 2022 23 1 323 10.1186/s12864‑022‑08494‑9 35459093
    [Google Scholar]
  46. Jahejo A.R. Rajput N. Kashif J. Kalhoro D.H. Niu S. Qiao M. Zhang D. Qadir M.F. Mangi R.A. Khan A. Ahsan A. Khan A. Tian W. Recombinant glutathione-S-transferase A3 protein regulates the angiogenesis-related genes of erythrocytes in thiram induced tibial lesions. Res. Vet. Sci. 2020 131 244 253 10.1016/j.rvsc.2020.05.007 32438067
    [Google Scholar]
  47. Xu R. Zeng Q. Xia C. Chen J. Wang P. Zhao S. Yuan W. Lou Z. Lin H. Xia H. Lv S. Xu T. Tong P. Gu M. Jin H. Fractions of shen-sui-tong-zhi formula enhance osteogenesis via activation of β-catenin signaling in growth plate chondrocytes. Front. Pharmacol. 2021 12 711004 10.3389/fphar.2021.711004 34630086
    [Google Scholar]
  48. Wang L. Shao Y.Y. Ballock R.T. Thyroid hormone interacts with the Wnt/beta-catenin signaling pathway in the terminal differentiation of growth plate chondrocytes. J. Bone Miner. Res. 2007 22 12 1988 1995 10.1359/jbmr.070806 17708712
    [Google Scholar]
  49. Hu L. Chen W. Qian A. Li Y.P. Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and disease. Bone Res. 2024 12 1 39 10.1038/s41413‑024‑00342‑8 38987555
    [Google Scholar]
  50. Williams J.A. Kane M. Okabe T. Enomoto-Iwamoto M. Napoli J.L. Pacifici M. Iwamoto M. Endogenous retinoids in mammalian growth plate cartilage: Analysis and roles in matrix homeostasis and turnover. J. Biol. Chem. 2010 285 47 36674 36681 10.1074/jbc.M110.151878 20843807
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073424590251103061707
Loading
/content/journals/cchts/10.2174/0113862073424590251103061707
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Wnt signaling pathway ; RNA ; Growth plate closure ; All-trans retinoic acid ; ITGB2 ; YAP
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test