Skip to content
2000
image of Dengue is Still a Complicated Disease

There is no abstract available.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073394882250520072757
2025-05-21
2025-09-14
Loading full text...

Full text loading...

/deliver/fulltext/cchts/10.2174/0113862073394882250520072757/BMS-CCHTS-2025-112.html?itemId=/content/journals/cchts/10.2174/0113862073394882250520072757&mimeType=html&fmt=ahah

References

  1. Khetarpal N. Khanna I. Dengue fever: Causes, complications, and vaccine strategies. J. Immunol. Res. 2016 2016 1 14 10.1155/2016/6803098 27525287
    [Google Scholar]
  2. Khan M.B. Yang Z.S. Lin C.Y. Hsu M.C. Urbina A.N. Assavalapsakul W. Wang W.H. Chen Y.H. Wang S.F. Dengue overview: An updated systemic review. J. Infect. Public Health 2023 16 10 1625 1642 10.1016/j.jiph.2023.08.001 37595484
    [Google Scholar]
  3. Dengue spike fuels concerns of public health threat in previously untouched countries: WHO. 2023 Available from: https://news.un.org/en/story/2023/12/1145052
  4. Dengue and severe dengue. 2024 Available from: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue
  5. Current dengue outbreak. 2025 Available from: https://www.cdc.gov/dengue/outbreaks/2024/index.html
  6. Dengue in the South-East Asia. 2025 Available from: https://www.who.int/southeastasia/health-topics/dengue-and-severe-dengue
  7. Nunes P.C.G. Daumas R.P. Sánchez-Arcila J.C. Nogueira R.M.R. Horta M.A.P. dos Santos F.B. 30 years of fatal dengue cases in Brazil: A review. BMC Public Health 2019 19 1 329 10.1186/s12889‑019‑6641‑4 30898104
    [Google Scholar]
  8. Fried J.R. Gibbons R.V. Kalayanarooj S. Thomas S.J. Srikiatkhachorn A. Yoon I.K. Jarman R.G. Green S. Rothman A.L. Cummings D.A.T. Serotype-specific differences in the risk of dengue hemorrhagic fever: An analysis of data collected in Bangkok, Thailand from 1994 to 2006. PLoS Negl. Trop. Dis. 2010 4 3 e617 10.1371/journal.pntd.0000617 20209155
    [Google Scholar]
  9. Mushtaq S. Khan M.I.U. Khan M.T. Lodhi M.S. Wei D.Q. Novel mutations in structural proteins of dengue virus genomes. J. Infect. Public Health 2023 16 12 1971 1981 10.1016/j.jiph.2023.10.005 37879150
    [Google Scholar]
  10. Bhatt S. Gething P.W. Brady O.J. Messina J.P. Farlow A.W. Moyes C.L. Drake J.M. Brownstein J.S. Hoen A.G. Sankoh O. Myers M.F. George D.B. Jaenisch T. Wint G.R.W. Simmons C.P. Scott T.W. Farrar J.J. Hay S.I. The global distribution and burden of dengue. Nature 2013 496 7446 504 507 10.1038/nature12060 23563266
    [Google Scholar]
  11. Amir M. Hussain A. Asif M. Ahmed S. Alam H. Moga M.A. Cocuz M.E. Marceanu L. Blidaru A. Full-length genome and partial viral genes phylogenetic and geographical analysis of dengue serotype 3 isolates. Microorganisms 2021 9 2 323 10.3390/microorganisms9020323 33557307
    [Google Scholar]
  12. Aung S.H. Phuanukoonnon S. Mon Kyaw A.M. Lawpoolsri S. Sriwichai P. Soonthornworasiri N. Jittamala P. Effectiveness of dengue training programmes on prevention and control among high school students in the Yangon region, Myanmar. Heliyon 2023 9 6 e16759 10.1016/j.heliyon.2023.e16759 37292340
    [Google Scholar]
  13. Taylor R. What is gene drive and how could it help in the fight against malaria? 2024 Available from: https://www.theguardian.com/global-development/2024/dec/11/what-is-gene-drive-and-how-could-it-help-in-the-fight-against-malaria
  14. Wolbachiadramatically reduces dengue cases - Peer reviewed and published. Available from: https://www.worldmosquitoprogram.org/en/news-stories/media-releases/wolbachia-dramatically-reduces-dengue-cases-peer-reviewed-and
  15. Foley N. Fouque F. Zhong Q. Bossin H. Bouyer J. Velayudhan R. Nett R. Drexler A. Building capacity for testing sterile insect technique against Aedes-borne diseases in the Pacific: a training workshop and launch of sterile insect technique trials against Aedes aegypti and arboviral diseases. Infect. Dis. Poverty 2024 13 1 75 10.1186/s40249‑024‑01239‑8 39390619
    [Google Scholar]
  16. Riaz M Harun SNB Mallhi TH Evaluation of clinical and laboratory characteristics of dengue viral infection and risk factors of dengue hemorrhagic fever: A multi-center retrospective analysis. BMC Infect Dis 2024 24 500 10.1186/s12879‑024‑09384‑z
    [Google Scholar]
  17. Nobre T. Fenner A.L.D. Araújo E.L.L. de Araújo W.N. Roux E. Handschumacher P. Gurgel H. Dallago B. Hecht M. Hagström L. Ramalho W.M. Nitz N. Seroprevalence of dengue, Zika, and chikungunya in São Sebastião, Brazil (2020–2021): A population-based survey. BMC Infect. Dis. 2025 25 1 129 10.1186/s12879‑025‑10516‑2 39871200
    [Google Scholar]
  18. Katzelnick L.C. Gresh L. Halloran M.E. Mercado J.C. Kuan G. Gordon A. Balmaseda A. Harris E. Antibody-dependent enhancement of severe dengue disease in humans. Science 2017 358 6365 929 932 10.1126/science.aan6836 29097492
    [Google Scholar]
  19. Wong J.M. Adams L.E. Durbin A.P. Muñoz-Jordán J.L. Poehling K.A. Sánchez-González L.M. Volkman H.R. Paz-Bailey G. Dengue: A Growing Problem With New Interventions. Pediatrics 2022 149 6 e2021055522 10.1542/peds.2021‑055522 35543085
    [Google Scholar]
  20. Dengue vaccine candidate provides 62% efficacy for children & adolescents at 3 years. 2021 Available from: https://www.contagionlive.com/view/dengue-vaccine-candidate-efficacy-3-years
  21. Pierce K.K. Durbin A.P. Walsh M.C.R. Carmolli M. Sabundayo B.P. Dickson D.M. Diehl S.A. Whitehead S.S. Kirkpatrick B.D. TV005 dengue vaccine protects against dengue serotypes 2 and 3 in two controlled human infection studies. J. Clin. Invest. 2024 134 3 e173328 10.1172/JCI173328 37971871
    [Google Scholar]
  22. Sharma A. Zhang X. Dejnirattisai W. Dai X. Gong D. Wongwiwat W. Duquerroy S. Rouvinski A. Vaney M.C. Guardado-Calvo P. Haouz A. England P. Sun R. Zhou Z.H. Mongkolsapaya J. Screaton G.R. Rey F.A. The epitope arrangement on flavivirus particles contributes to Mab C10’s extraordinary neutralization breadth across Zika and dengue viruses. Cell 2021 184 25 6052 6066.e18 10.1016/j.cell.2021.11.010 34852239
    [Google Scholar]
  23. Budigi Y. Ong E.Z. Robinson L.N. Ong L.C. Rowley K.J. Winnett A. Tan H.C. Hobbie S. Shriver Z. Babcock G.J. Alonso S. Ooi E.E. Neutralization of antibody-enhanced dengue infection by VIS513, a pan serotype reactive monoclonal antibody targeting domain III of the dengue E protein. PLoS Negl. Trop. Dis. 2018 12 2 e0006209 10.1371/journal.pntd.0006209 29425203
    [Google Scholar]
  24. Gavi and the EU: A partnership for the future. 2020 Available from: https://www.savethechildren.net/news/gavi-and-eu-partnership-future
  25. Sebastianelli A. Spiller D. Carmo R. Wheeler J. Nowakowski A. Jacobson L.V. Kim D. Barlevi H. Cordero Z.E.R. Colón-González F.J. Lowe R. Ullo S.L. Schneider R. A reproducible ensemble machine learning approach to forecast dengue outbreaks. Sci. Rep. 2024 14 1 3807 10.1038/s41598‑024‑52796‑9 38360915
    [Google Scholar]
  26. Soneja S. Tsarouchi G. Lumbroso D. Tung D.K. A review of dengue’s historical and future health risk from a changing climate. Curr. Environ. Health Rep. 2021 8 3 245 265 10.1007/s40572‑021‑00322‑8 34269994
    [Google Scholar]
  27. Gubler D.J. The global pandemic of dengue/dengue haemorrhagic fever: Current status and prospects for the future. Ann. Acad. Med. Singap. 1998 27 2 227 234 9663316
    [Google Scholar]
  28. Hosseini S. Muñoz-Soto R.B. Oliva-Ramírez J. Vázquez-Villegas P. Aghamohammadi N. Rodriguez-Garcia A. Martinez-Chapa S.O. Latest updates in dengue fever therapeutics: Natural, marine and synthetic drugs. Curr. Med. Chem. 2020 27 5 719 744 10.2174/0929867325666180629124709 29956614
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073394882250520072757
Loading

  • Article Type:
    Editorial
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test