Skip to content
2000
image of Uncovering ShuangZi Powder's Anti-Ovarian Cancer Mechanism: A Systems Biology and Experimental Approach

Abstract

Objective

This study investigated the anti-ovarian cancer (OC) effects of Shuangzi Powder (SZP) and its regulatory impact on the tumor microenvironment.

Method

This study employed systems biology approaches, integrating molecular docking and experimental validation, to explore the pharmacological mechanisms of SZP in OC treatment. To identify potential bioactive compounds and target genes of SZP, network pharmacology, protein–protein interaction network analysis, Gene Ontology (GO) analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were conducted.

Results

Among the 11 bioactive ingredients identified in SZP, 1,767 potential therapeutic targets were predicted, while 2,637 differentially expressed genes were found to be associated with OC. KEGG pathway analysis revealed significant enrichment in pathways related to cancer, apoptosis, the PI3K-Akt signaling pathway, and the PD-L1/PD-1 checkpoint pathway. Treatment of A2780 cells with β,β-Dimethylacrylshikonin (DMAS) inhibited cell viability, migration, and invasion. Moreover, DMAS downregulated the expression of cell cycle- and apoptosis-related genes (CCNB1, CHEK1, CCNE1, and PARP1) and upregulated the immune checkpoint gene PD-L1.

Discussion

These findings indicate that multiple components, targets, and pathways are involved in OC treatment by SZP.

Conclusion

DMAS, one of the bioactive ingredients of SZP, was predicted and preliminarily validated to exert inhibitory effects on OC cells, mainly through the regulation of the cell cycle, apoptosis, and immune response, as demonstrated by molecular docking and experimental analyses.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073394765250828100829
2025-10-01
2025-11-08
Loading full text...

Full text loading...

References

  1. Tianye L. Haoxiang Z. Mengyi L. Qionghua H. Mingwei L. Lingyun Z. Jianwei Z. Kongming W. Ming Y. Global status and attributable risk factors of breast, cervical, ovarian, and uterine cancers from 1990 to 2021. J. Hematol. Oncol. 2025 18 1 1 25 39828738
    [Google Scholar]
  2. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  3. Nguyen Q.M. Dupré P.F. Berchel M. Lévêque M. Choblet-Thery S. d’Arbonneau F. Montier T. Modified hTERT promoters-driven purine nucleoside phosphorylase-gene therapy in association with chemo- and targeted therapy in the context of ovarian cancer. Cancer Gene Ther. 2025 2025 1 11 10.1038/s41417‑025‑00932‑6 40579465
    [Google Scholar]
  4. Lisa S. Hilary A.K. Rahul K. Lucy K. Agnes J. B.; Janna, H.; Leonhard, D.; Aasa, S.; Andreas, M.; Rachelle, M.; Thierry M, N.; Sarah, R.; Sabrina, R.; Yan, L.; Florian A, R.; Maximilian T, S.; Katherine C, K.; Marvin, T.; Edwin, R.; Johannes B, M.-R.; S Diane, Y.; Fabian J, T.; Andreas, M.; Ricardo R, L.; Matthias, M.; Ernst, L. Spatial proteo-transcriptomic profiling reveals the molecular landscape of borderline ovarian tumors and their invasive progression. Cancer Cell 2025 43 8 1495 1511 10.1016/j.ccell.2025.06.004
    [Google Scholar]
  5. Öner İ. Karaçin P. Bevacizumab in platinum-sensitive recurrent epithelial ovarian cancer: A risk-stratified analysis. Pharmaceuticals 2025 18 6 850 10.3390/ph18060850 40573246
    [Google Scholar]
  6. Wang Y. Wang Z. Zhang Z. Wang H. Peng J. Hong L. Burden of ovarian cancer in China from 1990 to 2030: A systematic analysis and comparison with the global level. Front. Public Health 2023 11 1136596 10.3389/fpubh.2023.1136596 36860393
    [Google Scholar]
  7. Havasi A. Cainap S.S. Havasi A.T. Cainap C. Ovarian cancer-insights into platinum resistance and overcoming it. Medicina (B. Aires) 2023 59 3 544 10.3390/medicina59030544 36984544
    [Google Scholar]
  8. Yang L. Xie H.J. Li Y.Y. Wang X. Liu X.X. Mai J. Molecular mechanisms of platinum based chemotherapy resistance in ovarian cancer. (Review) Oncol. Rep. 2022 47 4 82 10.3892/or.2022.8293 35211759
    [Google Scholar]
  9. Christoph S. Tobias F.D. Maximilian R. Franziska E. Stefanie S. Dorine H. Marion K. Holger B. PARP inhibitor-induced anti-tumour chemokine response is suppressed by dipeptidyl peptidase 4 (DPP4) in ovarian cancer. Br. J. Cancer 2025 133 4 582 593
    [Google Scholar]
  10. Yu K.T. Mandy Man Yee C. Jessie Wan Kam C. Shuk Tak K. Michael G. I.; Aaron Hey Yin, C.; Polly, H.; Calvin Pak Wing, C.; Siew Fei, N.; Karen Kar Loen, C. Return to intended oncological therapy following advanced ovarian cancer surgery: A narrative review. Anaesthesia 2025
    [Google Scholar]
  11. Wang L. Wang X. Zhu X. Zhong L. Jiang Q. Wang Y. Tang Q. Li Q. Zhang C. Wang H. Zou D. Drug resistance in ovarian cancer: From mechanism to clinical trial. Mol. Cancer 2024 23 1 66 10.1186/s12943‑024‑01967‑3 38539161
    [Google Scholar]
  12. Pieterse Z. Amaya-Padilla M.A. Singomat T. Binju M. Madjid B.D. Yu Y. Kaur P. Ovarian cancer stem cells and their role in drug resistance. Int. J. Biochem. Cell Biol. 2019 106 117 126 10.1016/j.biocel.2018.11.012 30508594
    [Google Scholar]
  13. Yuan J. Liu Y. Zhang T. Zheng C. Ding X. Zhu C. Shi J. Jing Y. Traditional chinese medicine for breast cancer treatment: A bibliometric and visualization analysis. Pharm. Biol. 2024 62 1 499 512 10.1080/13880209.2024.2359105 38813803
    [Google Scholar]
  14. Xi Z. Dai R. Ze Y. Jiang X. Liu M. Xu H. Traditional chinese medicine in lung cancer treatment. Mol. Cancer 2025 24 1 57 10.1186/s12943‑025‑02245‑6 40001110
    [Google Scholar]
  15. Yang P. Xu P. Cheng C. Jiao J. Wu Y. Dong S. Xie J. Zhu X. Integrating network pharmacology and experimental models to investigate the efficacy of QYHJ on pancreatic cancer. J. Ethnopharmacol. 2022 297 115516 10.1016/j.jep.2022.115516 35817247
    [Google Scholar]
  16. Miao K. Liu W. Xu J. Qian Z. Zhang Q. Harnessing the power of traditional Chinese medicine monomers and compound prescriptions to boost cancer immunotherapy. Front. Immunol. 2023 14 1277243 10.3389/fimmu.2023.1277243 38035069
    [Google Scholar]
  17. Xu W. Li B. Xu M. Yang T. Hao X. Traditional Chinese medicine for precancerous lesions of gastric cancer: A review. Biomed. Pharmacother. 2022 146 112542 10.1016/j.biopha.2021.112542 34929576
    [Google Scholar]
  18. Zhang X. Qiu H. Li C. Cai P. Qi F. The positive role of traditional Chinese medicine as an adjunctive therapy for cancer. Biosci. Trends 2021 15 5 283 298 10.5582/bst.2021.01318 34421064
    [Google Scholar]
  19. Wei J. Liu Z. He J. Liu Q. Lu Y. He S. Yuan B. Zhang J. Ding Y. Traditional Chinese medicine reverses cancer multidrug resistance and its mechanism. Clin. Transl. Oncol. 2022 24 3 471 482 10.1007/s12094‑021‑02716‑4 34643878
    [Google Scholar]
  20. Wang Y. Xie L. Liu F. Ding D. Wei W. Han F. Research progress on traditional Chinese medicine-induced apoptosis signaling pathways in ovarian cancer cells. J. Ethnopharmacol. 2024 319 Pt 2 117299 10.1016/j.jep.2023.117299 37816474
    [Google Scholar]
  21. Zhang X. Wei X. Shi L. Jiang H. Ma F. Li Y. Li C. Ma Y. Ma Y. The latest research progress: Active components of Traditional Chinese medicine as promising candidates for ovarian cancer therapy. J. Ethnopharmacol. 2025 337 Pt 1 118811 10.1016/j.jep.2024.118811 39251149
    [Google Scholar]
  22. Xu X. Zhu L. Long L. Comparison of the effect of traditional Chinese medicine injection combined with chemotherapy and chemotherapy alone on the prognosis, quality of life and immune function in patients with ovarian carcinoma. Medicine 2021 100 41 27395 10.1097/MD.0000000000027395 34731110
    [Google Scholar]
  23. Ni M. Zhou J. Zhu Z. Xu Q. Yin Z. Wang Y. Zheng Z. Zhao H. Shikonin and cisplatin synergistically overcome cisplatin resistance of ovarian cancer by inducing ferroptosis via upregulation of HMOX1 to promote Fe2+ accumulation. Phytomedicine 2023 112 154701 10.1016/j.phymed.2023.154701 36773431
    [Google Scholar]
  24. Limei Z. ShuangZi powder has anti cervicitis and other effects. Chiang-Hsi Chung I Yao 1980 2 72 73
    [Google Scholar]
  25. Li C. Wang H. Fu K. Leng A. Qu J. Violae Herba: A comprehensive review of the traditional uses, phytochemistry, pharmacology, quality control and clinical applications. J. Ethnopharmacol. 2025 351 0 119561 10.1016/j.jep.2025.119561 40188895
    [Google Scholar]
  26. Zhang P. Zhang D. Zhou W. Wang L. Wang B. Zhang T. Li S. Network pharmacology: Towards the artificial intelligence-based precision traditional Chinese medicine. Brief. Bioinform. 2023 25 1 bbad518 10.1093/bib/bbad518 38197310
    [Google Scholar]
  27. Shang L. Wang Y. Li J. Zhou F. Xiao K. Liu Y. Zhang M. Wang S. Yang S. Mechanism of sijunzi decoction in the treatment of colorectal cancer based on network pharmacology and experimental validation J. Ethnopharmacol 2023 302 Pt A 115876 10.1016/j.jep.2022.115876 36343798
    [Google Scholar]
  28. Jiashuo W.U. Fangqing Z. Zhuangzhuang L.I. Weiyi J. Yue S. Integration strategy of network pharmacology in Traditional Chinese Medicine: A narrative review. J. Tradit. Chin. Med. 2022 42 3 479 486 35610020
    [Google Scholar]
  29. Li X. Liu Z. Liao J. Chen Q. Lu X. Fan X. Network pharmacology approaches for research of Traditional Chinese Medicines. Chin. J. Nat. Med. 2023 21 5 323 332 10.1016/S1875‑5364(23)60429‑7 37245871
    [Google Scholar]
  30. Liu T. Wang J. Tong Y. Wu L. Xie Y. He P. Lin S. Hu X. Integrating network pharmacology and animal experimental validation to investigate the action mechanism of oleanolic acid in obesity. J. Transl. Med. 2024 22 1 86 10.1186/s12967‑023‑04840‑x 38246999
    [Google Scholar]
  31. Luo W. Deng J. He J. Yin L. You R. Zhang L. Shen J. Han Z. Xie F. He J. Guan Y. Integration of molecular docking, molecular dynamics and network pharmacology to explore the multi-target pharmacology of fenugreek against diabetes. J. Cell. Mol. Med. 2023 27 14 1959 1974 10.1111/jcmm.17787 37257051
    [Google Scholar]
  32. Nogales C. Mamdouh Z.M. List M. Kiel C. Casas A.I. Schmidt H.H.H.W. Network pharmacology: Curing causal mechanisms instead of treating symptoms. Trends Pharmacol. Sci. 2022 43 2 136 150 10.1016/j.tips.2021.11.004 34895945
    [Google Scholar]
  33. Vidal-Limon A. Aguilar-Toalá J.E. Liceaga A.M. Integration of molecular docking analysis and molecular dynamics simulations for studying food proteins and bioactive peptides. J. Agric. Food Chem. 2022 70 4 934 943 10.1021/acs.jafc.1c06110 34990125
    [Google Scholar]
  34. Pinzi L. Rastelli G. Molecular Docking: Shifting Paradigms in Drug Discovery. Int. J. Mol. Sci. 2019 20 18 4331 10.3390/ijms20184331 31487867
    [Google Scholar]
  35. Hager G. Synthesis, cytotoxic screening and molecular docking, DFT calculation of novel furan-heterocyclic derivatives as insecticidal agents. Sci. Rep. 2025 15 20324 10.1038/s41598‑025‑06248‑7
    [Google Scholar]
  36. Li T. Guo R. Zong Q. Ling G. Application of molecular docking in elaborating molecular mechanisms and interactions of supramolecular cyclodextrin. Carbohydr. Polym. 2022 276 118644 10.1016/j.carbpol.2021.118644 34823758
    [Google Scholar]
  37. Wang J. Bai Y. Guan X. Lao Y. Dong Z. Network pharmacology and molecular docking study on the mechanism of chronic prostatitis treatment using Xiaochaihutang. Asian J. Surg. 2023 46 11 4798 4800 10.1016/j.asjsur.2023.05.105 37302888
    [Google Scholar]
  38. Crampon K. Giorkallos A. Deldossi M. Baud S. Steffenel L.A. Machine-learning methods for ligand–protein molecular docking. Drug Discov. Today 2022 27 1 151 164 10.1016/j.drudis.2021.09.007 34560276
    [Google Scholar]
  39. Wu Y. Zhang F. Yang K. Fang S. Bu D. Li H. Sun L. Hu H. Gao K. Wang W. Zhou X. Zhao Y. Chen J. SymMap: An integrative database of traditional Chinese medicine enhanced by symptom mapping. Nucleic Acids Res. 2019 47 D1 D1110 D1117 10.1093/nar/gky1021 30380087
    [Google Scholar]
  40. Sunghwan K. Jie C. Tiejun C. Asta G. Jia H. Siqian H. Qingliang L. Benjamin A.S. Paul A. T.; Bo, Y.; Leonid, Z.; Jian, Z.; Evan E, B. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res. 2020 49 D1388 D1395
    [Google Scholar]
  41. Cruz-Salomón K.C. Cruz-Rodríguez R.I. Espinosa-Juárez J.V. Cruz-Salomón A. Briones-Aranda A. Ruiz-Lau N. Ruíz-Valdiviezo V.M. In vivo and in silico study of the antinociceptive and toxicological effect of the extracts of Petiveria alliacea L. leaves. Pharmaceuticals 2022 15 8 943 10.3390/ph15080943 36015091
    [Google Scholar]
  42. Xiong G. Wu Z. Yi J. Fu L. Yang Z. Hsieh C. Yin M. Zeng X. Wu C. Lu A. Chen X. Hou T. Cao D. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res. 2021 49 W1 W5 W14 10.1093/nar/gkab255 33893803
    [Google Scholar]
  43. Daina A. Michielin O. Zoete V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019 47 W1 W357 W364 10.1093/nar/gkz382 31106366
    [Google Scholar]
  44. Luo J. Chen X. Liang P. Zhao Z. Wu T. Li Z. Wan S. Luo J. Pang J. Zhang J. Tian Y. Mechanism of anti-hyperuricemia of isobavachin based on network pharmacology and molecular docking. Comput. Biol. Med. 2023 155 106637 10.1016/j.compbiomed.2023.106637 36791549
    [Google Scholar]
  45. Gallo K. Goede A. Preissner R. Gohlke B.O. SuperPred 3.0: Drug classification and target prediction—a machine learning approach. Nucleic Acids Res. 2022 50 W1 W726 W731 10.1093/nar/gkac297 35524552
    [Google Scholar]
  46. Ye L. Liang R. Liu X. Li J. Yue J. Zhang X. Frailty and sarcopenia: A bibliometric analysis of their association and potential targets for intervention. Ageing Res. Rev. 2023 92 102111 10.1016/j.arr.2023.102111 38031836
    [Google Scholar]
  47. Piñero J. Saüch J. Sanz F. Furlong L.I. The DisGeNET cytoscape app: Exploring and visualizing disease genomics data. Comput. Struct. Biotechnol. J. 2021 19 2960 2967 10.1016/j.csbj.2021.05.015 34136095
    [Google Scholar]
  48. Tang Z. Li C. Kang B. Gao G. Li C. Zhang Z. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017 45 W1 W98 W102 10.1093/nar/gkx247 28407145
    [Google Scholar]
  49. Damian S. Rebecca K. Mikaela K. Katerina N. Farrokh M. Radja H. Annika L.G. Tao F. Nadezhda T. D.; Sampo, P.; Peer, B.; Lars J, J.; Christian, v.M. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2022 51 D1 D638 D646
    [Google Scholar]
  50. Dennis G. Sherman B.T. Hosack D.A. Yang J. Gao W. Lane H.C. Lempicki R.A. DAVID: Database for annotation, visualization, and integrated discovery. Genome Biol. 2003 4 5 3 10.1186/gb‑2003‑4‑5‑p3
    [Google Scholar]
  51. David A.P. Loftus P.A. Russell M.S. Goldberg A.N. El-Sayed I.H. Jan T.A. Roland L.T. RNA sequencing and gene ontology analysis in acute invasive fungal sinusitis. Am. J. Rhinol. Allergy 2023 37 1 78 82 10.1177/19458924221134732 36285477
    [Google Scholar]
  52. Shen X.J. Wang H.B. Ma X.Q. Chen J.H. β,β-Dimethylacrylshikonin induces mitochondria dependent apoptosis through ERK pathway in human gastric cancer SGC-7901 cells. PLoS One 2012 7 7 41773 10.1371/journal.pone.0041773 22848597
    [Google Scholar]
  53. Wang H. Zhang G. Endoplasmic reticulum stress‐mediated autophagy protects against β,β‐dimethylacrylshikonin-induced apoptosis in lung adenocarcinoma cells. Cancer Sci. 2018 109 6 1889 1901 10.1111/cas.13616 29676829
    [Google Scholar]
  54. Stallinger A. Kretschmer N. Kleinegger F. Brvar L. Liegl-Atzwanger B. Prokesch A. Durchschein C. Bauer R. Deutsch A. Rinner B. β,β-Dimethylacrylshikonin Induces Apoptosis in Melanoma Cell Lines by NOXA Upregulation. J. Nat. Prod. 2020 83 2 305 315 10.1021/acs.jnatprod.9b00719 31961147
    [Google Scholar]
  55. Wu Z. Wu H. Wang Z. Li H. Gu H. Xia E. Yan C. Dai Y. Liu C. Wang X. Lv L. Bao J. Wang O. Dai X. β, β-Dimethylacrylshikonin potentiates paclitaxel activity, suppresses immune evasion and triple negative breast cancer progression via STAT3Y705 phosphorylation inhibition based on network pharmacology and transcriptomics analysis. Phytomedicine 2023 114 154769 10.1016/j.phymed.2023.154769 36940580
    [Google Scholar]
  56. Fang L. Du W.W. Awan F.M. Dong J. Yang B.B. The circular RNA circ-Ccnb1 dissociates Ccnb1/Cdk1 complex suppressing cell invasion and tumorigenesis. Cancer Lett. 2019 459 216 226 10.1016/j.canlet.2019.05.036 31199987
    [Google Scholar]
  57. Yang X. Zhou S. Yang C. Cao C. He M. Zi S. CCNB1, negatively regulated by miR-559, promotes the proliferation, migration, and invasion of ovarian carcinoma cells. Mol. Biotechnol. 2022 64 9 958 969 10.1007/s12033‑022‑00463‑7 35262876
    [Google Scholar]
  58. Parmar K. Kochupurakkal B.S. Lazaro J.B. Wang Z.C. Palakurthi S. Kirschmeier P.T. Yang C. Sambel L.A. Färkkilä A. Reznichenko E. Reavis H.D. Dunn C.E. Zou L. Do K.T. Konstantinopoulos P.A. Matulonis U.A. Liu J.F. D’Andrea A.D. Shapiro G.I. The CHK1 inhibitor prexasertib exhibits monotherapy activity in high-grade serous ovarian cancer models and sensitizes to PARP inhibition. Clin. Cancer Res. 2019 25 20 6127 6140 10.1158/1078‑0432.CCR‑19‑0448 31409614
    [Google Scholar]
  59. Wen Y. Hou Y. Yi X. Sun S. Guo J. He X. Li T. Cai J. Wang Z. EZH2 activates CHK1 signaling to promote ovarian cancer chemoresistance by maintaining the properties of cancer stem cells. Theranostics 2021 11 4 1795 1813 10.7150/thno.48101 33408782
    [Google Scholar]
  60. Connell C.M. Shibata A. Tookman L.A. Archibald K.M. Flak M.B. Pirlo K.J. Lockley M. Wheatley S.P. McNeish I.A. Genomic DNA damage and ATR-Chk1 signaling determine oncolytic adenoviral efficacy in human ovarian cancer cells. J. Clin. Invest. 2011 121 4 1283 1297 10.1172/JCI43976 21383502
    [Google Scholar]
  61. Raspaglio G. Buttarelli M. Cappoli N. Ciucci A. Fagotti A. Scambia G. Gallo D. Exploring the control of PARP1 Levels in high-grade serous ovarian cancer. Cancers 2023 15 8 2361 10.3390/cancers15082361 37190289
    [Google Scholar]
  62. M, C.; F, G.; F, B.; I, C.; G, D. Overcoming PARPi resistance: Preclinical and clinical evidence in ovarian cancer. Drug Resist. Updat. 2021 55 00744
    [Google Scholar]
  63. Paul T.K. Ronny D. Pathogenesis and heterogeneity of ovarian cancer. Curr. Opin. Obstet. Gynecol. 2016 29 1 26 34
    [Google Scholar]
  64. Smith P. Bradley T. Gavarró L.M. Goranova T. Ennis D.P. Mirza H.B. De Silva D. Piskorz A.M. Sauer C.M. Al-Khalidi S. Funingana I.G. Reinius M.A.V. Giannone G. Lewsley L.A. Stobo J. McQueen J. Bryson G. Eldridge M. Glasspool R.M. Gourley C. Kennedy R. Hall G. Edmondson R. Clamp A. Sundar S. Walter A. Hall M. Gabra H. Fotopoulou C. Brockbank E. Montes A. Lockley M. Macintyre G. Markowetz F. Brenton J.D. McNeish I.A. The copy number and mutational landscape of recurrent ovarian high-grade serous carcinoma. Nat. Commun. 2023 14 1 4387 10.1038/s41467‑023‑39867‑7 37474499
    [Google Scholar]
  65. David G. Jordan T.F.Y. Jimmy F. Giovanni M. Alejandro Á.Q. Cynthia B. Nicole M. D.; Robert, P.; Anne, R.; Rino, S.; Janek, S.; Artur, V.; Hunain, A.; Prasamit S, B.; Alexanne Bonneau, F.; Julian, B.; Natasha, C.; Jessica, D.; Evelyne, D.; Sara, F.; Chloe, F.-D.; Theo, G.d.R.; Marie-Eve, L.; Bingcan, L.; Vivek, B.; Yael, M.; Henrique, M.; Olivier, N.; Akul, S.; Rachel K, S.; Ján, T.; Shou Yun, Y.; Stephen J, M.; Michael, Z.; C Gary, M.; Daniel, D. CCNE1 amplification is synthetic lethal with PKMYT1 kinase inhibition. Nature 2022 604 7907 749 456
    [Google Scholar]
  66. Zheng Z. Li Y. Jia S. Zhu M. Cao L. Tao M. Jiang J. Zhan S. Chen Y. Gao P.J. Hu W. Wang Y. Shao C. Shi Y. Lung mesenchymal stromal cells influenced by Th2 cytokines mobilize neutrophils and facilitate metastasis by producing complement C3. Nat. Commun. 2021 12 1 6202 10.1038/s41467‑021‑26460‑z 34707103
    [Google Scholar]
  67. Spinner C.A. Lamsoul I. Métais A. Febrissy C. Moog-Lutz C. Lutz P.G. The E3 ubiquitin ligase asb2α in T helper 2 cells negatively regulates antitumor immunity in colorectal cancer. Cancer Immunol. Res. 2019 7 8 1332 1344 10.1158/2326‑6066.CIR‑18‑0562 31175139
    [Google Scholar]
  68. Mohamed A.G. Kusma P. Salome V. I.; Amir A, A.-K.; Jeffrey, W.; Paulo, R.; Hamada F, R.; Ali H, E.-B.; Matthew R, L.; Moselhy S, M.; Kamel, A.-G.; Alistair, R.; Augusto, O.; Amarjit S, N.; A Hamid, B. PARP inhibition by olaparib or gene knockout blocks asthma-like manifestation in mice by modulating CD4(+) T cell function. J. Transl. Med. 2015 13 225
    [Google Scholar]
  69. Yan Y. Zheng L. Du Q. Cui X. Dong K. Guo Y. Geller D.A. Interferon regulatory factor 1 (IRF-1) downregulates Checkpoint kinase 1 (CHK1) through miR-195 to upregulate apoptosis and PD-L1 expression in Hepatocellular carcinoma (HCC) cells. Br. J. Cancer 2021 125 1 101 111 10.1038/s41416‑021‑01337‑6 33772151
    [Google Scholar]
  70. Roman M.C. Gareth M. Dragomir B. K.; Julien, A.; Daphné, M.; Marlène, G.; Andrew, L.; Clémence, H.; Nicolas, D.; Mathieu, R.; Rebecca, M.; Ilirjana, B.; Marta Llorca, C.; Asha, K.; Benjamin, B.; Alan, A.; Stephen J, P.; Syed, H.; Aurélien, M.; Andrew Nj, T.; Jean-Charles, S.; Christopher J, L.; Sophie, P.-V. PARP inhibition enhances tumor cell-intrinsic immunity in ERCC1-deficient non-small cell lung cancer. J. Clin. Invest. 2018 129 3 1211 1228
    [Google Scholar]
  71. Meng J. Peng J. Feng J. Maurer J. Li X. Li Y. Yao S. Chu R. Pan X. Li J. Zhang T. Liu L. Zhang Q. Yuan Z. Bu H. Song K. Kong B. Niraparib exhibits a synergistic anti-tumor effect with PD-L1 blockade by inducing an immune response in ovarian cancer. J. Transl. Med. 2021 19 1 415 10.1186/s12967‑021‑03073‑0 34620163
    [Google Scholar]
  72. Qin G. Wang X. Ye S. Li Y. Chen M. Wang S. Qin T. Zhang C. Li Y. Long Q. Hu H. Shi D. Li J. Zhang K. Zhai Q. Tang Y. Kang T. Lan P. Xie F. Lu J. Deng W. NPM1 upregulates the transcription of PD-L1 and suppresses T cell activity in triple-negative breast cancer. Nat. Commun. 2020 11 1 1669 10.1038/s41467‑020‑15364‑z 32245950
    [Google Scholar]
  73. Monk B.J. Colombo N. Oza A.M. Fujiwara K. Birrer M.J. Randall L. Poddubskaya E.V. Scambia G. Shparyk Y.V. Lim M.C. Bhoola S.M. Sohn J. Yonemori K. Stewart R.A. Zhang X. Perkins Smith J. Linn C. Ledermann J.A. Chemotherapy with or without avelumab followed by avelumab maintenance] versus chemotherapy alone in patients with previously untreated epithelial ovarian cancer (JAVELIN Ovarian 100): An open-label, randomised, phase 3 trial. Lancet Oncol. 2021 22 9 1275 1289 10.1016/S1470‑2045(21)00342‑9 34363762
    [Google Scholar]
  74. Gatalica Z. Snyder C. Maney T. Ghazalpour A. Holterman D.A. Xiao N. Overberg P. Rose I. Basu G.D. Vranic S. Lynch H.T. Von Hoff D.D. Hamid O. Programmed cell death 1 (PD-1) and its ligand (PD-L1) in common cancers and their correlation with molecular cancer type. Cancer Epidemiol. Biomarkers Prev. 2014 23 12 2965 2970 10.1158/1055‑9965.EPI‑14‑0654 25392179
    [Google Scholar]
  75. Webb J.R. Milne K. Kroeger D.R. Nelson B.H. PD-L1 expression is associated with tumor-infiltrating T cells and favorable prognosis in high-grade serous ovarian cancer. Gynecol. Oncol. 2016 141 2 293 302 10.1016/j.ygyno.2016.03.008 26972336
    [Google Scholar]
  76. Dumitru A. Dobrica E.C. Croitoru A. Cretoiu S.M. Gaspar B.S. Focus on PD-1/PD-L1 as a therapeutic target in ovarian cancer. Int. J. Mol. Sci. 2022 23 20 12067 10.3390/ijms232012067 36292922
    [Google Scholar]
  77. Yang Y. Xia L. Wu Y. Zhou H. Chen X. Li H. Xu M. Qi Z. Wang Z. Sun H. Cheng X. Programmed death ligand-1 regulates angiogenesis and metastasis by participating in the c-JUN/VEGFR2 signaling axis in ovarian cancer. Cancer Commun. 2021 41 6 511 527 10.1002/cac2.12157 33939321
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073394765250828100829
Loading
/content/journals/cchts/10.2174/0113862073394765250828100829
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test