Skip to content
2000
image of Polyphenols: Distribution, Extraction, Bioactivity, Biotransformation, and Application

Abstract

Introduction

Polyphenols are important metabolites with polyphenolic structures, which are important bioactive substances distributed in the fruits, roots, bark, leaves, and other tissues and organs of plants. Polyphenols are widely available and have potential research values.

Methods

The 157 related references of polyphenols were collected in this review, which were from scientific databases, including PubMed, Web of Science, Elsevier, Willy, SpringerLink, SciFinder, Scopus, ACS publications, Google Scholar, Baidu Scholar, and CNKI.

Results

Polyphenols were extracted by different extraction methods, and they exhibited anti-oxidant, anti-bacterial, anti-cancer, anti-inflammatory, hypoglycemic, and anti-obesity activities. Moreover, polyphenols were widely applied in industry, food, and medicine fields. The biotransformations of anthocyanidins, flavonols, flavanols, flavanones, phenolic acids, tannins, and stilbenes from polyphenols were reviewed in this paper.

Conclusion

The distribution, extraction, bioactivity, biotransformation, and application of polyphenols were comprehensively summarized and analyzed in this review. It will promote the efficient utilization of polyphenols and provide new ideas for future research.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073392373251114064238
2026-01-09
2026-01-29
Loading full text...

Full text loading...

References

  1. El-Saadony M.T. Yang T. Saad A.M. Alkafaas S.S. Elkafas S.S. Eldeeb G.S. Mohammed D.M. Salem H.M. Korma S.A. Loutfy S.A. Alshahran M.Y. Ahmed A.E. Mosa W.F.A. Abd El-Mageed T.A. Ahmed A.F. Fahmy M.A. El-Tarabily M.K. Mahmoud R.M. AbuQamar S.F. El-Tarabily K.A. Lorenzo J.M. Polyphenols: Chemistry, bioavailability, bioactivity, nutritional aspects and human health benefits: A review. Int. J. Biol. Macromol. 2024 277 Pt 3 134223 10.1016/j.ijbiomac.2024.134223 39084416
    [Google Scholar]
  2. Palos-Hernández A. González-Paramás A.M. Santos-Buelga C. Latest advances in green extraction of polyphenols from plants, foods and food by-products. Molecules 2024 30 1 55 10.3390/molecules30010055 39795112
    [Google Scholar]
  3. Trzepizur W. Bironneau V. Recoquillon S. Priou P. Meslier N. Hamel J.F. Henni S. Darsonval A. Messaoudi K. Martínez M.C. Andriantsitohaina R. Gagnadoux F. Polyphenols have no impact on endothelial function in patients with obstructive sleep apnea: A randomized controlled trial. J. Nutr. 2018 148 4 581 586 10.1093/jn/nxy005 29659956
    [Google Scholar]
  4. Iqbal I. Wilairatana P. Saqib F. Nasir B. Wahid M. Latif M.F. Iqbal A. Naz R. Mubarak M.S. Plant polyphenols and their potential benefits on cardiovascular health: A review. Molecules 2023 28 17 6403 10.3390/molecules28176403 37687232
    [Google Scholar]
  5. Koch W. Dietary polyphenols-important non-nutrients in the prevention of chronic noncommunicable diseases: A systematic review. Nutrients 2019 11 5 1039 10.3390/nu11051039 31075905
    [Google Scholar]
  6. Hao W. Gan H. Wang L. Huang J. Chen J. Polyphenols in edible herbal medicine: Targeting gut-brain interactions in depression-associated neuroinflammation. Crit. Rev. Food Sci. Nutr. 2023 63 33 12207 12223 10.1080/10408398.2022.2099808 35838146
    [Google Scholar]
  7. Calabriso N. Massaro M. Scoditti E. Carluccio M.A. Dietary polyphenols and their role in gut health. Nutrients 2023 15 12 2650 10.3390/nu15122650 37375554
    [Google Scholar]
  8. Wang S. Du Q. Meng X. Zhang Y. Natural polyphenols: A potential prevention and treatment strategy for metabolic syndrome. Food Funct. 2022 13 19 9734 9753 10.1039/D2FO01552H 36134531
    [Google Scholar]
  9. Vivarelli S. Costa C. Teodoro M. Giambò F. Tsatsakis A.M. Fenga C. Polyphenols: a route from bioavailability to bioactivity addressing potential health benefits to tackle human chronic diseases. Arch. Toxicol. 2023 97 1 3 38 10.1007/s00204‑022‑03391‑2 36260104
    [Google Scholar]
  10. Di Lorenzo C. Colombo F. Biella S. Stockley C. Restani P. Polyphenols and human health: the role of bioavailability. Nutrients 2021 13 1 273 10.3390/nu13010273 33477894
    [Google Scholar]
  11. Fraga C.G. Croft K.D. Kennedy D.O. Tomás-Barberán F.A. The effects of polyphenols and other bioactives on human health. Food Funct. 2019 10 2 514 528 10.1039/C8FO01997E 30746536
    [Google Scholar]
  12. Qi Q. Chu M. Yu X. Xie Y. Li Y. Du Y. Liu X. Zhang Z. Shi J. Yan N. Anthocyanins and proanthocyanidins: chemical structures, food sources, bioactivities, and product development. Food Rev. Int. 2023 39 7 4581 4609 10.1080/87559129.2022.2029479
    [Google Scholar]
  13. Hernández-Herrero J.A. Frutos M.J. Degradation kinetics of pigment, colour and stability of the antioxidant capacity in juice model systems from six anthocyanin sources. Int. J. Food Sci. Technol. 2011 46 12 2550 2557 10.1111/j.1365‑2621.2011.02780.x
    [Google Scholar]
  14. Łysiak G. Ornamental flowers grown in human surroundings as a source of anthocyanins with high anti-inflammatory properties. Foods 2022 11 7 948 10.3390/foods11070948 35407035
    [Google Scholar]
  15. Jiang X. Shi Y. Fu Z. Li W.W. Lai S. Wu Y. Wang Y. Liu Y. Gao L. Xia T. Functional characterization of three flavonol synthase genes from Camellia sinensis: Roles in flavonol accumulation. Plant Sci. 2020 300 110632 10.1016/j.plantsci.2020.110632 33180711
    [Google Scholar]
  16. Martin M.Á. Ramos S. Impact of cocoa flavanols on human health. Food Chem. Toxicol. 2021 151 112121 10.1016/j.fct.2021.112121 33722594
    [Google Scholar]
  17. Al-Nakkash L. Kubinski A. Soy isoflavones and gastrointestinal health. Curr. Nutr. Rep. 2020 9 3 193 201 10.1007/s13668‑020‑00314‑4 32418173
    [Google Scholar]
  18. Malacarne M. Antoniolli G. Bertoldi D. Nardin T. Larcher R. Botanical origin characterisation of tannins using infrared spectroscopy. Food Chem. 2018 267 204 209 10.1016/j.foodchem.2017.06.131 29934158
    [Google Scholar]
  19. Tessmer M.A. Kluge R.A. Appezzato-da-Glória B. The accumulation of tannins during the development of ‘Giombo’ and ‘Fuyu’ persimmon fruits. Sci. Hortic. (Amsterdam) 2014 172 292 299 10.1016/j.scienta.2014.04.023
    [Google Scholar]
  20. Casagrande J.G. Rogero M.M. de Oliveira D.C. Quintanilha B.J. Capetini V.C. Makiyama E.N. Neves B.R.O. da Silva Gonçalves C.E. de Freitas S. Hassimotto N.M.A. Fock R.A. Effects of grape juice intake on the cell migration properties in overweight women: Modulation mechanisms of cell migration in vitro by delphinidin-3-O-glucoside. Food Res. Int. 2024 178 113873 10.1016/j.foodres.2023.113873 38309895
    [Google Scholar]
  21. Cheng Y. Nie J. Liu H. Kuang L. Xu G. Synthesis and characterization of magnetic molecularly imprinted polymers for effective extraction and determination of kaempferol from apple samples. J. Chromatogr. A 2020 1630 461531 10.1016/j.chroma.2020.461531 32950815
    [Google Scholar]
  22. Zhang G. Bi X. Wang R. Yin Z. Zheng Y. Peng X. Jia N. Liu D. Effects of catechin on the stability of myofibrillar protein-soybean oil emulsion and the adsorbed properties of myosin at the oil–water interface. Food Chem. 2024 442 138478 10.1016/j.foodchem.2024.138478 38278102
    [Google Scholar]
  23. Csuti A. Sik B. Ajtony Z. Measurement of naringin from citrus fruits by high-performance liquid chromatography - a review. Crit. Rev. Anal. Chem. 2024 54 3 473 486 10.1080/10408347.2022.2082241 35658668
    [Google Scholar]
  24. Hang N.T. Thi Tu Uyen T. Van Phuong N. Green extraction of apigenin and luteolin from celery seed using deep eutectic solvent. J. Pharm. Biomed. Anal. 2022 207 114406 10.1016/j.jpba.2021.114406 34653746
    [Google Scholar]
  25. Okutani F. Hamamoto S. Aoki Y. Nakayasu M. Nihei N. Nishimura T. Yazaki K. Sugiyama A. Rhizosphere modelling reveals spatiotemporal distribution of daidzein shaping soybean rhizosphere bacterial community. Plant Cell Environ. 2020 43 4 1036 1046 10.1111/pce.13708 31875335
    [Google Scholar]
  26. Hodgson J.M. Morton L.W. Puddey I.B. Beilin L.J. Croft K.D. Gallic acid metabolites are markers of black tea intake in humans. J. Agric. Food Chem. 2000 48 6 2276 2280 10.1021/jf000089s 10888536
    [Google Scholar]
  27. Meng Y. Sui X. Pan X. Yang Y. Sui H. Xu T. Zhang H. Liu T. Liu J. Ge P. An integrated process by ultrasonic enhancement in the deep eutectic solvents system for extraction and separation of chlorogenic acid from Eucommia ulmoides leaves. Ultrason. Sonochem. 2023 99 106588 10.1016/j.ultsonch.2023.106588 37690261
    [Google Scholar]
  28. Zhang X. Li X. Zhang H. Jiang S. Sun M. He T. Zhang T. Wu W. Self-supporting noncovalent Choline Alginate/Tannic acid/Ag antibacterial films for strawberry preservation. Int. J. Biol. Macromol. 2024 265 Pt 1 130936 10.1016/j.ijbiomac.2024.130936 38493811
    [Google Scholar]
  29. Ma W. Waffo-Téguo P. Jourdes M. Li H. Teissedre P.L. First evidence of epicatechin vanillate in grape seed and red wine. Food Chem. 2018 259 304 310 10.1016/j.foodchem.2018.03.134 29680058
    [Google Scholar]
  30. Lu F. Wang J. Song M. Dai X. The Inhibitory effect of resveratrol from Reynoutria japonica on MNV-1, a human norovirus surrogate. Food Environ. Virol. 2024 16 2 241 252 10.1007/s12560‑024‑09592‑5 38570420
    [Google Scholar]
  31. Schilbert H.M. Glover B.J. Analysis of flavonol regulator evolution in the Brassicaceae reveals MYB12, MYB111 and MYB21 duplications and MYB11 and MYB24 gene loss. BMC Genomics 2022 23 1 604 10.1186/s12864‑022‑08819‑8 35986242
    [Google Scholar]
  32. Bekkai D. Oulad El Majdoub Y. Bekkai H. Cacciola F. Miceli N. Taviano M.F. Cavò E. Errabii T. Laganà Vinci R. Mondello L. L’Bachir El Kbiach M. Determination of the phenolic profile by liquid chromatography, evaluation of antioxidant activity and toxicity of moroccan Erica multiflora, Erica scoparia, and Calluna vulgaris (Ericaceae). Molecules 2022 27 13 3979 10.3390/molecules27133979 35807222
    [Google Scholar]
  33. Martău G.A. Bernadette-Emőke T. Odocheanu R. Soporan D.A. Bochiș M. Simon E. Vodnar D.C. Vaccinium species (Ericaceae): Phytochemistry and biological properties of medicinal plants. Molecules 2023 28 4 1533 10.3390/molecules28041533 36838522
    [Google Scholar]
  34. Mascoloti Spréa R. Caleja C. Pinela J. Finimundy T.C. Calhelha R.C. Kostić M. Sokovic M. Prieto M.A. Pereira E. Amaral J.S. Barros L. Comparative study on the phenolic composition and in vitro bioactivity of medicinal and aromatic plants from the Lamiaceae family. Food Res. Int. 2022 161 111875 10.1016/j.foodres.2022.111875 36192910
    [Google Scholar]
  35. Wang L. Jiang G. Jing N. Liu X. Li Q. Liang W. Liu Z. Bilberry anthocyanin extracts enhance anti-PD-L1 efficiency by modulating gut microbiota. Food Funct. 2020 11 4 3180 3190 10.1039/D0FO00255K 32211663
    [Google Scholar]
  36. Sharma H. Yang H. Sharma N. An S.S.A. Neuroprotection by Anethum graveolens (Dill) seeds and its phytocompounds in SH-SY5Y neuroblastoma cell lines and acellular assays. Int. J. Mol. Sci. 2024 25 13 7104 10.3390/ijms25137104 39000210
    [Google Scholar]
  37. Balakrishnan R. Vijayraja D. Jo S.H. Ganesan P. Su-Kim I. Choi D.K. Medicinal profile, phytochemistry, and pharmacological activities of Murraya koenigii and its primary bioactive compounds. Antioxidants 2020 9 2 101 10.3390/antiox9020101 31991665
    [Google Scholar]
  38. Akpanika G.A. Winters A. Wilson T. Ayoola G.A. Adepoju-Bello A.A. Hauck B. Polyphenols from Allanblackia floribunda seeds: Identification, quantification and antioxidant activity. Food Chem. 2017 222 35 42 10.1016/j.foodchem.2016.12.002 28041556
    [Google Scholar]
  39. Heng M.Y. Katayama S. Mitani T. Ong E.S. Nakamura S. Solventless extraction methods for immature fruits: Evaluation of their antioxidant and cytoprotective activities. Food Chem. 2017 221 1388 1393 10.1016/j.foodchem.2016.11.015 27979104
    [Google Scholar]
  40. Dashtian K. Kamalabadi M. Ghoorchian A. Ganjali M.R. Rahimi-Nasrabadi M. Integrated supercritical fluid extraction of essential oils. J. Chromatogr. A 2024 1733 465240 10.1016/j.chroma.2024.465240 39154494
    [Google Scholar]
  41. Bermudez G. Terenzi C. Medri F. Andrisano V. Montanari S. Extraction and analytical methods for the characterization of polyphenols in marine microalgae: A review. Mar. Drugs 2024 22 12 538 10.3390/md22120538 39728113
    [Google Scholar]
  42. Cohen A.K. Theotoka D. Galor A. Epipremnum aureum keratopathy: Case report and review of the literature. Eye Contact Lens 2020 46 5 e33 e39 10.1097/ICL.0000000000000675 31794541
    [Google Scholar]
  43. Yang J. Tsai P.A. Microfluidic supercritical CO2 applications: Solvent extraction, nanoparticle synthesis, and chemical reaction. Biomicrofluidics 2024 18 5 051301 10.1063/5.0215567 39345267
    [Google Scholar]
  44. Rodríguez-Meizoso I. Marin F.R. Herrero M. Señorans F.J. Reglero G. Cifuentes A. Ibáñez E. Subcritical water extraction of nutraceuticals with antioxidant activity from oregano. Chemical and functional characterization. J. Pharm. Biomed. Anal. 2006 41 5 1560 1565 10.1016/j.jpba.2006.01.018 16488570
    [Google Scholar]
  45. Teo C.C. Tan S.N. Yong J.W.H. Hew C.S. Ong E.S. Pressurized hot water extraction (PHWE). J. Chromatogr. A 2010 1217 16 2484 2494 10.1016/j.chroma.2009.12.050 20060531
    [Google Scholar]
  46. Gan J. Zhang X. Ma C. Sun L. Feng Y. He Z. Zhang H. Purification of polyphenols from Phyllanthus emblica L. pomace using macroporous resins: Antioxidant activity and potential anti‐Alzheimer’s effects. J. Food Sci. 2022 87 3 1244 1256 10.1111/1750‑3841.16028 35122250
    [Google Scholar]
  47. Gyenge L. Erdő K. Albert C. Laslo É. Salamon R.V. The effects of soaking in salted blackcurrant wine on the properties of cheese. Heliyon 2024 10 14 e34060 10.1016/j.heliyon.2024.e34060 39092240
    [Google Scholar]
  48. Mikucka W. Zielinska M. Bulkowska K. Witonska I. Subcritical water extraction of bioactive phenolic compounds from distillery stillage. J. Environ. Manage. 2022 318 115548 10.1016/j.jenvman.2022.115548 35753130
    [Google Scholar]
  49. Cui J. Duan X. Ke L. Pan X. Liu J. Song X. Ma W. Zhang W. Liu Y. Fan Y. Extraction, purification, structural character and biological properties of propolis flavonoids: A review. Fitoterapia 2022 157 105106 10.1016/j.fitote.2021.105106 34958852
    [Google Scholar]
  50. Joo Y. Seo Y.H. Lee S. Shin E. Yeon S.W. Kim S.B. Lee M.K. Antioxidant and tyrosinase-inhibitory activities and biological bioactivities of flavonoid derivatives from Quercus mongolica Pollen. Molecules 2025 30 4 794 10.3390/molecules30040794 40005106
    [Google Scholar]
  51. Li C. Li X. Bai C. Zhang Y. Wang Z. A chitinase with antifungal activity from naked oat (Avena chinensis) seeds. J. Food Biochem. 2019 43 2 e12713 10.1111/jfbc.12713 31353643
    [Google Scholar]
  52. Liu Y. Deng Y. Yang Y. Dong H. Li L. Chen G. Comparison of different drying pretreatment combined with ultrasonic-assisted enzymolysis extraction of anthocyanins from Lycium ruthenicum Murr. Ultrason. Sonochem. 2024 107 106933 10.1016/j.ultsonch.2024.106933 38865900
    [Google Scholar]
  53. Huang L.J. Yang W. Chen J. Yu P. Wang Y. Li N. Molecular identification and functional characterization of an environmental stress responsive glutaredoxin gene ROXY1 in Quercus glauca. Plant Physiol. Biochem. 2024 207 108367 10.1016/j.plaphy.2024.108367 38237422
    [Google Scholar]
  54. Bagade S.B. Patil M. Recent advances in microwave assisted extraction of bioactive compounds from complex herbal samples: a review. Crit. Rev. Anal. Chem. 2021 51 2 138 149 10.1080/10408347.2019.1686966 31729248
    [Google Scholar]
  55. Li J. Deng Z. Dong H. Tsao R. Liu X. Substrate specificity of polyphenol oxidase and its selectivity towards polyphenols: Unlocking the browning mechanism of fresh lotus root (Nelumbo nucifera Gaertn.). Food Chem. 2023 424 136392 10.1016/j.foodchem.2023.136392 37244194
    [Google Scholar]
  56. Xiping Chen J.; Zhang, Y. Rapid microwave-assisted hydrolysis for determination of ginkgo flavonol glycosides in extracts of Ginkgo biloba leaves. J. Chromatogr. Sci. 2008 46 2 117 121 10.1093/chromsci/46.2.117 18366869
    [Google Scholar]
  57. Aktaş H. Kurek M.A. Deep eutectic solvents for the extraction of polyphenols from food plants. Food Chem. 2024 444 138629 10.1016/j.foodchem.2024.138629 38341914
    [Google Scholar]
  58. Domínguez-Rodríguez G. Marina M.L. Plaza M. Strategies for the extraction and analysis of non-extractable polyphenols from plants. J. Chromatogr. A 2017 1514 1 15 10.1016/j.chroma.2017.07.066 28778531
    [Google Scholar]
  59. Yuan Y. Wang Y. Xu R. Huang M. Zeng H. Application of ionic liquids in the microwave-assisted extraction of podophyllotoxin from Chinese herbal medicine. Analyst (Lond.) 2011 136 11 2294 2305 10.1039/c0an00864h 21472161
    [Google Scholar]
  60. Grabska-Kobyłecka I. Szpakowski P. Król A. Książek-Winiarek D. Kobyłecki A. Głąbiński A. Nowak D. Polyphenols and their impact on the prevention of neurodegenerative diseases and development. Nutrients 2023 15 15 3454 10.3390/nu15153454 37571391
    [Google Scholar]
  61. Yang H. Li X. Tang Y. Zhang N. Chen J. Cai B. Supercritical fluid CO2 extraction and simultaneous determination of eight annonaceous acetogenins in Annona genus plant seeds by HPLC–DAD method. J. Pharm. Biomed. Anal. 2009 49 1 140 144 10.1016/j.jpba.2008.09.055 19036545
    [Google Scholar]
  62. Scarpa E.S. Antonelli A. Balercia G. Sabatelli S. Maggi F. Caprioli G. Giacchetti G. Micucci M. Antioxidant, anti-inflammatory, anti-Diabetic, and pro-osteogenic activities of polyphenols for the treatment of two different chronic diseases: Type 2 diabetes mellitus and osteoporosis. Biomolecules 2024 14 7 836 10.3390/biom14070836 39062550
    [Google Scholar]
  63. Sies H. Oxidative stress: A concept in redox biology and medicine. Redox Biol. 2015 4 180 183 10.1016/j.redox.2015.01.002 25588755
    [Google Scholar]
  64. Umeno A. Biju V. Yoshida Y. In vivo ROS production and use of oxidative stress-derived biomarkers to detect the onset of diseases such as Alzheimer’s disease, Parkinson’s disease, and diabetes. Free Radic. Res. 2017 51 4 413 427 10.1080/10715762.2017.1315114 28372523
    [Google Scholar]
  65. O Elansary H.; Szopa, A.; Klimek-Szczykutowicz, M.; Jafernik, K.; Ekiert, H.; Mahmoud, E.A.; Abdelmoneim Barakat, A.; O El-Ansary, D. Mammillaria species-polyphenols studies and anti-cancer, anti-oxidant, and anti-bacterial activities. Molecules 2019 25 1 131 10.3390/molecules25010131 31905725
    [Google Scholar]
  66. Choi I. Cha H. Lee Y. Physicochemical and antioxidant properties of black garlic. Molecules 2014 19 10 16811 16823 10.3390/molecules191016811 25335109
    [Google Scholar]
  67. Ngoc H.N. Mair L. Nghiem D.T. Le Thien K. Gostner J.M. Stuppner H. Ganzera M. Phenolic compounds from the stems of Fissistigma polyanthoides and their anti-oxidant activities. Fitoterapia 2019 137 104252 10.1016/j.fitote.2019.104252 31271787
    [Google Scholar]
  68. Csepregi K. Neugart S. Schreiner M. Hideg É. Comparative evaluation of total anti-oxidant capacities of plant polyphenols. Molecules 2016 21 2 208 225 10.3390/molecules21020208 26867192
    [Google Scholar]
  69. Liu B.G. Xie M. Dong Y. Wu H. He D.D. Hu G.Z. Xu E.P. Antimicrobial mechanisms of traditional Chinese medicine and reversal of drug resistance: a narrative review. Eur. Rev. Med. Pharmacol. Sci. 2022 26 15 5553 5561 10.26355/eurrev_202208_29426 35993652
    [Google Scholar]
  70. Shil A. Banerjee A. Roy J. Pal M. Das D. Paul R. Maji B.K. Sikdar M. The potential antibacterial effects of tea polyphenols. Drug Metab. Pers. Ther. 2024 39 3 103 114 10.1515/dmpt‑2024‑0058 39263725
    [Google Scholar]
  71. Cardoso R.R. Neto R.O. dos Santos D’Almeida C.T. do Nascimento T.P. Pressete C.G. Azevedo L. Martino H.S.D. Cameron L.C. Ferreira M.S.L. Barros F.A.R. Kombuchas from green and black teas have different phenolic profile, which impacts their antioxidant capacities, antibacterial and antiproliferative activities. Food Res. Int. 2020 128 108782 10.1016/j.foodres.2019.108782 31955755
    [Google Scholar]
  72. Habib H.M. El-Fakharany E.M. El-Gendi H. El-Ziney M.G. El-Yazbi A.F. Ibrahim W.H. Palm fruit (Phoenix dactylifera L.) pollen extract inhibits cancer cell and enzyme activities and DNA and protein damage. Nutrients 2023 15 11 2614 10.3390/nu15112614 37299576
    [Google Scholar]
  73. Makwana S. Choudhary R. Haddock J. Kohli P. In-vitro antibacterial activity of plant based phenolic compounds for food safety and preservation. Lebensm. Wiss. Technol. 2015 62 2 935 939 10.1016/j.lwt.2015.02.013
    [Google Scholar]
  74. Deng H. Zhu J. Tong Y. Kong Y. Tan C. Wang M. Wan M. Meng X. Antibacterial characteristics and mechanisms of action of Aronia melanocarpa anthocyanins against Escherichia coli. Lebensm. Wiss. Technol. 2021 150 112018 10.1016/j.lwt.2021.112018
    [Google Scholar]
  75. Myint K.Z. Zhou Z. Shi Q. Chen J. Dong X. Xia Y. Stevia polyphenols, their antimicrobial and anti-Inflammatory properties, and inhibitory effect on digestive enzymes. Molecules 2023 28 22 7572 10.3390/molecules28227572 38005293
    [Google Scholar]
  76. Kluska M. Woźniak K. Natural polyphenols as modulators of etoposide anti-cancer activity. Int. J. Mol. Sci. 2021 22 12 6602 10.3390/ijms22126602 34202987
    [Google Scholar]
  77. Moar K. Yadav S. Pant A. Deepika; Maurya, P.K. Anti-tumor effects of polyphenols via targeting cancer driving signaling pathways: A review. Indian J. Clin. Biochem. 2024 39 4 470 488 10.1007/s12291‑024‑01222‑y 39346722
    [Google Scholar]
  78. Villota H. Moreno-Ceballos M. Santa-González G.A. Uribe D. Castañeda I.C.H. Preciado L.M. Pedroza-Díaz J. Biological impact of phenolic compounds from coffee on colorectal cancer. Pharmaceuticals 2021 14 8 761 10.3390/ph14080761 34451858
    [Google Scholar]
  79. Balupillai A. Nagarajan R.P. Ramasamy K. Govindasamy K. Muthusamy G. Caffeic acid prevents UVB radiation induced photocarcinogenesis through regulation of PTEN signaling in human dermal fibroblasts and mouse skin. Toxicol. Appl. Pharmacol. 2018 352 87 96 10.1016/j.taap.2018.05.030 29802912
    [Google Scholar]
  80. Han M. Li A. Shen T. Meng J. Lei Y. Zhang X. Liu P. Gan L. Ao L. Li H. Phenolic compounds present in fruit extracts of Malus spp. show antioxidative and pro‐apoptotic effects on human gastric cancer cell lines. J. Food Biochem. 2019 43 11 e13028 10.1111/jfbc.13028 31475373
    [Google Scholar]
  81. Gardeazabal I. Romanos-Nanclares A. Martínez-González M.Á. Sánchez-Bayona R. Vitelli-Storelli F. Gaforio J.J. Aramendía-Beitia J.M. Toledo E. Total polyphenol intake and breast cancer risk in the Seguimiento Universidad de Navarra (SUN) cohort. Br. J. Nutr. 2019 122 5 542 551 10.1017/S0007114518003811 30588893
    [Google Scholar]
  82. Hosokawa Y. Hosokawa I. Ozaki K. Matsuo T. Honokiol and magnolol inhibit CXCL10 and CXCL11 production in IL-27-stimulated human oral epithelial cells. Inflammation 2018 41 6 2110 2115 10.1007/s10753‑018‑0854‑z 30039429
    [Google Scholar]
  83. Siriwarin B. Weerapreeyakul N. Sesamol induced apoptotic effect in lung adenocarcinoma cells through both intrinsic and extrinsic pathways. Chem. Biol. Interact. 2016 254 109 116 10.1016/j.cbi.2016.06.001 27270451
    [Google Scholar]
  84. Yang Q.Q. Cheng L.Z. Zhang T. Yaron S. Jiang H.X. Sui Z.Q. Corke H. Phenolic profiles, antioxidant, and antiproliferative activities of turmeric (Curcuma longa). Ind. Crops Prod. 2020 152 112561 10.1016/j.indcrop.2020.112561
    [Google Scholar]
  85. Sanaei M. Kavoosi F. Atashpour S. Haghighat S. Effects of genistein and synergistic action in combination with tamoxifen on the HepG2 human hepatocellular carcinoma cell line. Asian Pac. J. Cancer Prev. 2017 18 9 2381 2385 10.22034/APJCP.2017.18.9.2381 28950682
    [Google Scholar]
  86. Zhang J.J. Li Y. Lin S.J. Li H.B. Green extraction of natural antioxidants from the Sterculia nobilis fruit waste and analysis of phenolic profile. Molecules 2018 23 5 1059 10.3390/molecules23051059 29724043
    [Google Scholar]
  87. Brezani V. Smejkal K. Hosek J. Tomasova V. Anti-inflammatory natural prenylated phenolic compounds - potential lead substances. Curr. Med. Chem. 2018 25 10 1094 1159 10.2174/0929867324666170810161157 28799496
    [Google Scholar]
  88. Sangiovanni E. Dell’Agli M. Special issue: Anti-inflammatory activity of plant polyphenols. Biomedicines 2020 8 3 64 10.3390/biomedicines8030064 32197429
    [Google Scholar]
  89. Kajimura Y. Taguchi A. Nagao Y. Yamamoto K. Masuda K. Shibata K. Asaoka Y. Furutani-Seiki M. Tanizawa Y. Ohta Y. E4BP4 in macrophages induces an anti-inflammatory phenotype that ameliorates the severity of colitis. Commun. Biol. 2024 7 1 527 10.1038/s42003‑024‑06099‑4 38714733
    [Google Scholar]
  90. Fumagalli M. Sangiovanni E. Vrhovsek U. Piazza S. Colombo E. Gasperotti M. Mattivi F. De Fabiani E. Dell’Agli M. Strawberry tannins inhibit IL-8 secretion in a cell model of gastric inflammation. Pharmacol. Res. 2016 111 703 712 10.1016/j.phrs.2016.07.028 27473819
    [Google Scholar]
  91. Okamoto T. Park E.J. Kawamoto E. Usuda H. Wada K. Taguchi A. Shimaoka M. Endothelial connexin-integrin crosstalk in vascular inflammation. Biochim. Biophys. Acta Mol. Basis Dis. 2021 1867 9 166168 10.1016/j.bbadis.2021.166168 33991620
    [Google Scholar]
  92. Sangiovanni E. Vrhovsek U. Rossoni G. Colombo E. Brunelli C. Brembati L. Trivulzio S. Gasperotti M. Mattivi F. Bosisio E. Dell’Agli M. Ellagitannins from Rubus berries for the control of gastric inflammation: in vitro and in vivo studies. PLoS One 2013 8 8 e71762 10.1371/journal.pone.0071762 23940786
    [Google Scholar]
  93. Jin H. Zhao Y. Yao Y. Zhao J. Luo R. Fan S. Wei Y. Ouyang S. Peng W. Zhang Y. Pi J. Huang G. Therapeutic effects of tea polyphenol-loaded nanoparticles coated with platelet membranes on LPS-induced lung injury. Biomater. Sci. 2023 11 18 6223 6235 10.1039/D3BM00802A 37529873
    [Google Scholar]
  94. Li F. Yan H. Jiang L. Zhao J. Lei X. Ming J. Cherry polyphenol extract ameliorated dextran sodium sulfate-induced ulcerative colitis in mice by suppressing Wnt/β-catenin signaling pathway. Foods 2021 11 1 49 10.3390/foods11010049 35010176
    [Google Scholar]
  95. Tang Q. Yi Y. Chen Y. Zhuang Z. Wang F. Zhang L. Wei S. Zhang Y. Wang Y. Liu L. Liu Q. Jiang C. A green and highly efficient method to deliver hydrophilic polyphenols of Salvia miltiorrhiza and Carthamus tinctorius for enhanced anti-atherosclerotic effect via metal-phenolic network. Colloids Surf. B Biointerfaces 2022 215 112511 10.1016/j.colsurfb.2022.112511 35483256
    [Google Scholar]
  96. Sabin O. Pop R.M. Bocșan I.C. Chedea V.S. Ranga F. Grozav A. Levai A.M. Buzoianu A.D. The anti-inflammatory, analgesic, and antioxidant effects of polyphenols from Brassica oleracea var. capitata extract on induced inflammation in rodents. Molecules 2024 29 15 3448 10.3390/molecules29153448 39124854
    [Google Scholar]
  97. Qin Y. Guo J. Lin Y. You Y. Huang W. Zhan J. Evaluation of hypoglycemic polyphenolic compounds in blueberry extract: functional effects and mechanisms. Antioxidants 2024 13 12 1490 10.3390/antiox13121490 39765819
    [Google Scholar]
  98. Peng J. Lu C. Luo Y. Su X. Li S. Ho C.T. Hypoglycemic effects and associated mechanisms of resveratrol and related stilbenes in diet. Food Funct. 2024 15 5 2381 2405 10.1039/D3FO04761J 38376230
    [Google Scholar]
  99. Adamczuk N. Krauze-Baranowska M. Ośko J. Grembecka M. Migas P. Comparison of antioxidant properties of fruit from some cultivated varieties and hybrids of Rubus idaeus and Rubus occidentalis. Antioxidants 2025 14 1 86 10.3390/antiox14010086 39857419
    [Google Scholar]
  100. Arshad M. Chaudhary A.R. Mumtaz M.W. Raza S.A. Ahmad M. Mukhtar H. Bashir R. Polyphenol fingerprinting and hypoglycemic attributes of optimized Cycas circinalis leaf extracts. J. Sci. Food Agric. 2021 101 4 1530 1537 10.1002/jsfa.10771 32869314
    [Google Scholar]
  101. Kang G.G. Francis N. Hill R. Waters D. Blanchard C. Santhakumar A.B. Dietary polyphenols and gene expression in molecular pathways associated with type 2 diabetes mellitus: A review. Int. J. Mol. Sci. 2019 21 1 140 10.3390/ijms21010140 31878222
    [Google Scholar]
  102. Ohishi T. Fukutomi R. Shoji Y. Goto S. Isemura M. The beneficial effects of principal polyphenols from green tea, coffee, wine, and curry on obesity. Molecules 2021 26 2 453 10.3390/molecules26020453 33467101
    [Google Scholar]
  103. He L. Su Z. Wang S. The anti-obesity effects of polyphenols: A comprehensive review of molecular mechanisms and signal pathways in regulating adipocytes. Front. Nutr. 2024 11 1393575 10.3389/fnut.2024.1393575 39539361
    [Google Scholar]
  104. Fortunato I.M. dos Santos T.W. Ferraz L.F.C. Santos J.C. Ribeiro M.L. Effect of polyphenols intake on obesity-induced maternal programming. Nutrients 2021 13 7 2390 10.3390/nu13072390 34371900
    [Google Scholar]
  105. Sawicki T. Błaszczak W. Latocha P. In vitro anticholinergic and antiglycaemic properties of frost-hardy Actinidia fruit extracts and their polyphenol profile, L-ascorbic acid content and antioxidant capacity. Food Res. Int. 2023 173 Pt 1 113324 10.1016/j.foodres.2023.113324 37803635
    [Google Scholar]
  106. Fan R. You M. Toney A.M. Kim J. Giraud D. Xian Y. Ye F. Gu L. Ramer-Tait A.E. Chung S. Red raspberry polyphenols attenuate high-fat diet-driven activation of NLRP3 inflammasome and its paracrine suppression of adipogenesis via histone modifications. Mol. Nutr. Food Res. 2020 64 15 1900995 10.1002/mnfr.201900995 31786828
    [Google Scholar]
  107. Huang J. Feng S. Liu A. Dai Z. Wang H. Reuhl K. Lu W. Yang C.S. Green tea polyphenol EGCG alleviates metabolic abnormality and fatty liver by decreasing bile acid and lipid absorption in mice. Mol. Nutr. Food Res. 2018 62 4 1700696 10.1002/mnfr.201700696 29278293
    [Google Scholar]
  108. Zhao R. Ran J. Ruan X. Du H. Li G. Zhao L. Sun J. Liang X. Apple polyphenol biotransformation using probiotics in vitro and dynamic simulated digestion by bionic rats. J. Sci. Food Agric. 2023 103 11 5490 5499 10.1002/jsfa.12625 37062937
    [Google Scholar]
  109. Luo J. Mobley R. Woodfine S. Drijfhout F. Horrocks P. Ren X.D. Li W.W. Biotransformation of artemisinin to a novel derivative via ring rearrangement by Aspergillus niger. Appl. Microbiol. Biotechnol. 2022 106 7 2433 2444 10.1007/s00253‑022‑11888‑0 35355096
    [Google Scholar]
  110. Mattioli R. Francioso A. Mosca L. Silva P. Anthocyanins: A comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases. Molecules 2020 25 17 3809 10.3390/molecules25173809 32825684
    [Google Scholar]
  111. Alappat B. Alappat J. Anthocyanin pigments: Beyond aesthetics. Molecules 2020 25 23 5500 10.3390/molecules25235500 33255297
    [Google Scholar]
  112. Ai J. Wu Q. Battino M. Bai W. Tian L. Using untargeted metabolomics to profile the changes in roselle (Hibiscus sabdariffa L.) anthocyanins during wine fermentation. Food Chem. 2021 364 130425 10.1016/j.foodchem.2021.130425 34242878
    [Google Scholar]
  113. Akdemir H. Silva A. Zha J. Zagorevski D.V. Koffas M.A.G. Production of pyranoanthocyanins using Escherichia coli co-cultures. Metab. Eng. 2019 55 290 298 10.1016/j.ymben.2019.05.008 31125607
    [Google Scholar]
  114. Morata A. Loira I. Heras J.M. Callejo M.J. Tesfaye W. González C. Suárez-Lepe J.A. Yeast influence on the formation of stable pigments in red winemaking. Food. Chem. 2016 197 Pt A 686 691 10.1016/j.foodchem.2015.11.026 26617004
    [Google Scholar]
  115. Vernhet A. Carrillo S. Rattier A. Verbaere A. Cheynier V. Nguela J.M. Fate of anthocyanins and proanthocyanidins during the alcoholic fermentation of thermovinified red musts by different Saccharomyces cerevisiae strains. J. Agric. Food Chem. 2020 68 11 3615 3625 10.1021/acs.jafc.0c00413 32067460
    [Google Scholar]
  116. Zhu Y. Sun H. He S. Lou Q. Yu M. Tang M. Tu L. Metabolism and prebiotics activity of anthocyanins from black rice (Oryza sativa L.) in vitro. PLoS One 2018 13 4 e0195754 10.1371/journal.pone.0195754 29630662
    [Google Scholar]
  117. Lin S. Zhu Q. Wen L. Yang B. Jiang G. Gao H. Chen F. Jiang Y. Production of quercetin, kaempferol and their glycosidic derivatives from the aqueous-organic extracted residue of litchi pericarp with Aspergillus awamori. Food Chem. 2014 145 220 227 10.1016/j.foodchem.2013.08.048 24128471
    [Google Scholar]
  118. Lukšič L. Bonafaccia G. Timoracka M. Vollmannova A. Trček J. Nyambe T.K. Melini V. Acquistucci R. Germ M. Kreft I. Rutin and quercetin transformation during preparation of buckwheat sourdough bread. J. Cereal Sci. 2016 69 71 76 10.1016/j.jcs.2016.02.011
    [Google Scholar]
  119. Zhou H. Wu J. Gong Y. Zhou Z. Wang J. Isoquercetin alleviates sleep deprivation dependent hippocampal neurons damage by suppressing NLRP3-induced pyroptosis. Immunopharmacol. Immunotoxicol. 2022 44 5 766 772 10.1080/08923973.2022.2082976 35620829
    [Google Scholar]
  120. Ryan C.M. Khoo W. Ye L. Lambert J.D. O’Keefe S.F. Neilson A.P. Neilson A.P. Loss of native flavanols during fermentation and roasting does not necessarily reduce digestive enzyme-inhibiting bioactivities of cocoa. J. Agric. Food Chem. 2016 64 18 3616 3625 10.1021/acs.jafc.6b01725 27094258
    [Google Scholar]
  121. Cho K.M. Hong S.Y. Math R.K. Lee J.H. Kambiranda D.M. Kim J.M. Islam S.M.A. Yun M.G. Cho J.J. Lim W.J. Yun H.D. Biotransformation of phenolics (isoflavones, flavanols and phenolic acids) during the fermentation of cheonggukjang by Bacillus pumilus HY1. Food Chem. 2009 114 2 413 419 10.1016/j.foodchem.2008.09.056
    [Google Scholar]
  122. Zhou Y. Wang R. Zhang Y. Yang Y. Sun X. Zhang Q. Yang N. Biotransformation of phenolics and metabolites and the change in antioxidant activity in kiwifruit induced by Lactobacillus plantarum fermentation. J. Sci. Food Agric. 2020 100 8 3283 3290 10.1002/jsfa.10272 31960435
    [Google Scholar]
  123. Wang C. Li P. Zhang B. Yu X. Li X. Han G. Ren Y. Zhang J. Combining transcriptomics and polyphenol profiling to provide insights into phenolics transformation of the fermented Chinese jujube. Foods 2022 11 17 2546 10.3390/foods11172546 36076732
    [Google Scholar]
  124. María Landete J. Hernández T. Robredo S. Dueñas M. de las Rivas B. Estrella I. Muñoz R. Effect of soaking and fermentation on content of phenolic compounds of soybean (Glycine max cv. Merit) and mung beans (Vigna radiata [L] Wilczek). Int. J. Food Sci. Nutr. 2015 66 2 203 209 10.3109/09637486.2014.986068 25582183
    [Google Scholar]
  125. Huang B. Guo J. Yi B. Yu X. Sun L. Chen W. Heterologous production of secondary metabolites as pharmaceuticals in Saccharomyces cerevisiae. Biotechnol. Lett. 2008 30 7 1121 1137 10.1007/s10529‑008‑9663‑z 18512022
    [Google Scholar]
  126. Lee Y.S. Huh J.Y. Nam S.H. Moon S.K. Lee S.B. Enzymatic bioconversion of citrus hesperidin by Aspergillus sojae naringinase: Enhanced solubility of hesperetin-7-O-glucoside with in vitro inhibition of human intestinal maltase, HMG-CoA reductase, and growth of Helicobacter pylori. Food Chem. 2012 135 4 2253 2259 10.1016/j.foodchem.2012.07.007 22980799
    [Google Scholar]
  127. Liu R. Tao Y. Xu T. Wu T. Yu Q. Pan S. Xu X. Antioxidant activity increased due to dynamic changes of flavonoids in orange peel during Aspergillus niger fermentation. Int. J. Food Sci. Technol. 2023 58 6 3329 3336 10.1111/ijfs.16239
    [Google Scholar]
  128. Rashmi H.B. Negi P.S. Phenolic acids from vegetables: A review on processing stability and health benefits. Food Res. Int. 2020 136 109298 10.1016/j.foodres.2020.109298 32846511
    [Google Scholar]
  129. Lima T.C. Ferreira A.R. Silva D.F. Lima E.O. de Sousa D.P. Antifungal activity of cinnamic acid and benzoic acid esters against Candida albicans strains. Nat. Prod. Res. 2018 32 5 572 575 10.1080/14786419.2017.1317776 28423912
    [Google Scholar]
  130. Lee H. Lee S. Kyung S. Ryu J. Kang S. Park M. Lee C. Metabolite profiling and anti-aging activity of rice koji fermented with Aspergillus oryzae and Aspergillus cristatus: A comparative study. Metabolites 2021 11 8 524 10.3390/metabo11080524 34436465
    [Google Scholar]
  131. Kumar S. Basu A. Anu-Appaiah K.A. Gnanesh Kumar B.S. Mutturi S. Identification and characterization of novel transglycosylating α‐glucosidase from Aspergillus neoniger. J. Appl. Microbiol. 2020 129 6 1644 1656 10.1111/jam.14757 32592263
    [Google Scholar]
  132. Alberto M.R. Gómez-Cordovés C. Manca de Nadra M.C. Metabolism of gallic acid and catechin by Lactobacillus hilgardii from wine. J. Agric. Food Chem. 2004 52 21 6465 6469 10.1021/jf049239f 15479008
    [Google Scholar]
  133. Ricci A. Cirlini M. Calani L. Bernini V. Neviani E. Del Rio D. Galaverna G. Lazzi C. In vitro metabolism of elderberry juice polyphenols by lactic acid bacteria. Food Chem. 2019 276 692 699 10.1016/j.foodchem.2018.10.046 30409649
    [Google Scholar]
  134. Devi A. Archana K.M. Bhavya P.K. Anu-Appaiah K.A. Non‐anthocyanin polyphenolic transformation by native yeast and bacteria co‐inoculation strategy during vinification. J. Sci. Food Agric. 2018 98 3 1162 1170 10.1002/jsfa.8567 28734048
    [Google Scholar]
  135. Li P. Chen J. Guo C. Li W. Gao Z. Lactobacillus co-fermentation of Cerasus humilis juice alters chemical properties, enhances antioxidant activity, and improves gut microbiota. Food Funct. 2023 14 18 8248 8260 10.1039/D3FO02583G 37655677
    [Google Scholar]
  136. Lubbers R.J.M. Dilokpimol A. Visser J. de Vries R.P. Aspergillus niger uses the peroxisomal CoA-dependent β-oxidative genes to degrade the hydroxycinnamic acids caffeic acid, ferulic acid, and p-coumaric acid. Appl. Microbiol. Biotechnol. 2021 105 10 4199 4211 10.1007/s00253‑021‑11311‑0 33950281
    [Google Scholar]
  137. Tang P.L. Hassan O. Bioconversion of ferulic acid attained from pineapple peels and pineapple crown leaves into vanillic acid and vanillin by Aspergillus niger I-1472. BMC Chem. 2020 14 1 7 10.1186/s13065‑020‑0663‑y 32043090
    [Google Scholar]
  138. Filannino P. Bai Y. Di Cagno R. Gobbetti M. Gänzle M.G. Metabolism of phenolic compounds by Lactobacillus spp. during fermentation of cherry juice and broccoli puree. Food Microbiol. 2015 46 272 279 10.1016/j.fm.2014.08.018 25475296
    [Google Scholar]
  139. Sharma A.K. Beniwal V. Reconnoitring the antioxidant and antibacterial potential of different fruits after tannin acyl hydrolase mediated biotransformation. Biotechnol. Appl. Biochem. 2023 70 4 1439 1449 10.1002/bab.2461 36965069
    [Google Scholar]
  140. Cai M. Huang L. Dong S. Diao N. Ye W. Peng Z. Fang X. Enhancing the flavor profile of summer green tea via fermentation with Aspergillus niger RAF106. Foods 2023 12 18 3420 10.3390/foods12183420 37761129
    [Google Scholar]
  141. Šelo G. Planinić M. Tišma M. Grgić J. Perković G. Koceva Komlenić D. Bucić-Kojić A. A comparative study of the influence of various fungal-based pretreatments of grape pomace on phenolic compounds recovery. Foods 2022 11 11 1665 10.3390/foods11111665 35681415
    [Google Scholar]
  142. Hazafa A. Iqbal M.O. Javaid U. Tareen M.B.K. Amna D. Ramzan A. Piracha S. Naeem M. Inhibitory effect of polyphenols (phenolic acids, lignans, and stilbenes) on cancer by regulating signal transduction pathways: A review. Clin. Transl. Oncol. 2022 24 3 432 445 10.1007/s12094‑021‑02709‑3 34609675
    [Google Scholar]
  143. Fan X.H. Wang L.T. An J.Y. Zhang S.D. Cai Z.H. Niu L.L. Kou P. Yang Q. Meng D. Fu Y. Magnetically immobilized edible Bacillus natto for the biotransformation of polydatin to resveratrol and its bioactivity assessment. Ind. Crops Prod. 2021 161 113213 10.1016/j.indcrop.2020.113213
    [Google Scholar]
  144. Jin S. Luo M. Wang W. Zhao C. Gu C. Li C. Zu Y. Fu Y. Guan Y. Biotransformation of polydatin to resveratrol in Polygonum cuspidatum roots by highly immobilized edible Aspergillus niger and Yeast. Bioresour. Technol. 2013 136 766 770 10.1016/j.biortech.2013.03.027 23566471
    [Google Scholar]
  145. Ru Y.R. Wang Z.X. Li Y.J. Kan H. Kong K.W. Zhang X.C. The influence of probiotic fermentation on the active compounds and bioactivities of walnut flowers. J. Food Biochem. 2022 46 4 e13887 10.1111/jfbc.13887 34338334
    [Google Scholar]
  146. Guo J. Li K. Lin Y.J. Liu Y.H. Protective effects and molecular mechanisms of tea polyphenols on cardiovascular diseases. Front. Nutr. 2023 10 120237 10.3389/fnut.2023.1202378
    [Google Scholar]
  147. Dwevedi D. Srivastava A. Molecular mechanisms of polyphenols in management of skin aging. Curr. Aging Sci. 2024 17 3 180 188 10.2174/0118746098287130240212085507 39248031
    [Google Scholar]
  148. Niu B. Gao W. Li F. Pei Z. Wang H. Tian F. Zhao J. Lu W. Enhancing colonic health with encapsulated grape seed anthocyanins: Oral capsule for Colon-targeted delivery. Food Chem. 2025 469 142544 10.1016/j.foodchem.2024.142544 39721444
    [Google Scholar]
  149. Li S. Zhang Y. Shi L. Cao S. Chen W. Yang Z. Involvement of a MYB transcription factor in anthocyanin biosynthesis during Chinese Bayberry (Morella rubra) fruit ripening. Biology 2023 12 7 894 10.3390/biology12070894 37508327
    [Google Scholar]
  150. Sarkhosh-Khorasani S. Hosseinzadeh M. The effect of grape products containing polyphenols on C-reactive protein levels: a systematic review and meta-analysis of randomised controlled trials. Br. J. Nutr. 2021 125 11 1230 1245 10.1017/S0007114520003591 32921322
    [Google Scholar]
  151. Wang C. Zhou H. Niu H. Ma X. Yuan Y. Hong H. Liu C. Tannic acid-loaded mesoporous silica for rapid hemostasis and antibacterial activity. Biomater. Sci. 2018 6 12 3318 3331 10.1039/C8BM00837J 30357215
    [Google Scholar]
  152. Aleksandrova S. Alexova R. Dragomanova S. Kalfin R. Nicoletti F. Fagone P. Petralia M.C. Mangano K. Tancheva L. Preventive and therapeutic effects of Punica granatum L. polyphenols in neurological conditions. Int. J. Mol. Sci. 2023 24 3 1856 10.3390/ijms24031856 36768185
    [Google Scholar]
  153. Xu D. Hu M.J. Wang Y.Q. Cui Y.L. Antioxidant activities of quercetin and its complexes for medicinal application. Molecules 2019 24 6 1123 10.3390/molecules24061123 30901869
    [Google Scholar]
  154. Li K. Wang Y. Liu W. Zhang C. Xi Y. Zhou Y. Li H. Liu X. Structure-activity relationships and changes in the inhibition of xanthine oxidase by polyphenols: A review. Foods 2024 13 15 2365 10.3390/foods13152365 39123556
    [Google Scholar]
  155. Yan Z. Zhong Y. Duan Y. Chen Q. Li F. Antioxidant mechanism of tea polyphenols and its impact on health benefits. Anim. Nutr. 2020 6 2 115 123 10.1016/j.aninu.2020.01.001 32542190
    [Google Scholar]
  156. Bharadvaja N. Gautam S. Singh H. Natural polyphenols: A promising bioactive compounds for skin care and cosmetics. Mol. Biol. Rep. 2023 50 2 1817 1828 10.1007/s11033‑022‑08156‑9 36494596
    [Google Scholar]
  157. Flemming J. Meyer-Probst C.T. Speer K. Kölling-Speer I. Hannig C. Hannig M. Preventive applications of polyphenols in dentistry: A review. Int. J. Mol. Sci. 2021 22 9 4892 10.3390/ijms22094892 34063086
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073392373251114064238
Loading
/content/journals/cchts/10.2174/0113862073392373251114064238
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test