Skip to content
2000
image of Baihe Dihuang Danshen Decoction Alleviates Myocardial Ischemia-Reperfusion Injury in Depression-Induced Rats by Inhibiting Ferroptosis

Abstract

Introduction

The comorbidity of myocardial ischemia reperfusion injury (MIRI) and depression (DEP) may worsen the prognosis of coronary heart disease surgery. Currently, research on medications and therapeutic mechanisms for MIRI combined with DEP is still insufficient. This study aims to explore the relationship between DEP and MIRI, and the therapeutic effects and mechanisms of Baihe Dihuang Danshen decoction (BDDSD) on DEP combined with MIRI.

Methods

SD rats were assigned to a final experimental framework of six groups (Sham, MIRI, DEP+MIRI, BDDSD, DEP drug control, MIRI drug control). DEP was induced 6-week chronic unpredictable mild stress (CUMS), with BDDSD administered during the final 2 weeks. MIRI was then induced by 30-minute coronary artery ligation and 2-hour reperfusion. DEP severity was assessed using behavioral tests (open field, elevated plus maze, sucrose preference, forced swimming). MIRI outcomes were evaluated infarct size, histopathology, serum markers (LDH, IL-6, IL-1β), myocardial oxidative stress (MDA, GSH, SOD, Fe2+), and NADPH/FSP1/CoQ10 pathway proteins (FSP1, CoQ10, FTL, NOX2, NOX4, COX2).

Results

Compared with the MIRI group, DEP significantly exacerbated MIRI, manifested by increased serum IL-6 and IL-1β levels, enlarged infarction area, and aggravated oxidative damage (elevated MDA/Fe2+, decreased SOD/GSH). Compared with the DEP+MIRI group, BDDSD intervention relieved DEP of rats, and subsequently reduced infarction area; decreased serum LDH, IL-6, and IL-1β; lowered myocardial MDA and Fe2+ while increasing SOD and GSH; upregulated FSP1/CoQ10/FTL; and downregulated NOX2/NOX4/COX2 expression.

Discussion

DEP can aggravate inflammation and oxidative stress, promoting cardiac ferroptosis, thereby exacerbating MIRI. Our results demonstrate that BDDSD alleviates MIRI-DEP comorbidity through a dual mechanism, mitigating depressive symptoms and inhibiting myocardial ferroptosis modulation of the NADPH/FSP1/CoQ10 pathway. Although the efficacy of BDDSD is encouraging, its dose-effect relationship and long-term safety require further study.

Conclusion

BDDSD effectively treats DEP-MIRI comorbidity through its dual mechanism, mitigating DEP and protecting against myocardial ferroptosis. Our study not only offers a novel therapeutic strategy for patients with DEP requiring coronary heart disease surgery but also provides new targets for developing drugs to treat MIRI combined with DEP.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073387437250803043736
2025-08-06
2025-10-30
Loading full text...

Full text loading...

/deliver/fulltext/cchts/10.2174/0113862073387437250803043736/BMS-CCHTS-2025-58.html?itemId=/content/journals/cchts/10.2174/0113862073387437250803043736&mimeType=html&fmt=ahah

References

  1. Doenst T. Haverich A. Serruys P. Bonow R.O. Kappetein P. Falk V. Velazquez E. Diegeler A. Sigusch H. PCI and CABG for treating stable coronary artery disease. J. Am. Coll. Cardiol. 2019 73 8 964 976 10.1016/j.jacc.2018.11.053 30819365
    [Google Scholar]
  2. Luo Y. Li G.L. Pan Y.Z. Zhou S.F. Determinants and prognostic implications of reperfusion injury during primary percutaneous coronary intervention in Chinese patients with acute myocardial infarction. Clin. Cardiol. 2009 32 3 148 153 10.1002/clc.20294 19301290
    [Google Scholar]
  3. Tao S. Tang X. Yu L. Li L. Zhang G. Zhang L. Huang L. Wu J. Prognosis of coronary heart disease after percutaneous coronary intervention: A bibliometric analysis over the period 2004–2022. Eur. J. Med. Res. 2023 28 1 311 10.1186/s40001‑023‑01220‑5 37658418
    [Google Scholar]
  4. Dwaich K.H. Al-Amran F.G.Y. AL-Sheibani, B.I.M.; Al-Aubaidy, H.A. Melatonin effects on myocardial ischemia–reperfusion injury: Impact on the outcome in patients undergoing coronary artery bypass grafting surgery. Int. J. Cardiol. 2016 221 977 986 10.1016/j.ijcard.2016.07.108 27441478
    [Google Scholar]
  5. Ski C.F. Taylor R.S. McGuigan K. Long L. Lambert J.D. Richards S.H. Thompson D.R. Psychological interventions for depression and anxiety in patients with coronary heart disease, heart failure or atrial fibrillation. Cochrane Libr. 2024 2024 5 CD013508 10.1002/14651858.CD013508.pub3 38577875
    [Google Scholar]
  6. Hou Q.L. Liu L.Y. Wu Y. The effects of mhealth interventions on quality of life, anxiety, and depression in patients with coronary heart disease: Meta-analysis of randomized controlled trials. J. Med. Internet Res. 2024 26 52341 10.2196/52341 38861710
    [Google Scholar]
  7. Carney R.M. Freedland K.E. Rich M.W. Treating depression to improve survival in coronary heart disease. J. Am. Coll. Cardiol. 2024 84 5 482 489 10.1016/j.jacc.2024.05.038 39048281
    [Google Scholar]
  8. AbuRuz M.E. Pre-operative depression predicted longer hospital length of stay among patients undergoing coronary artery bypass graft surgery. Risk Manag. Healthc. Policy 2019 12 75 83 10.2147/RMHP.S190511 31191059
    [Google Scholar]
  9. Stenman M. Holzmann M.J. Sartipy U. Association between preoperative depression and long-term survival following coronary artery bypass surgery — A systematic review and meta-analysis. Int. J. Cardiol. 2016 222 462 466 10.1016/j.ijcard.2016.07.216 27505334
    [Google Scholar]
  10. Poole L. Ronaldson A. Kidd T. Leigh E. Jahangiri M. Steptoe A. Pre-surgical depression and anxiety and recovery following coronary artery bypass graft surgery. J. Behav. Med. 2017 40 2 249 258 10.1007/s10865‑016‑9775‑1 27552993
    [Google Scholar]
  11. Zhai P. Ouyang X. Yang M. Lin L. Li J. Li Y. Cheng X. Zhu R. Hu D. Luteolin protects against myocardial ischemia/reperfusion injury by reducing oxidative stress and apoptosis through the p53 pathway. J. Integr. Med. 2024 22 6 652 664 10.1016/j.joim.2024.09.001 39343710
    [Google Scholar]
  12. Su Z. Li P. Ding W. Gao Y. Urolithin A improves myocardial ischemia–reperfusion injury by attenuating oxidative stress and ferroptosis through Nrf2 pathway. Int. Immunopharmacol. 2024 143 Pt 2 113394 10.1016/j.intimp.2024.113394 39437484
    [Google Scholar]
  13. Algoet M. Janssens S. Himmelreich U. Gsell W. Pusovnik M. Van den Eynde J. Oosterlinck W. Myocardial ischemia-reperfusion injury and the influence of inflammation. Trends Cardiovasc. Med. 2023 33 6 357 366 10.1016/j.tcm.2022.02.005 35181472
    [Google Scholar]
  14. Yao Y. Li F. Zhang M. Jin L. Xie P. Liu D. Zhang J. Hu X. Lv F. Shang H. Zheng W. Sun X. Duanmu J. Wu F. Lan F. Xiao R.P. Zhang Y. Targeting CaMKII-δ9 ameliorates cardiac ischemia/reperfusion injury by inhibiting myocardial inflammation. Circ. Res. 2022 130 6 887 903 10.1161/CIRCRESAHA.121.319478 35152717
    [Google Scholar]
  15. Xu L. Zhai X. Shi D. Zhang Y. Depression and coronary heart disease: Mechanisms, interventions, and treatments. Front. Psychiatry 2024 15 1328048 10.3389/fpsyt.2024.1328048 38404466
    [Google Scholar]
  16. Bremner J.D. Campanella C. Khan Z. Shah M. Hammadah M. Wilmot K. Al Mheid I. Lima B.B. Garcia E.V. Nye J. Ward L. Kutner M.H. Raggi P. Pearce B.D. Shah A.J. Quyyumi A.A. Vaccarino V. Brain correlates of mental stress-induced myocardial ischemia. Psychosom. Med. 2018 80 6 515 525 10.1097/PSY.0000000000000597 29794945
    [Google Scholar]
  17. Mason J.C. Libby P. Cardiovascular disease in patients with chronic inflammation: Mechanisms underlying premature cardiovascular events in rheumatologic conditions. Eur. Heart J. 2015 36 8 482 489 10.1093/eurheartj/ehu403 25433021
    [Google Scholar]
  18. Lin J. Yang R. Zhang Y. Hou Y. Yang H. Zhou X. Liu T. Yang Q. Wang Y. The mediation effects of metabolic and immune–inflammation factors on the depression–premature coronary heart disease association. J. Affect. Disord. 2023 331 434 441 10.1016/j.jad.2023.03.046 36990287
    [Google Scholar]
  19. Wang Y. Zhang H. Chai F. Liu X. Berk M. The effects of escitalopram on myocardial apoptosis and the expression of Bax and Bcl-2 during myocardial ischemia/reperfusion in a model of rats with depression. BMC Psychiatry 2014 14 1 349 10.1186/s12888‑014‑0349‑x 25471226
    [Google Scholar]
  20. Zhang W.Y. Nan N. Song X.T. Tian J.F. Yang X.Y. Impact of depression on clinical outcomes following percutaneous coronary intervention: A systematic review and meta-analysis. BMJ Open 2019 9 8 026445 10.1136/bmjopen‑2018‑026445 31434764
    [Google Scholar]
  21. Jha M.K. Qamar A. Vaduganathan M. Charney D.S. Murrough J.W. Screening and management of depression in patients with cardiovascular disease. J. Am. Coll. Cardiol. 2019 73 14 1827 1845 10.1016/j.jacc.2019.01.041 30975301
    [Google Scholar]
  22. Abdul Manan H. Mir I.A. Humayra S. Tee R.Y. Vasu D.T. Effect of mindfulness-based interventions on anxiety, depression, and stress in patients with coronary artery disease: A systematic review and meta-analysis of randomized controlled trials. Front. Psychol. 2024 15 1435243 10.3389/fpsyg.2024.1435243 39144586
    [Google Scholar]
  23. Daskalopoulou M. George J. Walters K. Osborn D.P. Batty G.D. Stogiannis D. Rapsomaniki E. Pujades-Rodriguez M. Denaxas S. Udumyan R. Kivimaki M. Hemingway H. Depression as a risk factor for the initial presentation of twelve cardiac, cerebrovascular, and peripheral arterial diseases: Data linkage study of 1.9 million women and men. PLoS One 2016 11 4 0153838 10.1371/journal.pone.0153838 27105076
    [Google Scholar]
  24. Gray R. Review: Prevalence of depression and its associated factors in patients post-coronary artery bypass graft surgery. J. Res. Nurs. 2018 23 1 89 90 10.1177/1744987117730470 34394411
    [Google Scholar]
  25. Xing N. Long X.T. Zhang H.J. Fu L.D. Huang J.Y. Chaurembo A.I. Chanda F. Xu Y.J. Shu C. Lin K.X. Yang K. Lin H.B. Research progress on effects of traditional Chinese medicine on myocardial ischemia–reperfusion injury: A review. Front. Pharmacol. 2022 13 1055248 10.3389/fphar.2022.1055248 36561346
    [Google Scholar]
  26. Li Y. Li Y. Li B. Liu Y. Zhang J. Kuang W. Lu J. Cao Z. Cui J. Fan Z. Guo B. Li D. Antiplatelet therapy with integrated traditional chinese and western medicine for use in myocardial ischemia-reperfusion injury: A review of clinical applications and mechanisms. Evid. Based Complement. Alternat. Med. 2021 2021 1 9 10.1155/2021/7409094 34335837
    [Google Scholar]
  27. Chen J. Wei X. Zhang Q. Wu Y. Xia G. Xia H. Wang L. Shang H. Lin S. The traditional Chinese medicines treat chronic heart failure and their main bioactive constituents and mechanisms. Acta Pharm. Sin. B 2023 13 5 1919 1955 10.1016/j.apsb.2023.02.005 37250151
    [Google Scholar]
  28. Wang Y. Fan X. Qu H. Gao X. Cheng Y. Strategies and techniques for multi-component drug design from medicinal herbs and traditional Chinese medicine. Curr. Top. Med. Chem. 2012 12 12 1356 1362 10.2174/156802612801319034 22690682
    [Google Scholar]
  29. Pope B.S. Wood S.K. Advances in understanding mechanisms and therapeutic targets to treat comorbid depression and cardiovascular disease. Neurosci. Biobehav. Rev. 2020 116 337 349 10.1016/j.neubiorev.2020.06.031 32598982
    [Google Scholar]
  30. Liu C. Li Z. Li B. Liu W. Zhang S. Qiu K. Zhu W. Relationship between ferroptosis and mitophagy in cardiac ischemia reperfusion injury: A mini-review. PeerJ 2023 11 14952 10.7717/peerj.14952 36935924
    [Google Scholar]
  31. Yu Y. Yan Y. Niu F. Wang Y. Chen X. Su G. Liu Y. Zhao X. Qian L. Liu P. Xiong Y. Ferroptosis: A cell death connecting oxidative stress, inflammation and cardiovascular diseases. Cell Death Discov. 2021 7 1 193 10.1038/s41420‑021‑00579‑w 34312370
    [Google Scholar]
  32. Xu J. Tao L. Jiang L. Lai J. Hu J. Tang Z. Moderate hypothermia alleviates sepsis-associated acute lung injury by suppressing ferroptosis induced by excessive inflammation and oxidative stress via the Keap1/GSK3β/Nrf2/GPX4 signaling pathway. J. Inflamm. Res. 2024 17 7687 7704 10.2147/JIR.S491885 39498104
    [Google Scholar]
  33. Cai W. Liu L. Shi X. Liu Y. Wang J. Fang X. Chen Z. Ai D. Zhu Y. Zhang X. Alox15/15-HpETE aggravates myocardial ischemia-reperfusion injury by promoting cardiomyocyte ferroptosis. Circulation 2023 147 19 1444 1460 10.1161/CIRCULATIONAHA.122.060257 36987924
    [Google Scholar]
  34. Jin Y. Tan M. Yin Y. Lin C. Zhao Y. Zhang J. Jiang T. Li H. He M. Oroxylin A alleviates myocardial ischemia–reperfusion injury by quelling ferroptosis via activating the DUSP10 / MAPK ‐Nrf2 pathway. Phytother. Res. 2024 38 11 5290 5308 10.1002/ptr.8315 39225191
    [Google Scholar]
  35. Fioranelli M. Bottaccioli A.G. Bottaccioli F. Bianchi M. Rovesti M. Roccia M.G. Stress and inflammation in coronary artery disease: A review psychoneuroendocrineimmunology-based. Front. Immunol. 2018 9 2031 10.3389/fimmu.2018.02031 30237802
    [Google Scholar]
  36. Chen Y. Fang Z.M. Yi X. Wei X. Jiang D.S. The interaction between ferroptosis and inflammatory signaling pathways. Cell Death Dis. 2023 14 3 205 10.1038/s41419‑023‑05716‑0 36944609
    [Google Scholar]
  37. Cadenas S. ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection. Free Radic. Biol. Med. 2018 117 76 89 10.1016/j.freeradbiomed.2018.01.024 29373843
    [Google Scholar]
  38. Deng L. He S. Guo N. Tian W. Zhang W. Luo L. Molecular mechanisms of ferroptosis and relevance to inflammation. Inflamm. Res. 2023 72 2 281 299 10.1007/s00011‑022‑01672‑1 36536250
    [Google Scholar]
  39. Wang B. Wang Y. Zhang J. Hu C. Jiang J. Li Y. Peng Z. ROS-induced lipid peroxidation modulates cell death outcome: Mechanisms behind apoptosis, autophagy, and ferroptosis. Arch. Toxicol. 2023 97 6 1439 1451 10.1007/s00204‑023‑03476‑6 37127681
    [Google Scholar]
  40. Liu J. Kang R. Tang D. Signaling pathways and defense mechanisms of ferroptosis. FEBS J. 2022 289 22 7038 7050 10.1111/febs.16059 34092035
    [Google Scholar]
  41. Zheng J. Conrad M. The Metabolic Underpinnings of Ferroptosis. Cell Metab. 2020 32 6 920 937 10.1016/j.cmet.2020.10.011 33217331
    [Google Scholar]
  42. Doll S. Freitas F.P. Shah R. Aldrovandi M. da Silva M.C. Ingold I. Goya Grocin A. Xavier da Silva T.N. Panzilius E. Scheel C.H. Mourão A. Buday K. Sato M. Wanninger J. Vignane T. Mohana V. Rehberg M. Flatley A. Schepers A. Kurz A. White D. Sauer M. Sattler M. Tate E.W. Schmitz W. Schulze A. O’Donnell V. Proneth B. Popowicz G.M. Pratt D.A. Angeli J.P.F. Conrad M. FSP1 is a glutathione-independent ferroptosis suppressor. Nature 2019 575 7784 693 698 10.1038/s41586‑019‑1707‑0 31634899
    [Google Scholar]
  43. Chi X. Wang S. Baloch Z. Zhang H. Li X. Zhang Z. Zhang H. Dong Z. Lu Y. Yu H. Ma K. Research progress on classical traditional Chinese medicine formula Lily Bulb and Rehmannia Decoction in the treatment of depression. Biomed. Pharmacother. 2019 112 108616 10.1016/j.biopha.2019.108616 30780102
    [Google Scholar]
  44. Gu S. Mou T. Chen J. Wang J. Zhang Y. Cui M. Hao W. Sun Y. Zhang C. Zhao T. Wei B. Develop a stepwise integrated method to screen biomarkers of Baihe‐Dihuang Tang on the treatment of depression in rats applying with composition screened, untargeted, and targeted metabolomics analysis. J. Sep. Sci. 2022 45 10 1656 1671 10.1002/jssc.202100841 35234356
    [Google Scholar]
  45. Zhang H. Xue X. Pan J. Song X. Chang X. Mao Q. Lu Y. Zhao H. Wang Y. Chi X. Wang S. Ma K. Integrated analysis of the chemical-material basis and molecular mechanisms for the classic herbal formula of Lily Bulb and Rehmannia Decoction in alleviating depression. Chin. Med. 2021 16 1 107 10.1186/s13020‑021‑00519‑x 34674715
    [Google Scholar]
  46. Gong D. Yuan T. Wang R. Sun S. Dawuti A. Wang S. Du G. Fang L. Network pharmacology approach and experimental verification of Dan-Shen Decoction in the treatment of ischemic heart disease. Pharm. Biol. 2023 61 1 69 79 10.1080/13880209.2022.2152059 36546685
    [Google Scholar]
  47. Chen M. Wang R. Liao L. Li Y. Sun X. Wu H. Lan Q. Deng Z. Liu P. Xu T. Zhou H. Liu M. DanShen Decoction targets miR-93-5p to provide protection against MI/RI by regulating the TXNIP/NLRP3/Caspase-1 signaling pathway. Phytomedicine 2024 135 156225 10.1016/j.phymed.2024.156225 39547100
    [Google Scholar]
  48. Liu M. Li Z. Ouyang Y. Chen M. Guo X. Mazhar M. Kang J. Zhou H. Wu Q. Yang S. Material basis and integrative pharmacology of danshen decoction in the treatment of cardiovascular diseases. Phytomedicine 2023 108 154503 10.1016/j.phymed.2022.154503 36332387
    [Google Scholar]
  49. Wang T.X. Duan K.L. Huang Z.X. Xue Z.A. Liang J.Y. Dang Y. Zhang A. Xiong Y. Ding C. Guan K.L. Yuan H.X. Tanshinone functions as a coenzyme that confers gain of function of NQO1 to suppress ferroptosis. Life Sci. Alliance 2023 6 1 202201667 10.26508/lsa.202201667 36319062
    [Google Scholar]
  50. Nair A. Jacob S. A simple practice guide for dose conversion between animals and human. J. Basic Clin. Pharm. 2016 7 2 27 31 10.4103/0976‑0105.177703 27057123
    [Google Scholar]
  51. Bian L. Wang S. Li W. Li J. Yin Y. Ye F. Guo J. Cryptotanshinone regulates gut microbiota and PI3K-AKT pathway in rats to alleviate CUMS induced depressive symptoms. Biomed. Pharmacother. 2023 169 115921 10.1016/j.biopha.2023.115921 38011787
    [Google Scholar]
  52. Zhang M. Wu W. Huang C. Cai T. Zhao N. Liu S. Yang S. Shuxie-1 Decoction Alleviated CUMS -Induced Liver Injury via IL-6/JAK2/STAT3 Signaling. Front. Pharmacol. 2022 13 848355 10.3389/fphar.2022.848355 35462928
    [Google Scholar]
  53. Yue N. Huang H. Zhu X. Han Q. Wang Y. Li B. Liu Q. Wu G. Zhang Y. Yu J. Activation of P2X7 receptor and NLRP3 inflammasome assembly in hippocampal glial cells mediates chronic stress-induced depressive-like behaviors. J. Neuroinflammation 2017 14 1 102 10.1186/s12974‑017‑0865‑y 28486969
    [Google Scholar]
  54. Liu Y. Cheng X. Qi B. Wang Y. Zheng Y. Liang X. Chang Y. Ning M. Gao W. Li T. Aucubin protects against myocardial ischemia-reperfusion injury by regulating STAT3/NF-κB/HMGB-1 pathway. Int. J. Cardiol. 2024 400 131800 10.1016/j.ijcard.2024.131800 38244891
    [Google Scholar]
  55. Zhang J. Du Y. Xiong Z. Cheng H. Du Y. Xiong Y. Lv J. Huang W. Qiu K. Zhang S. Bombesin protects myocardium against ischemia/reperfusion injury via activation of the Keap1-Nrf2-HO-1 signaling pathway. Peptides 2024 180 171279 10.1016/j.peptides.2024.171279 39053647
    [Google Scholar]
  56. Zhang S. Hu Y. Zhao Y. Feng Y. Wang X. Miao M. Miao J. Molecular mechanism of Chang Shen Hua volatile oil modulating brain cAMP-PKA-CREB pathway to improve depression-like behavior in rats. Phytomedicine 2024 130 155729 10.1016/j.phymed.2024.155729 38772184
    [Google Scholar]
  57. Zhang M. Li A. Yang Q. Li J. Wang L. Liu X. Huang Y. Liu L. Beneficial effect of alkaloids from Sophora alopecuroides L. on CUMS-induced depression model mice via modulating gut microbiota. Front. Cell. Infect. Microbiol. 2021 11 665159 10.3389/fcimb.2021.665159 33954123
    [Google Scholar]
  58. Chang J. Yang H. Shan X. Zhao L. Li Y. Zhang Z. Abankwah J.K. Zhang M. Bian Y. Guo Y. Bergamot essential oil improves CUMS‐induced depression‐like behaviour in rats by protecting the plasticity of hippocampal neurons. J. Cell. Mol. Med. 2024 28 8 18178 10.1111/jcmm.18178 38553964
    [Google Scholar]
  59. Aisa Z. Liao G.C. Shen X.L. Chen J. Li L. Jiang S.B. Effect of autophagy on myocardial infarction and its mechanism. Eur. Rev. Med. Pharmacol. Sci. 2017 21 16 3705 3713 [PMID: 28925470
    [Google Scholar]
  60. An Z. Li J. Yu J. Wang X. Gao H. Zhang W. Wei Z. Zhang J. Zhang Y. Zhao J. Liang X. Neutrophil extracellular traps induced by IL-8 aggravate atherosclerosis via activation NF-κB signaling in macrophages. Cell Cycle 2019 18 21 2928 2938 10.1080/15384101.2019.1662678 31496351
    [Google Scholar]
  61. Acikgoz B. Dalkiran B. Dayi A. An overview of the currency and usefulness of behavioral tests used from past to present to assess anxiety, social behavior and depression in rats and mice. Behav. Processes 2022 200 104670 10.1016/j.beproc.2022.104670 35667641
    [Google Scholar]
  62. Ashok D. Garbus H. Ebenebe O.V. Mitochondrial membrane potential and lactate dehydrogenase activity in a model of acute in vitro ischemia/reperfusion injury. Methods Mol. Biol. 2025 2894 35 42 10.1007/978‑1‑0716‑4342‑6_4 39699808
    [Google Scholar]
  63. Ursini F. Maiorino M. Lipid peroxidation and ferroptosis: The role of GSH and GPx4. Free Radic. Biol. Med. 2020 152 175 185 10.1016/j.freeradbiomed.2020.02.027 32165281
    [Google Scholar]
  64. Xing G. Meng L. Cao S. Liu S. Wu J. Li Q. Huang W. Zhang L. PPARα alleviates iron overload‐induced ferroptosis in mouse liver. EMBO Rep. 2022 23 8 52280 10.15252/embr.202052280 35703725
    [Google Scholar]
  65. Vaccarino V. Johnson B.D. Sheps D.S. Reis S.E. Kelsey S.F. Bittner V. Rutledge T. Shaw L.J. Sopko G. Bairey Merz C.N. Depression, inflammation, and incident cardiovascular disease in women with suspected coronary ischemia: The National Heart, Lung, and Blood Institute-sponsored WISE study. J. Am. Coll. Cardiol. 2007 50 21 2044 2050 10.1016/j.jacc.2007.07.069 18021871
    [Google Scholar]
  66. Caruso G. Fresta C.G. Grasso M. Santangelo R. Lazzarino G. Lunte S.M. Caraci F. Inflammation as the common biological link between depression and cardiovascular diseases: Can carnosine exert a protective role? Curr. Med. Chem. 2020 27 11 1782 1800 10.2174/0929867326666190712091515 31296155
    [Google Scholar]
  67. Maes M. Nowak G. Caso J.R. Leza J.C. Song C. Kubera M. Klein H. Galecki P. Noto C. Glaab E. Balling R. Berk M. Toward omics-based, systems biomedicine, and path and drug discovery methodologies for depression-inflammation research. Mol. Neurobiol. 2016 53 5 2927 2935 10.1007/s12035‑015‑9183‑5 25934103
    [Google Scholar]
  68. Fang H. Cavdar O. Yao Z. Zhu X. Shen Y. Liu C. Angiotensin type 1 and type 2 receptors-induced mitochondrial dysfunction promotes ferroptosis in cardiomyocytes. J. Hum. Hypertens. 2025 39 3 226 236 10.1038/s41371‑024‑00982‑7 39789125
    [Google Scholar]
  69. Li W. Liang L. Liu S. Yi H. Zhou Y. FSP1: A key regulator of ferroptosis. Trends Mol. Med. 2023 29 9 753 764 10.1016/j.molmed.2023.05.013 37357101
    [Google Scholar]
  70. Tang D. Chen X. Kang R. Kroemer G. Ferroptosis: Molecular mechanisms and health implications. Cell Res. 2021 31 2 107 125 10.1038/s41422‑020‑00441‑1 33268902
    [Google Scholar]
  71. Xie Y. Hou W. Song X. Yu Y. Huang J. Sun X. Kang R. Tang D. Ferroptosis: Process and function. Cell Death Differ. 2016 23 3 369 379 10.1038/cdd.2015.158 26794443
    [Google Scholar]
  72. Liu C. Liu E. Li Z. Li W. Jin J. Sui H. Chen G. Sun Z. Xi H. Danlou tablet attenuates ischemic stroke injury and blood‒brain barrier damage by inhibiting ferroptosis. J. Ethnopharmacol. 2024 322 117657 10.1016/j.jep.2023.117657 38145861
    [Google Scholar]
  73. Kupper N. Denollet J. Type D. Type D personality as a risk factor in coronary heart disease: A review of current evidence. Curr. Cardiol. Rep. 2018 20 11 104 10.1007/s11886‑018‑1048‑x 30209683
    [Google Scholar]
  74. Krittanawong C. Maitra N.S. Qadeer Y.K. Wang Z. Fogg S. Storch E.A. Celano C.M. Huffman J.C. Jha M. Charney D.S. Lavie C.J. Association of depression and cardiovascular disease. Am. J. Med. 2023 136 9 881 895 10.1016/j.amjmed.2023.04.036 37247751
    [Google Scholar]
  75. Yoshimura R. Cardiovascular disease, and major depression: Study on both diseases and serum brain‐derived neurotrophic factor (BDNF). Psychiatry Clin. Neurosci. 2024 78 8 429 10.1111/pcn.13678 38895990
    [Google Scholar]
  76. Perry B.I. Oltean B.P. Jones P.B. Khandaker G.M. Cardiometabolic risk in young adults with depression and evidence of inflammation: A birth cohort study. Psychoneuroendocrinology 2020 116 104682 10.1016/j.psyneuen.2020.104682 32339985
    [Google Scholar]
  77. Jiang X. Stockwell B.R. Conrad M. Ferroptosis: Mechanisms, biology and role in disease. Nat. Rev. Mol. Cell Biol. 2021 22 4 266 282 10.1038/s41580‑020‑00324‑8 33495651
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073387437250803043736
Loading
/content/journals/cchts/10.2174/0113862073387437250803043736
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test