Skip to content
2000
image of Serum Metabolomic Profiles Predict Sensitivity and Toxicity to Platinum-Fluorouracil Chemotherapy in a Gastric Cancer Xenograft Model

Abstract

Background

The mechanisms of chemotherapy sensitivity and toxicity are complex. Metabolomics can better reflect the status of anticancer drugs, tumors, and hosts simultaneously.

Methods

Mice were implanted with human gastric cancer cells through subcutaneous xenografting, and then treated with the PF (platinum-fluorouracil) regimen, with saline serving as the control. Tumor growth was monitored by measuring tumor volume, and body weight was recorded on Days 0, 2, 4, 6, and 8. Kidney damage was assessed using H&E staining. To analyze differential responses, PF-treated mice were grouped separately according to chemotherapy sensitivity (high/medium/low via tumor response) and toxicity (high/medium/low via body weight changes). Serum metabolomics was evaluated using Mass Spectrometry.

Results

Platinum-Fluorouracil (PF) chemotherapy significantly reduced tumor weight in mice, although it also induced notable body weight loss and renal toxicity compared to controls. Serum metabolomic analysis revealed significant differences between PF and control groups, involving metabolites like deoxymethylmycin and dehydrocorticosterone, associated with AMPK and cortisol synthesis/secretion pathways. Further comparisons highlighted: (1) High- vs. low-sensitivity subgroups differed significantly in metabolites, such as palmitoyl-CoA and indoleacetic acid (linked to AGE-RAGE, insulin resistance, and AMPK pathways). (2) High- . low-toxicity subgroups displayed significant metabolic differences, including methylguanosine and methylcytidine (implicated in ferroptosis, ether lipid, and fatty acid metabolism pathways).

Conclusion

The PF regimen effectively inhibits the growth of subcutaneous tumors in nude mice, while causing varying levels of sensitivity and toxicity in tumor chemotherapy. These observed effects of sensitivity and toxicity are linked to underlying metabolic mechanisms.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073379369250513115909
2025-05-15
2025-10-31
Loading full text...

Full text loading...

References

  1. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  2. Li G. Chen X. Yu J. Liu H. Clinical research status of laparoscopic gastric cancer surgery in China, Japan and South Korea. Zhonghua Wei Chang Wai Ke Za Zhi 2018 21 2 126 131 29492908
    [Google Scholar]
  3. Song Z. Wu Y. Yang J. Yang D. Fang X. Progress in the treatment of advanced gastric cancer. Tumour Biol. 2017 39 7 10.1177/1010428317714626 28671042
    [Google Scholar]
  4. Koizumi W. Narahara H. Hara T. Takagane A. Akiya T. Takagi M. Miyashita K. Nishizaki T. Kobayashi O. Takiyama W. Toh Y. Nagaie T. Takagi S. Yamamura Y. Yanaoka K. Orita H. Takeuchi M. S-1 plus cisplatin versus S-1 alone for first-line treatment of advanced gastric cancer (SPIRITS trial): A phase III trial. Lancet Oncol. 2008 9 3 215 221 10.1016/S1470‑2045(08)70035‑4 18282805
    [Google Scholar]
  5. Van Cutsem E. Moiseyenko V.M. Tjulandin S. Majlis A. Constenla M. Boni C. Rodrigues A. Fodor M. Chao Y. Voznyi E. Risse M.L. Ajani J.A. Phase III study of docetaxel and cisplatin plus fluorouracil compared with cisplatin and fluorouracil as first-line therapy for advanced gastric cancer: A report of the V325 Study Group. J. Clin. Oncol. 2006 24 31 4991 4997 10.1200/JCO.2006.06.8429 17075117
    [Google Scholar]
  6. Wang F.H. Zhang X.T. Tang L. Wu Q. Cai M.Y. Li Y.F. Qu X.J. Qiu H. Zhang Y.J. Ying J.E. Zhang J. Sun L.Y. Lin R.B. Wang C. Liu H. Qiu M.Z. Guan W.L. Rao S.X. Ji J.F. Xin Y. Sheng W.Q. Xu H.M. Zhou Z.W. Zhou A.P. Jin J. Yuan X.L. Bi F. Liu T.S. Liang H. Zhang Y.Q. Li G.X. Liang J. Liu B.R. Shen L. Li J. Xu R.H. The Chinese Society of Clinical Oncology (CSCO): Clinical guidelines for the diagnosis and treatment of gastric cancer, 2023. Cancer Commun. 2024 44 1 127 172 10.1002/cac2.12516 38160327
    [Google Scholar]
  7. Mikubo M. Inoue Y. Liu G. Tsao M.S. Mechanism of drug tolerant persister cancer cells: The landscape and clinical implication for therapy. J. Thorac. Oncol. 2021 16 11 1798 1809 10.1016/j.jtho.2021.07.017 34352380
    [Google Scholar]
  8. Blumenthal R.D. Goldenberg D.M. Methods and goals for the use of in vitro and in vivo chemosensitivity testing. Mol. Biotechnol. 2007 35 2 185 197 10.1007/BF02686104 17435285
    [Google Scholar]
  9. Batool S.M. Yekula A. Khanna P. Hsia T. Gamblin A.S. Ekanayake E. Escobedo A.K. You D.G. Castro C.M. Im H. Kilic T. Garlin M.A. Skog J. Dinulescu D.M. Dudley J. Agrawal N. Cheng J. Abtin F. Aberle D.R. Chia D. Elashoff D. Grognan T. Krysan K. Oh S.S. Strom C. Tu M. Wei F. Xian R.R. Skates S.J. Zhang D.Y. Trinh T. Watson M. Aft R. Rawal S. Agarwal A. Kesmodel S.B. Yang C. Shen C. Hochberg F.H. Wong D.T.W. Patel A.A. Papadopoulos N. Bettegowda C. Cote R.J. Srivastava S. Lee H. Carter B.S. Balaj L. The Liquid Biopsy Consortium: Challenges and opportunities for early cancer detection and monitoring. Cell Rep. Med. 2023 4 10 101198 10.1016/j.xcrm.2023.101198 37716353
    [Google Scholar]
  10. Li Y. Xu C. Wang B. Xu F. Ma F. Qu Y. Jiang D. Li K. Feng J. Tian S. Wu X. Wang Y. Liu Y. Qin Z. Liu Y. Qin J. Song Q. Zhang X. Sujie A. Huang J. Liu T. Shen K. Zhao J.Y. Hou Y. Ding C. Author Correction: Proteomic characterization of gastric cancer response to chemotherapy and targeted therapy reveals potential therapeutic strategies. Nat. Commun. 2022 13 1 6749 10.1038/s41467‑022‑34238‑0 36347856
    [Google Scholar]
  11. Schrag D. Garewal H.S. Burstein H.J. Samson D.J. Von Hoff D.D. Somerfield M.R. American society of clinical oncology technology assessment: Chemotherapy sensitivity and resistance assays. J. Clin. Oncol. 2004 22 17 3631 3638 10.1200/JCO.2004.05.065 15289488
    [Google Scholar]
  12. Ring A. Nguyen-Sträuli B.D. Wicki A. Aceto N. Biology, vulnerabilities and clinical applications of circulating tumour cells. Nat. Rev. Cancer 2023 23 2 95 111 10.1038/s41568‑022‑00536‑4 36494603
    [Google Scholar]
  13. Zhang J. Ali M.Y. Chong H.B. Tien P.C. Woods J. Noble C. Vornbäumen T. Ordulu Z. Possemato A.P. Harry S. Fonticella J.M. Fellah L. Harrison D. Ge M. Khandelwal N. Huang Y. Chauvin M. Bischof A.T. Hambelton G.M. Gohar M.F. Zhang S. Choi M. Bouberhan S. Oliva E. Mino-Kenudson M. Pavlova N.N. Lawrence M. Gainor J.F. Beausoleil S.A. Bardeesy N. Mostoslavsky R. Pépin D. Ott C.J. Liau B. Bar-Peled L. Oxidation of retromer complex controls mitochondrial translation. Nature 2025 10.1038/s41586‑025‑08756‑y 40140582
    [Google Scholar]
  14. Zhong C. Jiang W.J. Yao Y. Li Z. Li Y. Wang S. Wang X. Zhu W. Wu S. Wang J. Fan S. Ma S. Liu Y. Zhang H. Zhao W. Zhao L. Feng Y. Li Z. Guo R. Yu L. Pei F. Hu J. Feng X. Yang Z. Yang Z. Yang X. Hou Y. Zhang D. Xu D. Sheng R. Li Y. Liu L. Wu H.J. Huang J. Fei T. CRISPR screens reveal convergent targeting strategies against evolutionarily distinct chemoresistance in cancer. Nat. Commun. 2024 15 1 5502 10.1038/s41467‑024‑49673‑4 38951519
    [Google Scholar]
  15. Yang Z. Su W. Wei X. Pan Y. Xing M. Niu L. Feng B. Kong W. Ren X. Huang F. Zhou J. Zhao W. Qiu Y. Liao T. Chen Q. Qu S. Wang Y. Guan Q. Li D. Zen K. Chen Y. Qin C. Wang Y. Zhou X. Xiang J. Yao B. Hypoxia inducible factor-1α drives cancer resistance to cuproptosis. Cancer Cell 2025 10.1016/j.ccell.2025.02.015
    [Google Scholar]
  16. Lappalainen T. Li Y.I. Ramachandran S. Gusev A. Genetic and molecular architecture of complex traits. Cell 2024 187 5 1059 1075 10.1016/j.cell.2024.01.023 38428388
    [Google Scholar]
  17. Pirmohamed M. Pharmacogenomics: Current status and future perspectives. Nat. Rev. Genet. 2023 24 6 350 362 10.1038/s41576‑022‑00572‑8 36707729
    [Google Scholar]
  18. Chawla S. Rockstroh A. Lehman M. Ratther E. Jain A. Anand A. Gupta A. Bhattacharya N. Poonia S. Rai P. Das N. Majumdar A. Jayadeva Ahuja G. Hollier B.G. Nelson C.C. Sengupta D. Gene expression based inference of cancer drug sensitivity. Nat. Commun. 2022 13 1 5680 10.1038/s41467‑022‑33291‑z 36167836
    [Google Scholar]
  19. Sumner L.W. Mendes P. Dixon R.A. Plant metabolomics: Large-scale phytochemistry in the functional genomics era. Phytochemistry 2003 62 6 817 836 10.1016/S0031‑9422(02)00708‑2 12590110
    [Google Scholar]
  20. Schmidt D.R. Patel R. Kirsch D.G. Lewis C.A. Vander Heiden M.G. Locasale J.W. Metabolomics in cancer research and emerging applications in clinical oncology. CA Cancer J. Clin. 2021 71 4 333 358 10.3322/caac.21670 33982817
    [Google Scholar]
  21. Xia L. Oyang L. Lin J. Tan S. Han Y. Wu N. Yi P. Tang L. Pan Q. Rao S. Liang J. Tang Y. Su M. Luo X. Yang Y. Shi Y. Wang H. Zhou Y. Liao Q. The cancer metabolic reprogramming and immune response. Mol. Cancer 2021 20 1 28 10.1186/s12943‑021‑01316‑8 33546704
    [Google Scholar]
  22. De Martino M. Rathmell J.C. Galluzzi L. Vanpouille-Box C. Cancer cell metabolism and antitumour immunity. Nat. Rev. Immunol. 2024 24 9 654 669 10.1038/s41577‑024‑01026‑4 38649722
    [Google Scholar]
  23. Bayet-Robert M. Loiseau D. Rio P. Demidem A. Barthomeuf C. Stepien G. Morvan D. Quantitative two‐dimensional HRMAS 1 H‐NMR spectroscopy‐based metabolite profiling of human cancer cell lines and response to chemotherapy. Magn. Reson. Med. 2010 63 5 1172 1183 10.1002/mrm.22303 20432288
    [Google Scholar]
  24. Bayet-Robert M. Lim S. Barthomeuf C. Morvan D. Biochemical disorders induced by cytotoxic marine natural products in breast cancer cells as revealed by proton NMR spectroscopy-based metabolomics. Biochem. Pharmacol. 2010 80 8 1170 1179 10.1016/j.bcp.2010.07.007 20637732
    [Google Scholar]
  25. Morvan D. Demidem A. Metabolomics by proton nuclear magnetic resonance spectroscopy of the response to chloroethylnitrosourea reveals drug efficacy and tumor adaptive metabolic pathways. Cancer Res. 2007 67 5 2150 2159 10.1158/0008‑5472.CAN‑06‑2346 17332345
    [Google Scholar]
  26. Auger J.P. Zimmermann M. Faas M. Stifel U. Chambers D. Krishnacoumar B. Taudte R.V. Grund C. Erdmann G. Scholtysek C. Uderhardt S. Ben Brahim O. Pascual Maté M. Stoll C. Böttcher M. Palumbo-Zerr K. Mangan M.S.J. Dzamukova M. Kieler M. Hofmann M. Blüml S. Schabbauer G. Mougiakakos D. Sonnewald U. Hartmann F. Simon D. Kleyer A. Grüneboom A. Finotto S. Latz E. Hofmann J. Schett G. Tuckermann J. Krönke G. Metabolic rewiring promotes anti-inflammatory effects of glucocorticoids. Nature 2024 629 8010 184 192 10.1038/s41586‑024‑07282‑7 38600378
    [Google Scholar]
  27. Koundouros N. Karali E. Tripp A. Valle A. Inglese P. Perry N.J.S. Magee D.J. Anjomani Virmouni S. Elder G.A. Tyson A.L. Dória M.L. van Weverwijk A. Soares R.F. Isacke C.M. Nicholson J.K. Glen R.C. Takats Z. Poulogiannis G. Metabolic fingerprinting links oncogenic PIK3CA with enhanced arachidonic acid-derived eicosanoids. Cell 2020 181 7 1596 1611.e27 10.1016/j.cell.2020.05.053 32559461
    [Google Scholar]
  28. Sadr-Momtaz S. Aftabi M. Behboudi E. Naderi M. Hashemzadeh-Omran A. Moradi A. NSP4 as adjuvant for immunogenicity and design of effective therapeutic HPV16 E6/E7/L1 DNA vaccine in tumor-bearing and healthy C57BL/6 mice. BMC Res. Notes 2023 16 1 164 10.1186/s13104‑023‑06445‑5 37550734
    [Google Scholar]
  29. Hamidi-Sofiani V. Rakhshi R. Moradi N. Zeynali P. Nakhaie M. Behboudi E. Oncolytic viruses and pancreatic cancer. Cancer Treat. Res. Commun. 2022 31 100563 10.1016/j.ctarc.2022.100563 35460973
    [Google Scholar]
  30. Ji Y. Gao Y. Chen H. Yin Y. Zhang W. Indole-3-Acetic Acid Alleviates Nonalcoholic Fatty Liver Disease in Mice via Attenuation of Hepatic Lipogenesis, and Oxidative and Inflammatory Stress. Nutrients 2019 11 9 2062 10.3390/nu11092062 31484323
    [Google Scholar]
  31. Xue L. Schnacke P. Frei M.S. Koch B. Hiblot J. Wombacher R. Fabritz S. Johnsson K. Probing coenzyme A homeostasis with semisynthetic biosensors. Nat. Chem. Biol. 2023 19 3 346 355 10.1038/s41589‑022‑01172‑7 36316571
    [Google Scholar]
  32. Barrios-Maya M.A. Ruiz-Ramírez A. Quezada H. Céspedes Acuña C.L. El-Hafidi M. Palmitoyl-CoA effect on cytochrome c release, a key process of apoptosis, from liver mitochondria of rat with sucrose diet-induced obesity. Food Chem. Toxicol. 2021 154 112351 10.1016/j.fct.2021.112351 34171418
    [Google Scholar]
  33. Du D. Liu C. Qin M. Zhang X. Xi T. Yuan S. Hao H. Xiong J. Metabolic dysregulation and emerging therapeutical targets for hepatocellular carcinoma. Acta Pharm. Sin. B 2022 12 2 558 580 10.1016/j.apsb.2021.09.019 35256934
    [Google Scholar]
  34. Liu L. Wang L. Liu L. Qu X. Zhao W. Ding J. Zhao S. Xu B. Yu H. Liu B. Chai J. Acyltransferase zinc finger DHHC-type containing 2 aggravates gastric carcinoma growth by targeting Nrf2 signaling: A mechanism-based multicombination bionic nano-drug therapy. Redox Biol. 2024 70 103051 10.1016/j.redox.2024.103051 38301594
    [Google Scholar]
  35. Bu L. Zhang Z. Chen J. Fan Y. Guo J. Su Y. Wang H. Zhang X. Wu X. Jiang Q. Gao B. Wang L. Hu K. Zhang X. Xie W. Wei W. Kuang M. Guo J. High-fat diet promotes liver tumorigenesis via palmitoylation and activation of AKT. Gut 2024 73 7 1156 1168 10.1136/gutjnl‑2023‑330826 38191266
    [Google Scholar]
  36. Lu Y. Han X. Zhang H. Zheng L. Li X. Multi-omics study on the molecular mechanism of anlotinib in regulating tumor metabolism. Eur. J. Pharmacol. 2024 975 176639 10.1016/j.ejphar.2024.176639 38729415
    [Google Scholar]
  37. Tintelnot J. Xu Y. Lesker T.R. Schönlein M. Konczalla L. Giannou A.D. Pelczar P. Kylies D. Puelles V.G. Bielecka A.A. Peschka M. Cortesi F. Riecken K. Jung M. Amend L. Bröring T.S. Trajkovic-Arsic M. Siveke J.T. Renné T. Zhang D. Boeck S. Strowig T. Uzunoglu F.G. Güngör C. Stein A. Izbicki J.R. Bokemeyer C. Sinn M. Kimmelman A.C. Huber S. Gagliani N. Microbiota-derived 3-IAA influences chemotherapy efficacy in pancreatic cancer. Nature 2023 615 7950 168 174 10.1038/s41586‑023‑05728‑y 36813961
    [Google Scholar]
  38. Ghiraldeli L. Anderson R. Pladna K. Pardee T.S. Adenosine Monophosphate Activated Protein Kinase (AMPK) enhances chemotherapy response in Acute Myeloid Leukemia (AML). Cancer Lett. 2022 535 215659 10.1016/j.canlet.2022.215659 35321842
    [Google Scholar]
  39. Steinberg G.R. Hardie D.G. New insights into activation and function of the AMPK. Nat. Rev. Mol. Cell Biol. 2023 24 4 255 272 10.1038/s41580‑022‑00547‑x 36316383
    [Google Scholar]
  40. Penugurti V. Mishra Y.G. Manavathi B. AMPK: An odyssey of a metabolic regulator, a tumor suppressor, and now a contextual oncogene. Biochim. Biophys. Acta Rev. Cancer 2022 1877 5 188785 10.1016/j.bbcan.2022.188785 36031088
    [Google Scholar]
  41. Eichner L.J. Brun S.N. Herzig S. Young N.P. Curtis S.D. Shackelford D.B. Shokhirev M.N. Leblanc M. Vera L.I. Hutchins A. Ross D.S. Shaw R.J. Svensson R.U. Genetic analysis reveals AMPK is required to support tumor growth in murine kras-dependent lung cancer models. Cell Metab. 2019 29 2 285 302.e7 10.1016/j.cmet.2018.10.005 30415923
    [Google Scholar]
  42. Cui L. Ma R. Cai J. Guo C. Chen Z. Yao L. Wang Y. Fan R. Wang X. Shi Y. RNA modifications: Importance in immune cell biology and related diseases. Signal Transduct. Target. Ther. 2022 7 1 334 10.1038/s41392‑022‑01175‑9 36138023
    [Google Scholar]
  43. Song H. Zhang J. Liu B. Xu J. Cai B. Yang H. Straube J. Yu X. Ma T. Biological roles of RNA m5C modification and its implications in Cancer immunotherapy. Biomark. Res. 2022 10 1 15 10.1186/s40364‑022‑00362‑8 35365216
    [Google Scholar]
  44. Wang D. Wu W. Callen E. Pavani R. Zolnerowich N. Kodali S. Zong D. Wong N. Noriega S. Nathan W.J. Matos-Rodrigues G. Chari R. Kruhlak M.J. Livak F. Ward M. Caldecott K. Di Stefano B. Nussenzweig A. Active DNA demethylation promotes cell fate specification and the DNA damage response. Science 2022 378 6623 983 989 10.1126/science.add9838 36454826
    [Google Scholar]
  45. Zeynali P. Teimouri H. Hashemi S.M.A. Ebrahimian A. Faraji S.N. Sakhaei S. Behboudi E. Epstein-Barr virus and helicobacter pylori as two main risk factors in gastric cancer. OBM Genet. 2024 8 4 1 25 10.21926/obm.genet.2404272
    [Google Scholar]
  46. Wang Y. Hu J. Wu S. Fleishman J.S. Li Y. Xu Y. Zou W. Wang J. Feng Y. Chen J. Wang H. Targeting epigenetic and posttranslational modifications regulating ferroptosis for the treatment of diseases. Signal Transduct. Target. Ther. 2023 8 1 449 10.1038/s41392‑023‑01720‑0 38072908
    [Google Scholar]
  47. Liu Y. Cheng D. Wang Y. Xi S. Wang T. Sun W. Li G. Ma D. Zhou S. Li Z. Ni C. UHRF1-mediated ferroptosis promotes pulmonary fibrosis via epigenetic repression of GPX4 and FSP1 genes. Cell Death Dis. 2022 13 12 1070 10.1038/s41419‑022‑05515‑z 36566325
    [Google Scholar]
  48. Cai C. Zhu Y. Mu J. Liu S. Yang Z. Wu Z. Zhao C. Song X. Ye Y. Gu J. Sang Y. Wu X. Gong W. DNA methylation of RUNX3 promotes the progression of gallbladder cancer through repressing SLC7A11-mediated ferroptosis. Cell. Signal. 2023 108 110710 10.1016/j.cellsig.2023.110710 37156453
    [Google Scholar]
  49. Dorninger F. König T. Scholze P. Berger M.L. Zeitler G. Wiesinger C. Gundacker A. Pollak D.D. Huck S. Just W.W. Forss-Petter S. Pifl C. Berger J. Disturbed neurotransmitter homeostasis in ether lipid deficiency. Hum. Mol. Genet. 2019 28 12 2046 2061 10.1093/hmg/ddz040 30759250
    [Google Scholar]
  50. Zhao S. Jiang X. Li N. Wang T. SLMO transfers phosphatidylserine between the outer and inner mitochondrial membrane in Drosophila. PLoS Biol. 2024 22 12 e3002941 10.1371/journal.pbio.3002941 39680501
    [Google Scholar]
  51. MacVicar T. Ohba Y. Nolte H. Mayer F.C. Tatsuta T. Sprenger H.G. Lindner B. Zhao Y. Li J. Bruns C. Krüger M. Habich M. Riemer J. Schwarzer R. Pasparakis M. Henschke S. Brüning J.C. Zamboni N. Langer T. Lipid signalling drives proteolytic rewiring of mitochondria by YME1L. Nature 2019 575 7782 361 365 10.1038/s41586‑019‑1738‑6 31695197
    [Google Scholar]
  52. Mahoney-Sanchez L. Bouchaoui H. Boussaad I. Jonneaux A. Timmerman K. Berdeaux O. Ayton S. Krüger R. Duce J.A. Devos D. Devedjian J.C. Alpha synuclein determines ferroptosis sensitivity in dopaminergic neurons via modulation of ether-phospholipid membrane composition. Cell Rep. 2022 40 8 111231 10.1016/j.celrep.2022.111231 36001957
    [Google Scholar]
  53. Wright S.S. Kumari P. Fraile-Ágreda V. Wang C. Shivcharan S. Kappelhoff S. Margheritis E.G. Matz A. Vasudevan S.O. Rubio I. Bauer M. Zhou B. Vanaja S.K. Cosentino K. Ruan J. Rathinam V.A. Transplantation of gasdermin pores by extracellular vesicles propagates pyroptosis to bystander cells. Cell 2025 188 2 280 291.e17 10.1016/j.cell.2024.11.018 39742811
    [Google Scholar]
  54. Hsu A.Y. Huang Q. Pi X. Fu J. Raghunathan K. Ghimire L. Balasubramanian A. Xie X. Yu H. Loison F. Haridas V. Zha J. Liu F. Park S. Bagale K. Ren Q. Fan Y. Zheng Y. Cancelas J.A. Chai L. Stowell S.R. Chen K. Xu R. Wang X. Xu Y. Zhang L. Cheng T. Ma F. Thiagarajah J.R. Wu H. Feng S. Luo H.R. Neutrophil-derived vesicles control complement activation to facilitate inflammation resolution. Cell 2025 188 6 1623 1641.e26 10.1016/j.cell.2025.01.021 39938514
    [Google Scholar]
  55. Zhang F. Duan Y. Xi L. Wei M. Shi A. Zhou Y. Wei Y. Wu X. The influences of cholecystectomy on the circadian rhythms of bile acids as well as the enterohepatic transporters and enzymes systems in mice. Chronobiol. Int. 2018 35 5 673 690 10.1080/07420528.2018.1426596 29381405
    [Google Scholar]
  56. Wahlström A. Sayin S.I. Marschall H.U. Bäckhed F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 2016 24 1 41 50 10.1016/j.cmet.2016.05.005 27320064
    [Google Scholar]
  57. Xu Z. Pan Z. Jin Y. Gao Z. Jiang F. Fu H. Chen X. Zhang X. Yan H. Yang X. Yang B. He Q. Luo P. Inhibition of PRKAA/AMPK (Ser485/491) phosphorylation by crizotinib induces cardiotoxicity via perturbing autophagosome-lysosome fusion. Autophagy 2024 20 2 416 436 10.1080/15548627.2023.2259216 37733896
    [Google Scholar]
  58. Malik N. Ferreira B.I. Hollstein P.E. Curtis S.D. Trefts E. Weiser Novak S. Yu J. Gilson R. Hellberg K. Fang L. Sheridan A. Hah N. Shadel G.S. Manor U. Shaw R.J. Induction of lysosomal and mitochondrial biogenesis by AMPK phosphorylation of FNIP1. Science 2023 380 6642 eabj5559 10.1126/science.abj5559 37079666
    [Google Scholar]
  59. Zhong S. Chen W. Wang B. Gao C. Liu X. Song Y. Qi H. Liu H. Wu T. Wang R. Chen B. Energy stress modulation of AMPK/FoxO3 signaling inhibits mitochondria-associated ferroptosis. Redox Biol. 2023 63 102760 10.1016/j.redox.2023.102760 37267686
    [Google Scholar]
  60. Ochoa-Ruiz E. Díaz-Ruiz R. Hernández-Vázquez A.J. Ibarra-González I. Ortiz-Plata A. Rembao D. Ortega-Cuéllar D. Viollet B. Uribe-Carvajal S. Corella J.A. Velázquez-Arellano A. Biotin deprivation impairs mitochondrial structure and function and has implications for inherited metabolic disorders. Mol. Genet. Metab. 2015 116 3 204 214 10.1016/j.ymgme.2015.08.009 26343941
    [Google Scholar]
  61. Nussinov R. Tsai C.J. Jang H. Anticancer drug resistance: An update and perspective. Drug Resist. Updat. 2021 59 100796 10.1016/j.drup.2021.100796 34953682
    [Google Scholar]
  62. Abbas A. Nehme E. Fakih M. Single-agent paclitaxel in advanced anal cancer after failure of cisplatin and 5-fluorouracil chemotherapy. Anticancer Res. 2011 31 12 4637 4640 22199342
    [Google Scholar]
  63. Qin Y. Ma X. Guo C. Cai S. Ma H. Zhao L. MeCP2 confers 5-fluorouracil resistance in gastric cancer via upregulating the NOX4/PKM2 pathway. Cancer Cell Int. 2022 22 1 86 10.1186/s12935‑022‑02489‑y 35180871
    [Google Scholar]
  64. Xie D. Zhang H. Shang C. Long non-coding RNA CDKN2B antisense RNA 1 gene inhibits Gemcitabine sensitivity in bladder urothelial carcinoma. J. Cancer 2018 9 12 2160 2166 10.7150/jca.25236 29937935
    [Google Scholar]
  65. Li B. Xie D. Zhang H. Long non-coding RNA GHET1 contributes to chemotherapeutic resistance to Gemcitabine in bladder cancer. Cancer Chemother. Pharmacol. 2019 84 1 187 194 10.1007/s00280‑019‑03873‑8 31115606
    [Google Scholar]
  66. Naufel M.F. Boldarine V.T. Oyama L.M. do Nascimento C.M.O. Silva dos Santos G.M. Hachul H. Ribeiro E.B. Age and leptinemia association with anxiety and depression symptoms in overweight middle-aged women. Menopause 2019 26 3 317 324 10.1097/GME.0000000000001210 30277920
    [Google Scholar]
  67. Byrd A.S. Toth A.T. Stanford F.C. Racial disparities in obesity treatment. Curr. Obes. Rep. 2018 7 2 130 138 10.1007/s13679‑018‑0301‑3 29616469
    [Google Scholar]
  68. Tsutani Y. Yoshida K. Sanada Y. Wada Y. Konishi K. Fukushima M. Okada M. Decreased orotate phosphoribosyltransferase activity produces 5-fluorouracil resistance in a human gastric cancer cell line. Oncol. Rep. 2008 20 6 1545 1551 19020740
    [Google Scholar]
  69. Mani D.R. Krug K. Zhang B. Satpathy S. Clauser K.R. Ding L. Ellis M. Gillette M.A. Carr S.A. Cancer proteogenomics: Current impact and future prospects. Nat. Rev. Cancer 2022 22 5 298 313 10.1038/s41568‑022‑00446‑5 35236940
    [Google Scholar]
  70. Geffen Y. Anand S. Akiyama Y. Yaron T.M. Song Y. Johnson J.L. Govindan A. Babur Ö. Li Y. Huntsman E. Wang L.B. Birger C. Heiman D.I. Zhang Q. Miller M. Maruvka Y.E. Haradhvala N.J. Calinawan A. Belkin S. Kerelsky A. Clauser K.R. Krug K. Satpathy S. Payne S.H. Mani D.R. Gillette M.A. Dhanasekaran S.M. Thiagarajan M. Mesri M. Rodriguez H. Robles A.I. Carr S.A. Lazar A.J. Aguet F. Cantley L.C. Ding L. Getz G. An E. Anurag M. Bavarva J. Birrer M.J. Babur Ö. Cao S. Ceccarelli M. Chan D.W. Chinnaiyan A.M. Cho H. Chowdhury S. Cieslik M.P. Colaprico A. Carr S.A. da Veiga Leprevost F. Day C. Domagalski M.J. Dou Y. Druker B.J. Edwards N. Ellis M.J. Fenyo D. Foltz S.M. Francis A. Gonzalez Robles T.J. Gosline S.J.C. Gümüş Z.H. Hiltke T. Hong R. Hostetter G. Hu Y. Huang C. Iavarone A. Jaehnig E.J. Jewel S.D. Ji J. Jiang W. Katsnelson L. Ketchum K.A. Kolodziejczak I. Kumar-Sinha C. Krug K. Lei J.T. Liang W-W. Liao Y. Lindgren C.M. Liu T. Liu W. Ma W. McKerrow W. Mesri M. Mani D.R. Nesvizhskii A.I. Newton C. Oldroyd R. Omenn G.S. Paulovich A.G. Petralia F. Pugliese P. Reva B. Rodland K.D. Ruggles K.V. Rykunov D. Rodrigues F.M. Savage S.R. Schadt E.E. Schnaubelt M. Schraink T. Shi Z. Smith R.D. Song X. Stathias V. Storrs E.P. Schürer S. Selvan M.E. Tan J. Terekhanova N.V. Thangudu R.R. Tignor N. Thiagarajan M. Wang J.M. Wang P. Wang Y.C. Wen B. Wiznerowicz M. Wu Y. Wyczalkowski M.A. Yao L. Yi X. Yao L. Zhang B. Zhang H. Zhang X. Zhang Z. Zhou D.C. Pan-cancer analysis of post-translational modifications reveals shared patterns of protein regulation. Cell 2023 186 18 3945 3967.e26 10.1016/j.cell.2023.07.013 37582358
    [Google Scholar]
  71. Behboudi E. Charostad J. Nakhaie M. Khajouei A. Ghelmani Y. JNK signaling pathways and oncoviruses. Iran. J. Med. Microbiol. 2024 18 3 148 162 10.30699/ijmm.18.3.148
    [Google Scholar]
  72. Yu F. Zheng S. Yu C. Gao S. Shen Z. Nar R. Liu Z. Huang S. Wu L. Gu T. Qian Z. KRAS mutants confer platinum resistance by regulating ALKBH5 posttranslational modifications in lung cancer. J. Clin. Invest. 2025 135 6 e185149 10.1172/JCI185149 39960727
    [Google Scholar]
  73. Xiao Y. Yu T.J. Xu Y. Ding R. Wang Y.P. Jiang Y.Z. Shao Z.M. Emerging therapies in cancer metabolism. Cell Metab. 2023 35 8 1283 1303 10.1016/j.cmet.2023.07.006 37557070
    [Google Scholar]
  74. Wang H. Jia H. Gao Y. Zhang H. Fan J. Zhang L. Ren F. Yin Y. Cai Y. Zhu J. Zhu Z.J. Serum metabolic traits reveal therapeutic toxicities and responses of neoadjuvant chemoradiotherapy in patients with rectal cancer. Nat. Commun. 2022 13 1 7802 10.1038/s41467‑022‑35511‑y 36528604
    [Google Scholar]
  75. Healy L.A. Ryan A.M. Carroll P. Ennis D. Crowley V. Boyle T. Kennedy M.J. Connolly E. Reynolds J.V. Metabolic syndrome, central obesity and insulin resistance are associated with adverse pathological features in postmenopausal breast cancer. Clin. Oncol. 2010 22 4 281 288 10.1016/j.clon.2010.02.001 20189371
    [Google Scholar]
  76. Chen Y. Wang B. Zhao Y. Shao X. Wang M. Ma F. Yang L. Nie M. Jin P. Yao K. Song H. Lou S. Wang H. Yang T. Tian Y. Han P. Hu Z. Metabolomic machine learning predictor for diagnosis and prognosis of gastric cancer. Nat. Commun. 2024 15 1 1657 10.1038/s41467‑024‑46043‑y 38395893
    [Google Scholar]
  77. Sun C. Wang A. Zhou Y. Chen P. Wang X. Huang J. Gao J. Wang X. Shu L. Lu J. Dai W. Bu Z. Ji J. He J. Spatially resolved multi-omics highlights cell-specific metabolic remodeling and interactions in gastric cancer. Nat. Commun. 2023 14 1 2692 10.1038/s41467‑023‑38360‑5 37164975
    [Google Scholar]
  78. Backshall A. Sharma R. Clarke S.J. Keun H.C. Pharmacometabonomic profiling as a predictor of toxicity in patients with inoperable colorectal cancer treated with capecitabine. Clin. Cancer Res. 2011 17 9 3019 3028 10.1158/1078‑0432.CCR‑10‑2474 21415219
    [Google Scholar]
  79. Stebbing J. Sharma A. North B. Athersuch T.J. Zebrowski A. Pchejetski D. Coombes R.C. Nicholson J.K. Keun H.C. A metabolic phenotyping approach to understanding relationships between metabolic syndrome and breast tumour responses to chemotherapy. Ann. Oncol. 2012 23 4 860 866 10.1093/annonc/mdr347 21821546
    [Google Scholar]
  80. Wang D. Li W. Zou Q. Yin L. Du Y. Gu J. Suo J. Serum metabolomic profiling of human gastric cancer and its relationship with the prognosis. Oncotarget 2017 8 66 110000 110015 10.18632/oncotarget.21314 29299125
    [Google Scholar]
  81. Liu Y. Borchert G.L. Donald S.P. Diwan B.A. Anver M. Phang J.M. Proline oxidase functions as a mitochondrial tumor suppressor in human cancers. Cancer Res. 2009 69 16 6414 6422 10.1158/0008‑5472.CAN‑09‑1223 19654292
    [Google Scholar]
  82. Hirayama A. Kami K. Sugimoto M. Sugawara M. Toki N. Onozuka H. Kinoshita T. Saito N. Ochiai A. Tomita M. Esumi H. Soga T. Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Res. 2009 69 11 4918 4925 10.1158/0008‑5472.CAN‑08‑4806 19458066
    [Google Scholar]
  83. Chen J.L. Tang H.Q. Hu J.D. Fan J. Hong J. Gu J.Z. Metabolomics of gastric cancer metastasis detected by gas chromatography and mass spectrometry. World J. Gastroenterol. 2010 16 46 5874 5880 10.3748/wjg.v16.i46.5874 21155010
    [Google Scholar]
  84. DeBerardinis R.J. Keshari K.R. Metabolic analysis as a driver for discovery, diagnosis, and therapy. Cell 2022 185 15 2678 2689 10.1016/j.cell.2022.06.029 35839759
    [Google Scholar]
  85. Behboudi E. Charostad J. Nakhaie M. Khajouei A. Ghelmani Y. JNK Signaling Pathways and Oncoviruses %J Iranian. J. Med. Microbiol. 2024 18 3 148 162
    [Google Scholar]
  86. Hoseinnezhad T. Soltani N. Ziarati S. Behboudi E. Mousavi M.J. The role of HLA genetic variants in COVID ‐19 susceptibility, severity, and mortality: A global review. J. Clin. Lab. Anal. 2024 38 1-2 e25005 10.1002/jcla.25005 38251811
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073379369250513115909
Loading
/content/journals/cchts/10.2174/0113862073379369250513115909
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test