Skip to content
2000
image of Elucidating the Action Mechanism of Shenling Baizhu Powder in the Treatment of Ulcerative Colitis Based on Network Pharmacology and Experimental Validation

Abstract

Objective

To explore the therapeutic mechanisms of Shenling Baizhu Powder (SLBZ) in ulcerative colitis (UC) using network pharmacology and experimental validation, assessing its potential as an alternative therapy.

Methods

Active constituents and targets of SLBZ were identified using TCMSP, DrugBank, and CTD. A UC mouse model was induced with DSS and treated with SLBZ for 14 days. Histopathological changes and serum levels of IL-4, TNF-α, and HIF-1α were measured.

Results

SLBZ contained 408 active ingredients with 2118 targets, 610 of which were associated with UC. Key components included quercetin, betulin, catharanthine, and glyasperin B. Core targets were TP53, AKT1, JUN, and HSP90AA1. SLBZ modulated PI3K/Akt, JAK2/STAT3, and TNF pathways. Histological analysis showed SLBZ alleviated DSS-induced colonic tissue injury, reduced TNF-α and STAT3, and upregulated IL-4.

Conclusion

SLBZ targets key proteins and pathways in UC, suggesting its potential as a multi-targeted therapeutic agent. Further studies are needed to validate its efficacy and safety.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073376167250527025217
2025-06-13
2025-11-29
Loading full text...

Full text loading...

References

  1. Le Berre C. Honap S. Peyrin-Biroulet L. Ulcerative colitis. Lancet 2023 402 10401 571 584 10.1016/S0140‑6736(23)00966‑2 37573077
    [Google Scholar]
  2. Ai Y.J. He M.Q. Wang Y.T. Liang Q.L. Review of classical prescriptions in treatment of ulcerative colitis. China J. Chin. Materia. Medica 2022 47 21 5797 5805 10.19540/j.cnki.cjcmm.20220713.501 36471997
    [Google Scholar]
  3. Chen S. Liu Q. Zhang Y. Xie Z. Research progress of treatment of ulcerative colitis with traditional Chinese medicine compound based on cell signal pathway. Chin. Archiv. Tradit. Med. 2022 41 01 107 111 10.13193/j.issn.1673‑7717.2023.01.025
    [Google Scholar]
  4. Sun Y. Wang X. Xin G. Liu L. Research progress on mechanisms of natural polysaccharides in improving UC. Acta Chin. Med. Pharmacol. 2022 50 5 92 500 10.19664/j.cnki.
    [Google Scholar]
  5. Chen M. Wang H. Xie R. Analysis of differential genes and functions of macrophages in ulcerative colitis. China Med. Herald 2022 19 7 10.3969/j.issn.1673‑7210.2022.7.yycyzx202207007
    [Google Scholar]
  6. Zhang L. Zhang S. Tan H. Chang X. Study on the mechanism of action of Rhizoma Coptidis and Cortex Phellodendri inthe treatment of ulcerative colitis based on network pharmacology. World. Chin. Med. 2022 17 2 147 157 10.3969/j.issn.1673‑7202.2022.02.001
    [Google Scholar]
  7. Zhang X. Xu X. Sun L. Zhang L. MOHAMMED, I. Research progress of pharmacologic effects and mechanism on ulcerative colitis of Indigo Naturalis and its active ingredients. Drug. Evaluat. Res. 2022 45 5 997 1002 10.7501/j.issn.1674‑6376.2022.05.025
    [Google Scholar]
  8. Meng M. Bai C. Wan B. Zhao L. Li Z. Li D. Zhang S. Husain K. A network pharmacology‐based study on irritable bowel syndrome prevention and treatment utilizing shenling baizhu powder. BioMed Res. Int. 2021 2021 1 4579850 10.1155/2021/4579850 34859100
    [Google Scholar]
  9. Gao Z. Wang J. Lu G. Wu Q. Wang S. Wu X. Ou C. Wu Z. Yu H. Wang Y. Exploration the mechanism of Shenling Baizhu San in the treatment of chronic obstructive pulmonary disease based on UPLC-Q-TOF-MS/MS, network pharmacology and in vitro experimental verification. J. Ethnopharmacol. 2024 324 117728 10.1016/j.jep.2024.117728
    [Google Scholar]
  10. Chen D. Wang Y. Yang J. Ou W. Lin G. Zeng Z. Lu X. Chen Z. Zou L. Tian Y. Wu A. Keating S.E. Yang Q. Lin C. Liang Y. Shenling Baizhu San ameliorates non-alcoholic fatty liver disease in mice by modulating gut microbiota and metabolites. Front. Pharmacol. 2024 15 1343755 1343755 10.3389/fphar.2024.1343755 38720776
    [Google Scholar]
  11. Tang B. Zheng X. Luo Q. Li X. Yang Y. Bi Y. Chen Y. Han L. Chen H. Lu C. Network pharmacology and gut microbiota insights: Unraveling Shenling Baizhu powder’s role in psoriasis treatment. Front. Pharmacol. 2024 15 1362161 1362161 10.3389/fphar.2024.1362161 38425649
    [Google Scholar]
  12. Cheng K.W. Shi J. Huang C. Tan H.Y. Ning Z. Lyu C. Xu Y. Mok H.L. Zhai L. Xiang L. Qin H. Lin C. Zhu L. Bian Z. Integrated metabolomics and serum-feces pharmacochemistry-based network pharmacology to reveal the mechanisms of an herbal prescription against ulcerative colitis. Comput. Biol. Med. 2024 178 108775 108775 10.1016/j.compbiomed.2024.108775 38941901
    [Google Scholar]
  13. Duran T. Tuncer Z. Kalyniukova A. Hradecký J. Bouyahya A. Ibrahim Uba A. Senkardes I. Kumar M. Ponniya, S.; Zengin, G. Constituents of alexander’s celery (Smyrnium olusatrum) extracts and their antioxidant, enzyme inhibitory and anticancer effects based on in vitro, in silico and network pharmacology methods. J. Mol. Liq. 2024 409 125414 125414 10.1016/j.molliq.2024.125414
    [Google Scholar]
  14. Wu X. Dou Y. Yang Y. Bian D. Luo J. Tong B. Xia Y. Dai Y. Arctigenin exerts anti-colitis efficacy through inhibiting the differentiation of Th1 and Th17 cells via an mTORC1-dependent pathway. Biochem. Pharmacol. 2015 96 4 323 336 10.1016/j.bcp.2015.06.008 26074264
    [Google Scholar]
  15. Bi X. Peng H. Xiong H. Xiao L. Zhang H. Li J. Sun Y. Fabrication of the rapid self-assembly hydrogels loaded with Luteolin: Their structural characteristics and protection effect on ulcerative colitis. Foods 2024 13 7 1105 10.3390/foods13071105 38611409
    [Google Scholar]
  16. Magadán-Corpas P. Pérez-Valero Á. Ye S. Sordon S. Huszcza E. Popłoński J. Villar C.J. Lombó F. Gut microbiota and inflammation modulation in a rat model for ulcerative colitis after the intraperitoneal administration of apigenin, luteolin, and xanthohumol. Int. J. Mol. Sci. 2024 25 6 3236 10.3390/ijms25063236 38542480
    [Google Scholar]
  17. van Gennep S. Fung I.C.N. Jong D.C. Ramkisoen R.K. Clasquin E. de Jong J. de Vries L.C.S. de Jonge W.J. Gecse K.B. Löwenberg M. Woolcott J.C. Mookhoek A. D’Haens G.R. Histological outcomes and JAK-STAT signalling in ulcerative colitis patients treated with tofacitinib. J. Crohn’s Colitis 2024 18 8 1283 1291 10.1093/ecco‑jcc/jjae031 38506097
    [Google Scholar]
  18. Fu J. Zang Y. Zhou Y. Chen C. Shao S. Shi G. Wu L. Zhu G. Sun T. Zhang D. Zhang T. Exploring a novel triptolide derivative possess anti-colitis effect via regulating T cell differentiation. Int. Immunopharmacol. 2021 94 107472 107472 10.1016/j.intimp.2021.107472 33611058
    [Google Scholar]
  19. Li Q. Zheng S. Niu K. Qiao Y. Liu Y. Zhang Y. Li B. Zheng C. Yu B. Paeoniflorin improves ulcerative colitis via regulation of PI3K AKT based on network pharmacology analysis. Exp. Ther. Med. 2024 27 4 125 125 10.3892/etm.2024.12414 38414786
    [Google Scholar]
  20. Vuyyuru S.K. Kedia S. Kalaivani M. Sahu P. Kante B. Kumar P. Ranjan M.K. Makharia G. Ananthakrishnan A. Ahuja V. Efficacy and safety of fecal transplantation versus targeted therapies in ulcerative colitis: Network meta-analysis. Future Microbiol. 2021 16 15 1215 1227 10.2217/fmb‑2020‑0242
    [Google Scholar]
  21. Liu H. Johnston L.J. Wang F. Ma X. Triggers for the Nrf2/ARE signaling pathway and its nutritional regulation: Potential therapeutic applications of ulcerative colitis. Int. J. Mol. Sci. 2021 22 21 11411 11411 10.3390/ijms222111411 34768841
    [Google Scholar]
  22. Liu J. Gao Y. Zhou J. Tang X. Wang P. Shen L. Chen S. Changes in serum inflammatory cytokine levels and intestinal flora in a self-healing dextran sodium sulfate-induced ulcerative colitis murine model. Life Sci. 2020 263 118587 10.1016/j.lfs.2020.118587
    [Google Scholar]
  23. Zhang S. Shen H. Zheng K. Ye B. Expert consensus on TCM diagnosis and treatment of ulcerative colitis. J. Tradit. Chin. Med. Pharm. 2017 32 08 3585 3589
    [Google Scholar]
  24. Lai J. Jiang F. Zhuo X. Xu X. Liu L. Yin K. Wang J. Zhao J. Xu W. Liu H. Wang X. Jiang W. Wang K. Yang S. Guo H. Qi F. Yuan X. Lin X. Fu G. Effects of Shenling Baizhu powder on pyrotinib-induced diarrhea: Analysis of gut microbiota, metabonomics, and network pharmacology. Chin. Med. 2022 17 1 140 140 10.1186/s13020‑022‑00696‑3 36528679
    [Google Scholar]
  25. Sun J. Jiang X.J. Wang Y.D. Ma K.L. Li Z.H. Wang T.C. Wang T.M. Shao J. Wang C.Z. Mechanism of Shenling Baizhu Powder in alleviation of ulcerative colitis in mice based on high-throughput transcriptome sequencing. China J. Chin. Materia Medica 2022 47 22 6155 6163 10.19540/j.cnki.cjcmm.20220801.401 36471940
    [Google Scholar]
  26. Li Z. Zhang X. Liu C. Peng Q. Wu Y. Wen Y. Zheng R. Yan Q. Ma J. Macrophage-biomimetic nanoparticles ameliorate ulcerative colitis through reducing inflammatory factors expression. J. Innate Immun. 2021 14 4 380 392 10.1159/000519363 34724662
    [Google Scholar]
  27. Cui Y. Hu J. Li Y. Au R. Fang Y. Cheng C. Xu F. Li W. Wu Y. Zhu L. Shen H. Integrated network pharmacology, molecular docking and animal experiment to explore the efficacy and potential mechanism of Baiyu Decoction against ulcerative colitis by Enema. Drug Des. Devel. Ther. 2023 17 17 3453 3472 10.2147/DDDT.S432268 38024534
    [Google Scholar]
  28. Sun C. Xiao K. He Y. Li X. Common mechanisms of Wumei pills in treating ulcerative colitis and type 2 diabetes: Exploring an integrative approach through network pharmacology. Medicine (Baltimore) 2024 103 4 e37094 10.1097/MD.0000000000037094 38277529
    [Google Scholar]
  29. Huang X.L. Xu J. Zhang X.H. Qiu B.Y. Peng L. Zhang M. Gan H.T. PI3K/Akt signaling pathway is involved in the pathogenesis of ulcerative colitis. Inflamm. Res. 2011 60 8 727 734 10.1007/s00011‑011‑0325‑6 21442372
    [Google Scholar]
  30. Lin X. Lan M. Xu C. Pan W. Zhang C. Li F. Xuan W. Chen M. Wang H. Huang M. Peach gum polysaccharides promotes epithelial proliferation to attenuate ulcerative colitis by PI3K/AKT pathway. J. Funct. Foods 2023 107 105662 10.1016/j.jff.2023.105662
    [Google Scholar]
  31. Ke F. Wang Z. Song X. Ma Q. Hu Y. Jiang L. Zhang Y. Liu Y. Zhang Y. Gong W. Cryptotanshinone induces cell cycle arrest and apoptosis through the JAK2/STAT3 and PI3K/Akt/NFkB pathways in cholangiocarcinoma cells. Drug Des. Devel. Ther. 2017 11 1753 1766 10.2147/DDDT.S132488 28670110
    [Google Scholar]
  32. Zhang X. Zhang L. Chan J.C.P. Wang X. Zhao C. Xu Y. Xiong W. Chung W.C. Liang F. Wang X. Miao J. Bian Z. Chinese herbal medicines in the treatment of ulcerative colitis: A review. Chin. Med. 2022 17 1 43 10.1186/s13020‑022‑00591‑x 35379276
    [Google Scholar]
  33. Zong Y. Meng J. Mao T. Han Q. Zhang P. Shi L. Repairing the intestinal mucosal barrier of traditional Chinese medicine for ulcerative colitis: A review. Front. Pharmacol. 2023 14 1273407 10.3389/fphar.2023.1273407 37942490
    [Google Scholar]
  34. Cordes F. Foell D. Ding J.N. Varga G. Bettenworth D. Differential regulation of JAK/STAT-signaling in patients with ulcerative colitis and Crohn’s disease. World J. Gastroenterol. 2020 26 28 4055 4075 10.3748/wjg.v26.i28.4055 32821070
    [Google Scholar]
  35. Tang X. Li X. Wang Y. Zhang Z. Deng A. Wang W. Zhang H. Qin H. Wu L. Butyric acid increases the therapeutic effect of EHLJ7 on ulcerative colitis by inhibiting JAK2/STAT3/SOCS1 signaling pathway. Front. Pharmacol. 2020 10 1553 10.3389/fphar.2019.01553 32038241
    [Google Scholar]
  36. Zundler S. Neurath M. Integrating immunologic signaling networks: The JAK/STAT pathway in colitis and colitis-associated cancer. Vaccines 2016 4 1 5 10.3390/vaccines4010005 26938566
    [Google Scholar]
  37. Chyuan I.T. Tsai H.F. Wu C.S. Hsu P.N. TRAIL suppresses gut inflammation and inhibits colitogeic T-cell activation in experimental colitis via an apoptosis-independent pathway. Mucosal Immunol. 2019 12 4 980 989 10.1038/s41385‑019‑0168‑y 31076664
    [Google Scholar]
  38. Yang W. Cong Y. Exploring colitis through dynamic T Cell adoptive transfer models. Inflamm. Bowel Dis. 2023 29 10 1673 1680 10.1093/ibd/izad160 37536274
    [Google Scholar]
  39. Salas A. Hernandez-Rocha C. Duijvestein M. Faubion W. McGovern D. Vermeire S. Vetrano S. Vande Casteele N. JAK–STAT pathway targeting for the treatment of inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 2020 17 6 323 337 10.1038/s41575‑020‑0273‑0 32203403
    [Google Scholar]
  40. Lu Z. Xiong W. Xiao S. Lin Y. Yu K. Yue G. Liu Q. Li F. Liang J. Huanglian Jiedu Decoction ameliorates DSS-induced colitis in mice via the JAK2/STAT3 signalling pathway. Chin. Med. 2020 15 1 45 10.1186/s13020‑020‑00327‑9 32411291
    [Google Scholar]
  41. Heidari N. Abbasi-Kenarsari H. Namaki S. Baghaei K. Zali M.R. Ghaffari Khaligh S. Hashemi S.M. Adipose‐derived mesenchymal stem cell‐secreted exosome alleviates dextran sulfate sodium‐induced acute colitis by Treg cell induction and inflammatory cytokine reduction. J. Cell. Physiol. 2021 236 8 5906 5920 10.1002/jcp.30275 33728664
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073376167250527025217
Loading
/content/journals/cchts/10.2174/0113862073376167250527025217
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test