Skip to content
2000
image of The Gut Microbiome and Metabolomics Profiles of Dust-exposed Rats

Abstract

Introduction

Limited treatments for silicosis necessitate further study of pneumoconiosis characteristics and pathophysiology. This study employs metabolomics to investigate metabolite changes and identify biomarkers for understanding pneumoconiosis pathogenesis.

Methods

18 healthy SPF male SD rats were divided into three groups: control, coal dust, and silica. Rats were exposed to coal dust, silica, or sterile saline for 8 weeks, after which blood, lung tissue, and feces were collected. Lung pathology was assessed, and inflammatory factors (IL-6, IL-11) were measured. 16S rDNA sequencing and UHPLC-QTOFMS metabolomics were used to analyze intestinal flora and fecal metabolites.

Results

After 8 weeks of dust exposure, silica-exposed rats showed significantly reduced weight and elevated serum IL-6 and IL-11 levels compared to controls (P < 0.05). Lung tissue pathology revealed silica group rats exhibited lung damage, intensified inflammation, and silicon nodule formation. Coal dust group rats showed lung tissue changes with fibroblast aggregation. ? diversity analysis showed decreased Shannon index and increased Simpson index in the coal dust group, and a decreased Simpson index in the silica group. ? diversity analysis confirmed significant differences in gut microbiota between dust-exposed groups and controls. Metabolomics identified 11 differential metabolites in rat feces, meeting criteria of Fold change > 2, VIP > 1, and P < 0.05.

Conclusion

Dust exposure disrupts intestinal flora and metabolic state, with potential metabolic markers identified in both coal dust and silica groups, implicating fructose and mannose metabolism in coal dust exposure and sphingolipid metabolism in silica exposure.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073354023250314050225
2025-04-07
2025-11-07
Loading full text...

Full text loading...

References

  1. Ing S.K. Kho S.S. Chronic silicosis. N. Engl. J. Med. 2024 390 19 e46 10.1056/NEJMicm2312247 38738767
    [Google Scholar]
  2. Yen C.M. Lin C.L. Lin M.C. Chen H.Y. Lu N.H. Kao C.H. Pneumoconiosis increases the risk of congestive heart failure. Medicine (Baltimore) 2016 95 25 e3972 10.1097/MD.0000000000003972 27336897
    [Google Scholar]
  3. Hoy R.F. Chambers D.C. Silica‐related diseases in the modern world. Allergy 2020 75 11 2805 2817 10.1111/all.14202 31989662
    [Google Scholar]
  4. Rose C. Heinzerling A. Patel K. Sack C. Wolff J. Zell-Baran L. Weissman D. Hall E. Sooriash R. McCarthy R.B. Bojes H. Korotzer B. Flattery J. Weinberg J.L. Potocko J. Jones K.D. Reeb-Whitaker C.K. Reul N.K. LaSee C.R. Materna B.L. Raghu G. Harrison R. Severe silicosis in engineered stone fabrication workers — California, Colorado, Texas, and Washington, 2017–2019. MMWR Morb. Mortal. Wkly. Rep. 2019 68 38 813 818 10.15585/mmwr.mm6838a1 31557149
    [Google Scholar]
  5. Fan Y. Xu W. Wang Y. Wang Y. Yu S. Ye Q. Association of occupational dust exposure with combined chronic obstructive pulmonary disease and pneumoconiosis: A cross-sectional study in China. BMJ Open 2020 10 9 e038874 10.1136/bmjopen‑2020‑038874 32907907
    [Google Scholar]
  6. Peng Y. Li X. Cai S. Chen Y. Dai W. Liu W. Zhou Z. Duan J. Chen P. Prevalence and characteristics of COPD among pneumoconiosis patients at an occupational disease prevention institute: A cross-sectional study. BMC Pulm. Med. 2018 18 1 22 10.1186/s12890‑018‑0581‑0 29378587
    [Google Scholar]
  7. Churg A. Muller N.L. Update on silicosis. Surg. Pathol. Clin. 2024 17 2 193 202 10.1016/j.path.2023.11.005 38692804
    [Google Scholar]
  8. Cheng D. Lian W. Wang T. Xi S. Jia X. Li Z. Xiong H. Wang Y. Sun W. Zhou S. Peng L. Han L. Liu Y. Ni C. The interplay of Cxcl10+/Mmp14+ monocytes and Ccl3+ neutrophils proactively mediates silica-induced pulmonary fibrosis. J. Hazard. Mater. 2024 467 133713 10.1016/j.jhazmat.2024.133713 38335607
    [Google Scholar]
  9. Hang W. Bu C. Cui Y. Chen K. Zhang D. Li H. Wang S. Research progress on the pathogenesis and prediction of pneumoconiosis among coal miners. Environ. Geochem. Health 2024 46 9 319 10.1007/s10653‑024‑02114‑z 39012521
    [Google Scholar]
  10. Schlünssen V. Mandrioli D. Pega F. Momen N.C. Ádám B. Chen W. Cohen R.A. Godderis L. Göen T. Hadkhale K. Kunpuek W. Lou J. Mandic-Rajcevic S. Masci F. Nemery B. Popa M. Rajatanavin N. Sgargi D. Siriruttanapruk S. Sun X. Suphanchaimat R. Thammawijaya P. Ujita Y. van der Mierden S. Vangelova K. Ye M. Zungu M. Scheepers P.T.J. The prevalences and levels of occupational exposure to dusts and/or fibres (silica, asbestos and coal): A systematic review and meta-analysis from the WHO/ILO joint estimates of the work-related burden of disease and injury. Environ. Int. 2023 178 107980 10.1016/j.envint.2023.107980 37487377
    [Google Scholar]
  11. Thaiss C.A. Zmora N. Levy M. Elinav E. The microbiome and innate immunity. Nature 2016 535 7610 65 74 10.1038/nature18847 27383981
    [Google Scholar]
  12. Molavinia S. Dayer D. Khodayar M.J. Goudarzi G. Salehcheh M. Suspended particulate matter promotes epithelial-to-mesenchymal transition in alveolar epithelial cells via TGF-β1-mediated ROS/IL-8/SMAD3 axis. J. Environ. Sci. (China) 2024 141 139 150 10.1016/j.jes.2023.07.037 38408815
    [Google Scholar]
  13. Zhang X. Zhang Z. Wang P. Xiao S. Han K. Tang Y. Liu H. Bai Y. Jin Y. Li J. Li X. Xia Q. Shen F. Comparison of properties of dust in alveolar of rats and the workplace. Exp. Lung Res. 2021 47 5 239 249 10.1080/01902148.2021.1916649 33896309
    [Google Scholar]
  14. Blackford J.A. Jr Antonini J.M. Castranova V. Dey R.D. Intratracheal instillation of silica up-regulates inducible nitric oxide synthase gene expression and increases nitric oxide production in alveolar macrophages and neutrophils. Am. J. Respir. Cell Mol. Biol. 1994 11 4 426 431 10.1165/ajrcmb.11.4.7522485 7522485
    [Google Scholar]
  15. Sagawa T. Ichinose T. Honda A. Kuroda E. Ishikawa R. Miyasaka N. Nagao M. Okuda T. Kawahito Y. Takano H. Acceleration of acute lung inflammation by IL-1α released through cell death of alveolar macrophages upon phagocytosis of fine Asian sand dust particles. Environ. Int. 2024 194 109178 10.1016/j.envint.2024.109178 39662280
    [Google Scholar]
  16. Du S. Zhou Y. Hu H. Lin L. Zhang Z. Silica-induced ROS in alveolar macrophages and its role on the formation of pulmonary fibrosis via polarizing macrophages into M2 phenotype: A review. Toxicol. Mech. Methods 2024 10 1 12 39223849
    [Google Scholar]
  17. Zhang Y. Yang Z. Feng Y. Li R. Zhang Q. Geng H. Dong C. Effects of coarse chalk dust particles (2.5–10 μm) on respiratory burst and oxidative stress in alveolar macrophages. Environ. Sci. Pollut. Res. Int. 2015 22 16 12450 12457 10.1007/s11356‑015‑4437‑3 25903174
    [Google Scholar]
  18. Wei Y. You Y. Zhang J. Ban J. Min H. Li C. Chen J. Crystalline silica-induced macrophage pyroptosis interacting with mitophagy contributes to pulmonary fibrosis via modulating mitochondria homeostasis. J. Hazard. Mater. 2023 454 131562 10.1016/j.jhazmat.2023.131562 37148789
    [Google Scholar]
  19. Wynn T.A. Chawla A. Pollard J.W. Macrophage biology in development, homeostasis and disease. Nature 2013 496 7446 445 455 10.1038/nature12034 23619691
    [Google Scholar]
  20. Lurje I. Gaisa N.T. Weiskirchen R. Tacke F. Mechanisms of organ fibrosis: Emerging concepts and implications for novel treatment strategies. Mol. Aspects Med. 2023 92 101191 10.1016/j.mam.2023.101191 37236017
    [Google Scholar]
  21. Chen S. Yuan J. Yao S. Jin Y. Chen G. Tian W. Xi J. Xu Z. Weng D. Chen J. Lipopolysaccharides may aggravate apoptosis through accumulation of autophagosomes in alveolar macrophages of human silicosis. Autophagy 2015 11 12 2346 2357 10.1080/15548627.2015.1109765 26553601
    [Google Scholar]
  22. Selvarajah B. Platé M. Chambers R.C. Pulmonary fibrosis: Emerging diagnostic and therapeutic strategies. Mol. Aspects Med. 2023 94 101227 10.1016/j.mam.2023.101227 38000335
    [Google Scholar]
  23. Zhao M. Wang M. Chen X. Gao Y. Chen Q. Wang L. Bao Q. Sun D. Du W. Xu Y. Xie L. Jiang X. Zhang L. Peng L. Zhang B. Yao Y. Targeting progranulin alleviated silica particles-induced pulmonary inflammation and fibrosis via decreasing Il-6 and Tgf-β1/Smad. J. Hazard. Mater. 2024 465 133199 10.1016/j.jhazmat.2023.133199 38103296
    [Google Scholar]
  24. Wu X. Wei S. Chen M. Li J. Wei Y. Zhang J. Dong W. P2RY13 exacerbates intestinal inflammation by damaging the intestinal mucosal barrier via activating IL-6/STAT3 pathway. Int. J. Biol. Sci. 2022 18 13 5056 5069 10.7150/ijbs.74304 35982893
    [Google Scholar]
  25. Bashashati M. Moradi M. Sarosiek I. Interleukin-6 in irritable bowel syndrome: A systematic review and meta-analysis of IL-6 (-G174C) and circulating IL-6 levels. Cytokine 2017 99 132 138 10.1016/j.cyto.2017.08.017 28886490
    [Google Scholar]
  26. Zhuang T. Chen M.H. Wu R.X. Wang J. Hu X.D. Meng T. Wu A.H. Li Y. Yang Y.F. Lei Y. Hu D.H. Li Y.X. Zhang L. Sun A.J. Lu W. Zhang G.N. Zuo J.L. Ruan C.C. ALKBH5-mediated m6A modification of IL-11 drives macrophage-to-myofibroblast transition and pathological cardiac fibrosis in mice. Nat. Commun. 2024 15 1 1995 10.1038/s41467‑024‑46357‑x 38443404
    [Google Scholar]
  27. Ng B. Dong J. D’Agostino G. Viswanathan S. Widjaja A.A. Lim W.W. Ko N.S.J. Tan J. Chothani S.P. Huang B. Xie C. Pua C.J. Chacko A.M. Guimarães-Camboa N. Evans S.M. Byrne A.J. Maher T.M. Liang J. Jiang D. Noble P.W. Schafer S. Cook S.A. Interleukin-11 is a therapeutic target in idiopathic pulmonary fibrosis. Sci. Transl. Med. 2019 11 511 eaaw1237 10.1126/scitranslmed.aaw1237 31554736
    [Google Scholar]
  28. Yi X. Lu H. Liu X. He J. Li B. Wang Z. Zhao Y. Zhang X. Yu X. Unravelling the enigma of the human microbiome: Evolution and selection of sequencing technologies. Microb. Biotechnol. 2024 17 1 e14364 10.1111/1751‑7915.14364 37929823
    [Google Scholar]
  29. Flint H.J. Scott K.P. Louis P. Duncan S.H. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol. 2012 9 10 577 589 10.1038/nrgastro.2012.156 22945443
    [Google Scholar]
  30. Guo J. Yang L. Regulation effect of the intestinal flora and intervention strategies targeting the intestinal flora in alleviation of pulmonary fibrosis development. Biosci. Microbiota Food Health 2024 43 4 293 299 10.12938/bmfh.2023‑100 39364128
    [Google Scholar]
  31. Mazmanian S.K. Liu C.H. Tzianabos A.O. Kasper D.L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 2005 122 1 107 118 10.1016/j.cell.2005.05.007 16009137
    [Google Scholar]
  32. Rooks M.G. Garrett W.S. Gut microbiota, metabolites and host immunity. Nat. Rev. Immunol. 2016 16 6 341 352 10.1038/nri.2016.42 27231050
    [Google Scholar]
  33. Chotirmall S.H. Gellatly S.L. Budden K.F. Mac Aogáin M. Shukla S.D. Wood D.L.A. Hugenholtz P. Pethe K. Hansbro P.M. Microbiomes in respiratory health and disease: An Asia‐Pacific perspective. Respirology 2017 22 2 240 250 10.1111/resp.12971 28102970
    [Google Scholar]
  34. Estaki M. Pither J. Baumeister P. Little J.P. Gill S.K. Ghosh S. Ahmadi-Vand Z. Marsden K.R. Gibson D.L. Cardiorespiratory fitness as a predictor of intestinal microbial diversity and distinct metagenomic functions. Microbiome 2016 4 1 42 10.1186/s40168‑016‑0189‑7 27502158
    [Google Scholar]
  35. Vital M. Harkema J.R. Rizzo M. Tiedje J. Brandenberger C. Alterations of the murine gut microbiome with age and allergic airway disease. J. Immunol. Res. 2015 2015 1 8 10.1155/2015/892568 26090504
    [Google Scholar]
  36. Lee W.J. Brey P.T. How microbiomes influence metazoan development: Insights from history and Drosophila modeling of gut-microbe interactions. Annu. Rev. Cell Dev. Biol. 2013 29 1 571 592 10.1146/annurev‑cellbio‑101512‑122333 23808845
    [Google Scholar]
  37. Schirmer M. Smeekens S.P. Vlamakis H. Jaeger M. Oosting M. Franzosa E.A. ter Horst R. Jansen T. Jacobs L. Bonder M.J. Kurilshikov A. Fu J. Joosten L.A.B. Zhernakova A. Huttenhower C. Wijmenga C. Netea M.G. Xavier R.J. Linking the human gut microbiome to inflammatory cytokine production capacity. Cell 2016 167 4 1125 1136.e8 10.1016/j.cell.2016.10.020 27814509
    [Google Scholar]
  38. Nicholson J.K. Holmes E. Kinross J. Burcelin R. Gibson G. Jia W. Pettersson S. Host-gut microbiota metabolic interactions. Science 2012 336 6086 1262 1267 10.1126/science.1223813 22674330
    [Google Scholar]
  39. Yatomi M. Akasaka K. Sato S. Chida M. Kanbe M. Sawada H. Yokota I. Wakamatsu I. Muto S. Sato M. Yamaguchi K. Miura Y. Tsurumaki H. Sakurai R. Hara K. Koga Y. Sunaga N. Yamakawa H. Matsushima H. Yamazaki S. Endo Y. Motegi S. Hisada T. Maeno T. A case of autoimmune pulmonary alveolar proteinosis during the course of treatment of rapidly progressive interstitial pneumonia associated with anti-MDA5 antibody-positive dermatomyositis. BMC Pulm. Med. 2024 24 1 170 10.1186/s12890‑024‑02989‑9 38589870
    [Google Scholar]
  40. Janssen L.M.F. Lemaire F. Marain N.F. Ronsmans S. Heylen N. Vanstapel A. Velde G.V. Vanoirbeek J.A.J. Pollard K.M. Ghosh M. Hoet P.H.M. Differential pulmonary toxicity and autoantibody formation in genetically distinct mouse strains following combined exposure to silica and diesel exhaust particles. Part. Fibre Toxicol. 2024 21 1 8 10.1186/s12989‑024‑00569‑7 38409078
    [Google Scholar]
  41. Li Y. Xiao K. Xiao S. Wang M. Pei S. Liu H. Bai Y. Jin Y. Li J. Li X. Xia Q. Shen F. Difference in intestinal flora and characteristics of plasma metabonomics in pneumoconiosis patients. Metabolites 2022 12 10 917 10.3390/metabo12100917 36295819
    [Google Scholar]
  42. Vojinovic D. Radjabzadeh D. Kurilshikov A. Amin N. Wijmenga C. Franke L. Ikram M.A. Uitterlinden A.G. Zhernakova A. Fu J. Kraaij R. van Duijn C.M. Relationship between gut microbiota and circulating metabolites in population-based cohorts. Nat. Commun. 2019 10 1 5813 10.1038/s41467‑019‑13721‑1 31862950
    [Google Scholar]
  43. Visconti A. Le Roy C.I. Rosa F. Rossi N. Martin T.C. Mohney R.P. Li W. de Rinaldis E. Bell J.T. Venter J.C. Nelson K.E. Spector T.D. Falchi M. Interplay between the human gut microbiome and host metabolism. Nat. Commun. 2019 10 1 4505 10.1038/s41467‑019‑12476‑z 31582752
    [Google Scholar]
  44. Zhao L. Ni Y. Su M. Li H. Dong F. Chen W. Wei R. Zhang L. Guiraud S.P. Martin F.P. Rajani C. Xie G. Jia W. High throughput and quantitative measurement of microbial metabolome by gas chromatography/mass spectrometry using automated alkyl chloroformate derivatization. Anal. Chem. 2017 89 10 5565 5577 10.1021/acs.analchem.7b00660 28437060
    [Google Scholar]
  45. Zheng X. Xie G. Zhao A. Zhao L. Yao C. Chiu N.H.L. Zhou Z. Bao Y. Jia W. Nicholson J.K. Jia W. The footprints of gut microbial-mammalian co-metabolism. J. Proteome Res. 2011 10 12 5512 5522 10.1021/pr2007945 21970572
    [Google Scholar]
  46. Fazio J.C. Gandhi S.A. Flattery J. Heinzerling A. Kamangar N. Afif N. Cummings K.J. Harrison R.J. Silicosis among immigrant engineered stone (quartz) countertop fabrication workers in california. JAMA Intern. Med. 2023 183 9 991 998 10.1001/jamainternmed.2023.3295 37486642
    [Google Scholar]
  47. Yıldızgören M.T. Öziş T.N. Baki A.E. Tutkun E. Yılmaz H. Tiftik T. Ekiz T. Özgirgin N. Evaluation of bone mineral density and 25-hydroxyvitamin D levels in subjects with silica exposure. Environ. Health Prev. Med. 2016 21 3 149 153 10.1007/s12199‑016‑0509‑3 26825971
    [Google Scholar]
  48. Agus A. Planchais J. Sokol H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe 2018 23 6 716 724 10.1016/j.chom.2018.05.003 29902437
    [Google Scholar]
  49. Koh A. De Vadder F. Kovatcheva-Datchary P. Bäckhed F. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell 2016 165 6 1332 1345 10.1016/j.cell.2016.05.041 27259147
    [Google Scholar]
  50. Smith C.A. Want E.J. O’Maille G. Abagyan R. Siuzdak G. XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 2006 78 3 779 787 10.1021/ac051437y 16448051
    [Google Scholar]
  51. Chen F. Stappenbeck T.S. Microbiome control of innate reactivity. Curr. Opin. Immunol. 2019 56 107 113 10.1016/j.coi.2018.12.003 30677624
    [Google Scholar]
  52. Huang W. Zhou L. Guo H. Xu Y. Xu Y. The role of short-chain fatty acids in kidney injury induced by gut-derived inflammatory response. Metabolism 2017 68 20 30 10.1016/j.metabol.2016.11.006 28183450
    [Google Scholar]
  53. Tang W.H.W. Li D.Y. Hazen S.L. Dietary metabolism, the gut microbiome, and heart failure. Nat. Rev. Cardiol. 2019 16 3 137 154 10.1038/s41569‑018‑0108‑7 30410105
    [Google Scholar]
  54. Roberts A.B. Gu X. Buffa J.A. Hurd A.G. Wang Z. Zhu W. Gupta N. Skye S.M. Cody D.B. Levison B.S. Barrington W.T. Russell M.W. Reed J.M. Duzan A. Lang J.M. Fu X. Li L. Myers A.J. Rachakonda S. DiDonato J.A. Brown J.M. Gogonea V. Lusis A.J. Garcia-Garcia J.C. Hazen S.L. Development of a gut microbe–targeted nonlethal therapeutic to inhibit thrombosis potential. Nat. Med. 2018 24 9 1407 1417 10.1038/s41591‑018‑0128‑1 30082863
    [Google Scholar]
  55. Blaženović I. Kind T. Ji J. Fiehn O. Software tools and approaches for compound identification of LC-MS/MS data in metabolomics. Metabolites 2018 8 2 31 10.3390/metabo8020031 29748461
    [Google Scholar]
  56. Jonsson A.L. Bäckhed F. Role of gut microbiota in atherosclerosis. Nat. Rev. Cardiol. 2017 14 2 79 87 10.1038/nrcardio.2016.183 27905479
    [Google Scholar]
  57. Morris A. Beck J.M. Schloss P.D. Campbell T.B. Crothers K. Curtis J.L. Flores S.C. Fontenot A.P. Ghedin E. Huang L. Jablonski K. Kleerup E. Lynch S.V. Sodergren E. Twigg H. Young V.B. Bassis C.M. Venkataraman A. Schmidt T.M. Weinstock G.M. Comparison of the respiratory microbiome in healthy nonsmokers and smokers. Am. J. Respir. Crit. Care Med. 2013 187 10 1067 1075 10.1164/rccm.201210‑1913OC 23491408
    [Google Scholar]
  58. Thorburn A.N. McKenzie C.I. Shen S. Stanley D. Macia L. Mason L.J. Roberts L.K. Wong C.H.Y. Shim R. Robert R. Chevalier N. Tan J.K. Mariño E. Moore R.J. Wong L. McConville M.J. Tull D.L. Wood L.G. Murphy V.E. Mattes J. Gibson P.G. Mackay C.R. Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat. Commun. 2015 6 1 7320 10.1038/ncomms8320 26102221
    [Google Scholar]
  59. Gray J. Oehrle K. Worthen G. Alenghat T. Whitsett J. Deshmukh H. Intestinal commensal bacteria mediate lung mucosal immunity and promote resistance of newborn mice to infection. Sci. Transl. Med. 2017 9 376 eaaf9412 10.1126/scitranslmed.aaf9412 28179507
    [Google Scholar]
  60. Schuijt T.J. Lankelma J.M. Scicluna B.P. de Sousa e Melo, F.; Roelofs, J.J.T.H.; de Boer, J.D.; Hoogendijk, A.J.; de Beer, R.; de Vos, A.; Belzer, C.; de Vos, W.M.; van der Poll, T.; Wiersinga, W.J. The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia. Gut 2016 65 4 575 583 10.1136/gutjnl‑2015‑309728 26511795
    [Google Scholar]
  61. Liu J. Chang G. Huang J. Wang Y. Ma N. Roy A.C. Shen X. Sodium butyrate inhibits the inflammation of lipopolysaccharide-induced acute lung injury in mice by regulating the toll-like receptor 4/nuclear factor κB signaling pathway. J. Agric. Food Chem. 2019 67 6 1674 1682 10.1021/acs.jafc.8b06359 30661349
    [Google Scholar]
  62. Lopez-Siles M. Khan T.M. Duncan S.H. Harmsen H.J.M. Garcia-Gil L.J. Flint H.J. Cultured representatives of two major phylogroups of human colonic Faecalibacterium prausnitzii can utilize pectin, uronic acids, and host-derived substrates for growth. Appl. Environ. Microbiol. 2012 78 2 420 428 10.1128/AEM.06858‑11 22101049
    [Google Scholar]
  63. Abrahamsson T.R. Jakobsson H.E. Andersson A.F. Björkstén B. Engstrand L. Jenmalm M.C. Low gut microbiota diversity in early infancy precedes asthma at school age. Clin. Exp. Allergy 2014 44 6 842 850 10.1111/cea.12253 24330256
    [Google Scholar]
  64. Arrieta M.C. Stiemsma L.T. Dimitriu P.A. Thorson L. Russell S. Yurist-Doutsch S. Kuzeljevic B. Gold M.J. Britton H.M. Lefebvre D.L. Subbarao P. Mandhane P. Becker A. McNagny K.M. Sears M.R. Kollmann T. Mohn W.W. Turvey S.E. Brett Finlay B. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci. Transl. Med. 2015 7 307 307ra152 10.1126/scitranslmed.aab2271 26424567
    [Google Scholar]
  65. Gonzalez P.S. O’Prey J. Cardaci S. Barthet V.J.A. Sakamaki J. Beaumatin F. Roseweir A. Gay D.M. Mackay G. Malviya G. Kania E. Ritchie S. Baudot A.D. Zunino B. Mrowinska A. Nixon C. Ennis D. Hoyle A. Millan D. McNeish I.A. Sansom O.J. Edwards J. Ryan K.M. Mannose impairs tumour growth and enhances chemotherapy. Nature 2018 563 7733 719 723 10.1038/s41586‑018‑0729‑3 30464341
    [Google Scholar]
  66. Donati C. Cencetti F. Bernacchioni C. Vannuzzi V. Bruni P. Role of sphingosine 1-phosphate signalling in tissue fibrosis. Cell. Signal. 2021 78 109861 10.1016/j.cellsig.2020.109861 33253915
    [Google Scholar]
  67. Petrick L. Rosenblat M. Paland N. Aviram M. Silicon dioxide nanoparticles increase macrophage atherogenicity: Stimulation of cellular cytotoxicity, oxidative stress, and triglycerides accumulation. Environ. Toxicol. 2016 31 6 713 723 10.1002/tox.22084 25448404
    [Google Scholar]
  68. Burke D.G. Fouhy F. Harrison M.J. Rea M.C. Cotter P.D. O’Sullivan O. Stanton C. Hill C. Shanahan F. Plant B.J. Ross R.P. The altered gut microbiota in adults with cystic fibrosis. BMC Microbiol. 2017 17 1 58 10.1186/s12866‑017‑0968‑8 28279152
    [Google Scholar]
  69. Madan J.C. Koestler D.C. Stanton B.A. Davidson L. Moulton L.A. Housman M.L. Moore J.H. Guill M.F. Morrison H.G. Sogin M.L. Hampton T.H. Karagas M.R. Palumbo P.E. Foster J.A. Hibberd P.L. O’Toole G.A. Serial analysis of the gut and respiratory microbiome in cystic fibrosis in infancy: interaction between intestinal and respiratory tracts and impact of nutritional exposures. MBio 2012 3 4 e00251 e12 10.1128/mBio.00251‑12 22911969
    [Google Scholar]
  70. Bazett M. Honeyman L. Stefanov A.N. Pope C.E. Hoffman L.R. Haston C.K. Cystic fibrosis mouse model-dependent intestinal structure and gut microbiome. Mamm. Genome 2015 26 222 10.1007/s00335‑015‑9560‑4
    [Google Scholar]
  71. Ren Z. Song R. Wang S. Quan H. Yang L. Sun L. Zhao B. Lu H. The biosynthesis pathway of swainsonine, a new anticancer drug from three endophytic fungi. J. Microbiol. Biotechnol. 2017 27 11 1897 1906 10.4014/jmb.1709.09003 29092390
    [Google Scholar]
  72. Liu X. Sun W. Ma W. Wang H. Xu K. Zhao L. He Y. Smoking related environmental microbes affecting the pulmonary microbiome in Chinese population. Sci. Total Environ. 2022 829 154652 10.1016/j.scitotenv.2022.154652 35307427
    [Google Scholar]
  73. Wang R. Huang C. Yang W. Wang C. Wang P. Guo L. Cao J. Huang L. Song H. Zhang C. Zhang Y. Shi G. Respiratory microbiota and radiomics features in the stable COPD patients. Respir. Res. 2023 24 1 131 10.1186/s12931‑023‑02434‑1 37173744
    [Google Scholar]
  74. Schneeberger P.H.H. Zhang C.Y.K. Santilli J. Chen B. Xu W. Lee Y. Wijesinha Z. Reguera-Nuñez E. Yee N. Ahmed M. Boonstra K. Ramendra R. Frankel C.W. Palmer S.M. Todd J.L. Martinu T. Coburn B. Lung Allograft microbiome association with gastroesophageal reflux, inflammation, and allograft dysfunction. Am. J. Respir. Crit. Care Med. 2022 206 12 1495 1507 10.1164/rccm.202110‑2413OC 35876129
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073354023250314050225
Loading
/content/journals/cchts/10.2174/0113862073354023250314050225
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test