Skip to content
2000
image of Therapeutic Effects and Molecular Mechanism of Banxia Xiexin Decoction on Intestinal Mucosal Barrier Function in Sepsis

Abstract

Introduction

Sepsis is a critical illness with high morbidity and mortality, particularly due to gastrointestinal complications. Despite improvements in therapeutic strategies, effective pharmacological treatments remain lacking. Banxia Xiexin Decoction (BXD), a traditional Chinese formula, has shown potential in regulating intestinal function. This study aimed to investigate the therapeutic effects and underlying molecular mechanisms of BXD in sepsis-induced intestinal injury, focusing on the PINK1/Parkin pathway.

Methods

Human intestinal epithelial cell (HIEC) injury induced by lipopolysaccharide (LPS) and a cecal ligation and perforation (CLP) rat model of sepsis were used. Experimental groups received BXD at varying doses, while PINK1 knockdown HIECs were used to assess mechanistic pathways. ELISA was employed to measure IL-6, IL-1β, IFABP, and DAO levels. Pathological changes were assessed by H&E staining, while tight junction proteins (ZO-1, Occludin), TOM20, mitochondrial membrane potential, and autophagy markers (PINK1, Parkin, LC3, p62) were analyzed via immunohistochemistry, immunofluorescence, flow cytometry, Western blot, and RT-PCR.

Results

BXD treatment significantly reduced IL-6, IL-1β, DAO, and IFABP levels compared with controls. It restored ZO-1 and Occludin expression, improving intestinal mucosal barrier function. In septic rats, BXD enhanced TOM20 expression, preserved mitochondrial membrane potential, and upregulated the PINK1/Parkin-mediated mitophagy pathway. These effects collectively reduced inflammation, mitochondrial dysfunction, and intestinal damage.

Discussion

Findings suggest that BXD exerts protective effects against sepsis-induced intestinal injury by reducing systemic inflammation and promoting mitochondrial homeostasis through the activation of PINK1/Parkin-mediated mitophagy.

Conclusion

BXD alleviates intestinal mucosal damage and systemic inflammation in sepsis, offering a promising therapeutic approach by targeting mitochondrial autophagy.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073349597250410111941
2025-04-29
2025-12-21
Loading full text...

Full text loading...

References

  1. Kaukonen K.M. Bailey M. Suzuki S. Pilcher D. Bellomo R. Expert consensus on gastrointestinal dysfunction secondary to sepsis with integrating Traditional Chinese Medicine and Western medicine. Chin. Critical. Care. Med. 2022 34 2 113 120
    [Google Scholar]
  2. Kaukonen K.M. Bailey M. Suzuki S. Pilcher D. Bellomo R. Mortality related to severe sepsis and septic shock among critically ill patients in Australia and New Zealand, 2000-2012. JAMA 2014 311 13 1308 1316 10.1001/jama.2014.2637 24638143
    [Google Scholar]
  3. Knoop S.T. Skrede S. Langeland N. Flaatten H.K. Epidemiology and impact on all-cause mortality of sepsis in Norwegian hospitals: A national retrospective study. PLoS One 2017 12 11 e0187990 10.1371/journal.pone.0187990 29149187
    [Google Scholar]
  4. Nguyen N.Q. Ng M.P. Chapman M. Fraser R.J. Holloway R.H. The impact of admission diagnosis on gastric emptying in critically ill patients. Crit. Care 2007 11 1 R16 10.1186/cc5685 17288616
    [Google Scholar]
  5. Caddell K.A. Martindale R. McClave S.A. Miller K. Can the intestinal dysmotility of critical illness be differentiated from postoperative ileus? Curr. Gastroenterol. Rep. 2011 13 4 358 367 10.1007/s11894‑011‑0206‑8 21626118
    [Google Scholar]
  6. von Groote T. Meersch-Dini M. Biomarkers for the prediction and judgement of Sepsis and Sepsis complications: A step towards precision medicine? Clin Med 2022 11 (19) 5782 10.3390/jcm11195782
    [Google Scholar]
  7. Dellinger R.P. Levy M.M. Rhodes A. Annane D. Gerlach H. Opal S.M. Sevransky J.E. Sprung C.L. Douglas I.S. Jaeschke R. Osborn T.M. Nunnally M.E. Townsend S.R. Reinhart K. Kleinpell R.M. Angus D.C. Deutschman C.S. Machado F.R. Rubenfeld G.D. Webb S.A. Beale R.J. Vincent J.L. Moreno R. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit. Care Med. 2013 41 2 580 637 10.1097/CCM.0b013e31827e83af 23353941
    [Google Scholar]
  8. Chiu C. Legrand M. Epidemiology of sepsis and septic shock. Curr. Opin. Anaesthesiol. 2021 34 2 71 76 10.1097/ACO.0000000000000958 33492864
    [Google Scholar]
  9. Sharma S. Kumar S. Singh R.K. A recent advance on phytochemicals, nutraceutical and pharmacological activities of buckwheat. Comb. Chem. High Throughput Screen. 2024 27 18 2654 2666 10.2174/0113862073265824231004115334 37818573
    [Google Scholar]
  10. Xiong X Che CT Borrelli F Moudgil KD Caminiti G Evidence-based TAM classic herbal formula: From myth to science Evid Complement Alternat Medic 2017 2017 9493076 10.1155/2017/9493076
    [Google Scholar]
  11. Li B. Rui J. Ding X. Yang X. Exploring the multicomponent synergy mechanism of Banxia Xiexin Decoction on irritable bowel syndrome by a systems pharmacology strategy. J. Ethnopharmacol. 2019 233 158 168 10.1016/j.jep.2018.12.033 30590198
    [Google Scholar]
  12. Lu H. Qin J. Han N. Xie F. Gong L. Li C. Banxia Xiexin decoction is effective to prevent and control irinotecan-induced delayed diarrhea in recurrent small cell lung cancer. Integr. Cancer Ther. 2018 17 4 1109 1114 10.1177/1534735418801532 30229683
    [Google Scholar]
  13. Feng X. Xue F. He G. Huang S. Ni Q. Banxia Xiexin decoction inhibits the expression of PD-L1 through multi-target and multi-pathway regulation of major oncogenes in gastric cancer. OncoTargets Ther. 2021 14 3297 3307 10.2147/OTT.S288442 34040394
    [Google Scholar]
  14. Li F. Li J. Li S. Guo S. Li P. Modulatory effects of chinese herbal medicines on energy metabolism in ischemic heart diseases. Front. Pharmacol. 2020 11 995 10.3389/fphar.2020.00995 32719602
    [Google Scholar]
  15. Liang Y. Chen B. Liang D. Quan X. Gu R. Meng, Z Pharmacological effects of Astragaloside IV: A review. Molecules 2023 28 16 6118 10.3390/molecules28166118
    [Google Scholar]
  16. Li L. Pan C.S. Yan L. Cui Y.C. Liu Y.Y. Mu H.N. He K. Hu B.H. Chang X. Sun K. Fan J.Y. Huang L. Han J.Y. Ginsenoside Rg1 ameliorates rat myocardial ischemia-reperfusion injury by modulating energy metabolism pathways. Front. Physiol. 2018 9 FEB 78 10.3389/fphys.2018.00078 29467677
    [Google Scholar]
  17. Chang X. Yan H. Fei J. Jiang M. Zhu H. Lu D. Gao X. Berberine reduces methylation of the MTTP promoter and alleviates fatty liver induced by a high-fat diet in rats. J. Lipid Res. 2010 51 9 2504 2515 10.1194/jlr.M001958 20567026
    [Google Scholar]
  18. Fang X. Wu H. Wei J. Miao R. Zhang Y. Tian J. Research progress on the pharmacological effects of berberine targeting mitochondria. Front. Endocrinol. (Lausanne) 2022 13 982145 10.3389/fendo.2022.982145
    [Google Scholar]
  19. Habtemariam S. Berberine pharmacology and the gut microbiota: A hidden therapeutic link. Pharmacol. Res. 2020 155 104722 10.1016/j.phrs.2020.104722 32105754
    [Google Scholar]
  20. Yang S. Li F. Lu S. Ren L. Bian S. Liu M. Zhao D. Wang S. Wang J. Ginseng root extract attenuates inflammation by inhibiting the MAPK/NF-κB signaling pathway and activating autophagy and p62-Nrf2-Keap1 signaling in vitro and in vivo. J. Ethnopharmacol. 2022 283 Jan 114739 10.1016/j.jep.2021.114739
    [Google Scholar]
  21. Chiu C.J. McArdle A.H. Brown R. Scott H.J. Gurd F.N. Intestinal mucosal lesion in low-flow states. I. A morphological, hemodynamic, and metabolic reappraisal. Arch. Surg. 1970 101 4 478 483 10.1001/archsurg.1970.01340280030009 5457245
    [Google Scholar]
  22. Nair A. Jacob S. A simple practice guide for dose conversion between animals and human. J. Basic Clin. Pharm. 2016 7 2 27 31 10.4103/0976‑0105.177703 27057123
    [Google Scholar]
  23. Paoli C.J. Reynolds M.A. Sinha M. Gitlin M. Crouser E. Epidemiology and Costs of Sepsis in the United States: An analysis based on timing of diagnosis and severity level. Crit. Care Med. 2018 46 12 1889 1897 10.1097/CCM.0000000000003342 30048332
    [Google Scholar]
  24. Lee Z.Y. Ibrahim N.A. Mohd-Yusof B.N. Prevalence and duration of reasons for enteral nutrition feeding interruption in a tertiary intensive care unit. Nutrition 2018 53 26 33 10.1016/j.nut.2017.11.014 29627715
    [Google Scholar]
  25. Zhang R Chen YN Zhang J Liu J Elevated serum levels of diamine oxidase, D-lactate and lipopolysaccharides are associated with metabolic-associated fatty liver disease J Gastroenterol Hepatol 2023 35 1 94 10.1097/MEG.0000000000002456
    [Google Scholar]
  26. Celi P. Verlhac V. Pérez Calvo E. Schmeisser J. Kluenter A.M. Biomarkers of gastrointestinal functionality in animal nutrition and health. Anim. Feed Sci. Technol. 2019 250 9 31 10.1016/j.anifeedsci.2018.07.012
    [Google Scholar]
  27. Tan Z. Ou Y. Cai W. Zheng Y. Li H. Mao Y. Advances in the clinical application of histamine and diamine oxidase (DAO) activity: A review. Catalysts 2023 13m 1 48 10.3390/catal13010048
    [Google Scholar]
  28. Remund B Yilmaz B Sokollik C D-Lactate: Implications for gastrointestinal diseases Children 2023 10 6 945 10.3390/children10060945
    [Google Scholar]
  29. Ewaschuk J.B. Naylor J.M. Zello G.A. D-lactate in human and ruminant metabolism. J. Nutr. 2005 135 7 1619 1625 10.1093/jn/135.7.1619 15987839
    [Google Scholar]
  30. Pohanka M. D-Lactic acid as a metabolite: Toxicology, diagnosis, and detection. BioMed Res. Int. 2020 2020 3419034
    [Google Scholar]
  31. Biburger M. Tiegs G. α-galactosylceramide-induced liver injury in mice is mediated by TNF-α but independent of Kupffer cells. J. Immunol. 2005 175 3 1540 1550 10.4049/jimmunol.175.3.1540 16034092
    [Google Scholar]
  32. Guo Y.Y. Liu M.L. He X.D. Jiang C.Q. Liu R.L. Functional changes of intestinal mucosal barrier in surgically critical patients. World J. Emerg. Med. 2010 1 3 205 208 25214969
    [Google Scholar]
  33. Kumari A Silakari O Singh RK Recent advances in colony stimulating factor-1 receptor/c-FMS as an emerging target for various therapeutic implications Biomedicine & pharmacotherapy 2018 103 662 679
    [Google Scholar]
  34. Yoseph B.P. Klingensmith N.J. Liang Z. Breed E.R. Burd E.M. Mittal R. Dominguez J.A. Petrie B. Ford M.L. Coopersmith C.M. Mechanisms of intestinal barrier dysfunction in sepsis. Shock 2016 46 1 52 59 10.1097/SHK.0000000000000565 27299587
    [Google Scholar]
  35. Peoc’h K Nuzzo A Guedj K Paugam C Corcos O Diagnosis biomarkers in acute intestinal ischemic injury: so close, yet so far (CCLM) 2018 56 3 373 385 10.1515/cclm‑2017‑0291 28841570
    [Google Scholar]
  36. Cao Y Zheng Y Niu J Zhu C Yang D Rong F Efficacy of Banxia Xiexin decoction for chronic atrophic gastritis: A systematic review and meta-analysis PLoS ONE 2020 15 10 e0241202 10.1371/journal.pone.0241202
    [Google Scholar]
  37. Ji Q. Yang Y. Song X. Han X. Wang W. Banxia Xiexin decoction in the treatment of chronic atrophic gastritis: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2020 99 42 e22110 10.1097/MD.0000000000022110
    [Google Scholar]
  38. Matsuda N. Sato S. Shiba K. Okatsu K. Saisho K. Gautier C.A. Sou Y. Saiki S. Kawajiri S. Sato F. Kimura M. Komatsu M. Hattori N. Tanaka K. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J. Cell Biol. 2010 189 2 211 221 10.1083/jcb.200910140 20404107
    [Google Scholar]
  39. Geisler S. Holmström K.M. Skujat D. Fiesel F.C. Rothfuss O.C. Kahle P.J. Springer W. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell Biol. 2010 12 2 119 131 10.1038/ncb2012 20098416
    [Google Scholar]
  40. Iwawaki T. From property of IL-1β to imaging of inflammation. Japanese. J. Clin. Immunol. 2017 40 5 329 336 10.2177/jsci.40.329 29238014
    [Google Scholar]
  41. Sitia R. Rubartelli A. The unconventional secretion of IL-1β: Handling a dangerous weapon to optimize inflammatory responses. Semin. Cell Dev. Biol. 2018 83 12 21 10.1016/j.semcdb.2018.03.011 29571971
    [Google Scholar]
  42. Singh R.K. Key heterocyclic cores for smart anticancer drug–design Part I. Bentham Science Publishers 2022 10.2174/97898150400741220101
    [Google Scholar]
  43. Shin W.H. Park J.H. Chung K.C. The central regulator p62 between ubiquitin proteasome system and autophagy and its role in the mitophagy and Parkinson’s disease. BMB Rep. 2020 53 1 56 63 10.5483/BMBRep.2020.53.1.283 31818366
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073349597250410111941
Loading
/content/journals/cchts/10.2174/0113862073349597250410111941
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test