Skip to content
2000
Volume 29, Issue 1
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Atopic dermatitis is a common inflammatory skin disease worldwide that is characterized by skin barrier dysfunction, itching, and a reduced quality of life.

Objective

The research at hand aimed to delve into the anti-atopic dermatitis mechanism of Herba Siegesbeckiae, a traditional medicinal herb, using a metabolomic approach.

Methods

The molecular mechanism by which Herba Siegesbeckiae acts against atopic dermatitis was investigated by establishing a mouse model of atopic dermatitis while conducting a metabolomics analysis on its metabolites.

Results

Interleukin IL-13, IL-17A, IL-3, IL-31, IL-33, IL4, IL-5, TSLP, IgE, and histamine levels in serum, participating in inhibiting itching and regulating immunity signaling were found to be restored to varying degrees in AD treating with HS. A total of 31 differential metabolites were selected from metabolomics results, among which N-acetyl-L-alanine (VIP = 1.62), N-acetyl-L-methionine (VIP = 1.5), uracil (VIP = 1.47), and prostaglandin E2 (VIP = 1.4) play important roles in the anti-AD regulatory mechanisms of HS and can be used as biomarkers. In addition, the mechanisms of HS anti-AD have been shown to be associated with seven metabolic pathways, including β-alanine metabolism, glycerophospholipid metabolism, histidine metabolism, and so on.

Conclusion

In conclusion, HS demonstrated properties that counteract Atopic Dermatitis by suppressing itchiness and boosting the immune system, subsequently controlling the concentrations of related metabolites.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073345094241226112758
2025-02-04
2026-02-22
Loading full text...

Full text loading...

References

  1. KimEY KimSB KimEJ Phyllostachys nigra Munro var alleviates inflammatory chemokine expression and DNCB-induced atopic- like dermatitis in BALB/c mice. J. Ethnopharmacol.,2024318Pt B11695310.1016/j.jep.2023.116953
    [Google Scholar]
  2. StänderS. Atopic dermatitis.N. Engl. J. Med.2021384121136114310.1056/NEJMra2023911 33761208
    [Google Scholar]
  3. BawanyF. NorthcottC.A. BeckL.A. PigeonW.R. Sleep disturbances and atopic dermatitis: Relationships, methods for assessment, and therapies.J. Allergy Clin. Immunol. Pract.2021941488150010.1016/j.jaip.2020.12.007
    [Google Scholar]
  4. SacotteR. SilverbergJ.I. Epidemiology of adult atopic dermatitis.Clin. Dermatol.201836559560510.1016/j.clindermatol.2018.05.007 30217272
    [Google Scholar]
  5. AkhtarS. AlsayedR.K.M.E. AhmadF. AlHammadiA. Al-KhawagaS. AlHaramiS.M.A.M. AlamM.A. Al NaamaK.A.H.N. BuddenkotteJ. UddinS. SteinhoffM. AhmadA. Epigenetic control of inflammation in Atopic Dermatitis.Semin. Cell Dev. Biol.2024154Pt C19920710.1016/j.semcdb.2023.04.005 37120405
    [Google Scholar]
  6. TorresT. FerreiraE.O. GonçaloM. Mendes-BastosP. SeloresM. FilipeP. Update on Atopic Dermatitis.Acta Med. Port.201932960661310.20344/amp.11963 31493365
    [Google Scholar]
  7. MandlikD.S. MandlikS.K. Atopic dermatitis: new insight into the etiology, pathogenesis, diagnosis and novel treatment strategies.Immunopharmacol. Immunotoxicol.202143210512510.1080/08923973.2021.1889583 33645388
    [Google Scholar]
  8. LovellK. PatelN. RaoS. StrowdL.C. The Future of Atopic Dermatitis Treatment.Adv. Exp. Med. Biol.2024144722724410.1007/978‑3‑031‑54513‑9_19 38724797
    [Google Scholar]
  9. HajarT. LeshemY.A. HanifinJ.M. NedorostS.T. LioP.A. PallerA.S. BlockJ. SimpsonE.L. A systematic review of topical corticosteroid withdrawal (“steroid addiction”) in patients with atopic dermatitis and other dermatoses.J. Am. Acad. Dermatol.2015723541549.e210.1016/j.jaad.2014.11.024 25592622
    [Google Scholar]
  10. WangDM MaX XuZA Qingre Qushi formula suppresses atopic dermatitis via a multi-target mechanism. J. Ethnopharmacol.,2024318Pt A11692310.1016/j.jep.2023.116923
    [Google Scholar]
  11. KumarP. SharmaD.K. AshawatM.S. Traditional herbal medicines, newer herbs and other novel approaches integrated in herbal medicine for atopic dermatitis-a narrative review.Curr. Drug Ther.202015319420810.2174/1574885514666191018165209
    [Google Scholar]
  12. WangQ. LiangY.Y. LiK.W. LiY. NiuF.J. ZhouS.J. WeiH.C. ZhouC.Z. Herba Siegesbeckiae: A review on its traditional uses, chemical constituents, pharmacological activities and clinical studies.J. Ethnopharmacol.202127511411710.1016/j.jep.2021.114117 33848612
    [Google Scholar]
  13. HongY.H. WengL.W. ChangC.C. HsuH.F. WangC.P. WangS.W. HoungJ.Y. Anti-inflammatory effects of Siegesbeckia orientalis ethanol extract in in vitro and in vivo models.BioMed Res. Int.2014201411010.1155/2014/329712 25328884
    [Google Scholar]
  14. LiY.S. ZhangJ. TianG.H. ShangH.C. TangH.B. Kirenol, darutoside and hesperidin contribute to the anti-inflammatory and analgesic activities of Siegesbeckia pubescens makino by inhibiting COX-2 expression and inflammatory cell infiltration.J. Ethnopharmacol.202126811354710.1016/j.jep.2020.113547 33152433
    [Google Scholar]
  15. EngelsN.S. GierlikowskaB. WaltenbergerB. ChangF.R. KissA.K. StuppnerH. A new diterpene and anti-inflammatory Sesquiterpene Lactones from Sigesbeckia orientalis.Planta Med.202086151108111710.1055/a‑1232‑6869 32957145
    [Google Scholar]
  16. HaJ.W. BooY.C. Siegesbeckiae herba extract and chlorogenic acid ameliorate the death of HaCaT keratinocytes exposed to airborne particulate matter by mitigating oxidative stress.Antioxidants20211011176210.3390/antiox10111762 34829633
    [Google Scholar]
  17. Schrimpe-RutledgeA.C. CodreanuS.G. SherrodS.D. McLeanJ.A. Untargeted metabolomics strategies—challenges and emerging directions.J. Am. Soc. Mass Spectrom.201627121897190510.1007/s13361‑016‑1469‑y 27624161
    [Google Scholar]
  18. PerlmanR.L. Mouse models of human disease: An evolutionary perspective.Evol. Med. Public Health201620161eow01410.1093/emph/eow014 27121451
    [Google Scholar]
  19. ChenJ. ChenS. ChenJ. ShenB. JiangZ. XuY. Study on the molecular basis of huanglian jiedu decoction against atopic dermatitis integrating chemistry, biochemistry, and metabolomics strategies.Front. Pharmacol.20211277052410.3389/fphar.2021.770524 34970141
    [Google Scholar]
  20. ChenX. WangY. ZhangX. LiuC. YouC. XuY. Study on the mechanism of anti-atopic dermatitis by herba siegesbeckiae based on system pharmacology.Pharmacogn. Mag.20242031013102210.1177/09731296241242172
    [Google Scholar]
  21. GuoH. ZhangY. ChengB.C.Y. LauM.Y. FuX.Q. LiT. SuT. ZhuP.L. ChanY.C. TseA.K.W. YiT. ChenH.B. YuZ.L. Comparison of the chemical profiles and inflammatory mediator-inhibitory effects of three Siegesbeckia herbs used as Herba Siegesbeckiae (Xixiancao).BMC Complement. Altern. Med.201818114110.1186/s12906‑018‑2205‑x 29720145
    [Google Scholar]
  22. WangJ. XieK. DuanH. WangY. MaH. FuH. Isolation and characterization of diterpene glycosides from Siegesbeckia pubescens.Bioorg. Med. Chem. Lett.20172781815181910.1016/j.bmcl.2017.02.051 28302401
    [Google Scholar]
  23. CaoW LiuJ DaiY Bibliometric analysis of marine traditional chinese medicine in pharmacopoeia of the People's Republic of China: Development, differences, and trends directions. eCAM,20222022397196710.1155/2022/3971967
    [Google Scholar]
  24. JinH. HeR. OyoshiM. GehaR.S. Animal models of atopic dermatitis.J. Invest. Dermatol.20091291314010.1038/jid.2008.106 19078986
    [Google Scholar]
  25. XuY. ChenS. ZhangL. ChenG. ChenJ. The anti-inflammatory and anti-pruritus mechanisms of huanglian jiedu decoction in the treatment of atopic dermatitis.Front. Pharmacol.20211273529510.3389/fphar.2021.735295 34925005
    [Google Scholar]
  26. MetzM. StänderS. Chronic pruritus – Pathogenesis, clinical aspects and treatment.J. Eur. Acad. Dermatol. Venereol.201024111249126010.1111/j.1468‑3083.2010.03850.x 20846147
    [Google Scholar]
  27. YangG. SeokJ.K. KangH.C. ChoY.Y. LeeH.S. LeeJ.Y. Skin barrier abnormalities and immune dysfunction in atopic dermatitis.Int. J. Mol. Sci.2020218286710.3390/ijms21082867 32326002
    [Google Scholar]
  28. Sroka-TomaszewskaJ. TrzeciakM. Molecular mechanisms of atopic dermatitis pathogenesis.Int. J. Mol. Sci.2021228413010.3390/ijms22084130 33923629
    [Google Scholar]
  29. TettamantiL. KritasS.K. GallengaC.E. D’OvidioC. MastrangeloF. RonconiG. CaraffaAl. ToniatoE. ContiP. IL-33 mediates allergy through mast cell activation: Potential inhibitory effect of certain cytokines.J. Biol. Regul. Homeost. Agents201832510611065 30334399
    [Google Scholar]
  30. ObokiK. OhnoT. KajiwaraN. SaitoH. NakaeS. IL-33 and IL-33 receptors in host defense and diseases.Allergol. Int.201059214316010.2332/allergolint.10‑RAI‑0186 20414050
    [Google Scholar]
  31. ImaiY. YasudaK. SakaguchiY. HanedaT. MizutaniH. YoshimotoT. NakanishiK. YamanishiK. Skin-specific expression of IL-33 activates group 2 innate lymphoid cells and elicits atopic dermatitis-like inflammation in mice.Proc. Natl. Acad. Sci. USA201311034139211392610.1073/pnas.1307321110 23918359
    [Google Scholar]
  32. NakajimaS. KabataH. KabashimaK. AsanoK. Anti-TSLP antibodies: Targeting a master regulator of type 2 immune responses.Allergol. Int.202069219720310.1016/j.alit.2020.01.001 31974038
    [Google Scholar]
  33. HowellM.D. KimB.E. GaoP. GrantA.V. BoguniewiczM. DeBenedettoA. SchneiderL. BeckL.A. BarnesK.C. LeungD.Y.M. Cytokine modulation of atopic dermatitis filaggrin skin expression.J. Allergy Clin. Immunol.2007120115015510.1016/j.jaci.2007.04.031 17512043
    [Google Scholar]
  34. DubinC. Del DucaE. Guttman-YasskyE. The IL-4, IL-13 and IL-31 pathways in atopic dermatitis.Expert Rev. Clin. Immunol.202117883585210.1080/1744666X.2021.1940962 34106037
    [Google Scholar]
  35. PalomaresO. AkdisM. Martín-FontechaM. AkdisC.A. Mechanisms of immune regulation in allergic diseases: The role of regulatory T and B cells.Immunol. Rev.2017278121923610.1111/imr.12555 28658547
    [Google Scholar]
  36. CevikbasF. WangX. AkiyamaT. KempkesC. SavinkoT. AntalA. KukovaG. BuhlT. IkomaA. BuddenkotteJ. SoumelisV. FeldM. AleniusH. DillonS.R. CarstensE. HomeyB. BasbaumA. SteinhoffM. A sensory neuron–expressed IL-31 receptor mediates T helper cell–dependent itch: Involvement of TRPV1 and TRPA1.J. Allergy Clin. Immunol.20141332448460.e710.1016/j.jaci.2013.10.048 24373353
    [Google Scholar]
  37. SimonsF.E.R. SimonsK.J. Histamine and H1-antihistamines: Celebrating a century of progress.J. Allergy Clin. Immunol.2011128611391150.e410.1016/j.jaci.2011.09.005 22035879
    [Google Scholar]
  38. BuddenkotteJ. SteinhoffM. Pathophysiology and therapy of pruritus in allergic and atopic diseases.Allergy201065780582110.1111/j.1398‑9995.2010.01995.x 20384615
    [Google Scholar]
  39. WishartD.S. Metabolomics for investigating physiological and pathophysiological processes.Physiol. Rev.20199941819187510.1152/physrev.00035.2018 31434538
    [Google Scholar]
  40. YangB. MukherjeeT. RadhakrishnanR. PaidipallyP. AnsariD. JohnS. VankayalapatiR. TripathiD. YiG. HIV-differentiated metabolite N-Acetyl-L-Alanine dysregulates human natural killer cell responses to Mycobacterium tuberculosis infection.Int. J. Mol. Sci.2023248726710.3390/ijms24087267 37108430
    [Google Scholar]
  41. KounoY. AnrakuM. YamasakiK. OkayamaY. IoharaD. IshimaY. MaruyamaT. Kragh-HansenU. HirayamaF. OtagiriM. N-acetyl-l-methionine is a superior protectant of human serum albumin against photo-oxidation and reactive oxygen species compared to N-acetyl-l-tryptophan.Biochim. Biophys. Acta, Gen. Subj.2014184092806281210.1016/j.bbagen.2014.04.014 24769178
    [Google Scholar]
  42. EvansJ.B. Uracil and pyruvate requirements of anaerobic growth of staphylococci.J. Clin. Microbiol.197521141710.1128/jcm.2.1.14‑17.1975 1225927
    [Google Scholar]
  43. ChanW.K. TanL. ChanK.G. LeeL.H. GohB.H. Nerolidol: A sesquiterpene alcohol with multi-faceted pharmacological and biological activities.Molecules201621552910.3390/molecules21050529 27136520
    [Google Scholar]
  44. GeogheganJ.A. IrvineA.D. FosterT.J. Staphylococcus aureus and atopic dermatitis: A complex and evolving relationship.Trends Microbiol.201826648449710.1016/j.tim.2017.11.008 29233606
    [Google Scholar]
  45. ZhangL. WenX. HouY. YangY. SongW. ZengY. SunJ. Integrated metabolomics and lipidomics study of patients with atopic dermatitis in response to dupilumab.Front. Immunol.202213100253610.3389/fimmu.2022.1002536 36341398
    [Google Scholar]
  46. TsugeK. InazumiT. ShimamotoA. SugimotoY. Molecular mechanisms underlying prostaglandin E2-exacerbated inflammation and immune diseases.Int. Immunol.201931959760610.1093/intimm/dxz021 30926983
    [Google Scholar]
  47. HishikawaD. HashidateT. ShimizuT. ShindouH. Diversity and function of membrane glycerophospholipids generated by the remodeling pathway in mammalian cells.J. Lipid Res.201455579980710.1194/jlr.R046094 24646950
    [Google Scholar]
  48. KnoxS. O’BoyleN.M. Skin lipids in health and disease: A review.Chem. Phys. Lipids202123610505510.1016/j.chemphyslip.2021.105055 33561467
    [Google Scholar]
  49. DasU.N. Arachidonic acid and other unsaturated fatty acids and some of their metabolites function as endogenous antimicrobial molecules: A review.J. Adv. Res.201811576610.1016/j.jare.2018.01.001 30034876
    [Google Scholar]
  50. Kiezel-TsugunovaM. KendallA.C. NicolaouA. Fatty acids and related lipid mediators in the regulation of cutaneous inflammation.Biochem. Soc. Trans.201846111912910.1042/BST20160469 29330355
    [Google Scholar]
  51. WuW. ShiX. XuC. Regulation of T cell signalling by membrane lipids.Nat. Rev. Immunol.2016161169070110.1038/nri.2016.103 27721483
    [Google Scholar]
  52. HolleranW.M. TakagiY. UchidaY. Epidermal sphingolipids: Metabolism, function, and roles in skin disorders.FEBS Lett.2006580235456546610.1016/j.febslet.2006.08.039 16962101
    [Google Scholar]
  53. UchidaY. ParkK. Ceramides in skin health and disease: An update.Am. J. Clin. Dermatol.202122685386610.1007/s40257‑021‑00619‑2 34283373
    [Google Scholar]
  54. BlaessM. DeignerH.P. Derailed ceramide metabolism in atopic dermatitis (AD): A causal starting point for a personalized (basic) therapy.Int. J. Mol. Sci.20192016396710.3390/ijms20163967 31443157
    [Google Scholar]
  55. XiangH. JinS. TanF. XuY. LuY. WuT. Physiological functions and therapeutic applications of neutral sphingomyelinase and acid sphingomyelinase.Biomed. Pharmacother.202113911161010.1016/j.biopha.2021.111610 33957567
    [Google Scholar]
  56. HannunY.A. ObeidL.M. Sphingolipids and their metabolism in physiology and disease.Nat. Rev. Mol. Cell Biol.201819317519110.1038/nrm.2017.107 29165427
    [Google Scholar]
  57. DuanJ. SugawaraT. HiroseM. AidaK. SakaiS. FujiiA. HirataT. Dietary sphingolipids improve skin barrier functions via the upregulation of ceramide synthases in the epidermis.Exp. Dermatol.201221644845210.1111/j.1600‑0625.2012.01501.x 22621186
    [Google Scholar]
  58. HugD.H. HunterJ.K. DunkersonD.D. The potential role for urocanic acid and sunlight in the immune suppression associated with protein malnutrition.J. Photochem. Photobiol. B199844211712310.1016/S1011‑1344(98)00130‑4 9757593
    [Google Scholar]
  59. TanS.P. BrownS.B. GriffithsC. WellerR. GibbsN.K. Feeding filaggrin: Effects of L-histidine supplementation in atopic dermatitis.Clin. Cosmet. Investig. Dermatol.20171040341110.2147/CCID.S146760 29042806
    [Google Scholar]
  60. GuptaJ. MargolisD.J. Filaggrin gene mutations with special reference to atopic dermatitis.Curr. Treat. Options Allergy20207340341310.1007/s40521‑020‑00271‑x 33585163
    [Google Scholar]
  61. HirasawaN. Expression of histidine decarboxylase and its roles in inflammation.Int. J. Mol. Sci.201920237610.3390/ijms20020376 30654600
    [Google Scholar]
  62. SoaresC.L.R. WilairatanaP. SilvaL.R. MoreiraP.S. Vilar BarbosaN.M.M. da SilvaP.R. CoutinhoH.D.M. de MenezesI.R.A. FelipeC.F.B. Biochemical aspects of the inflammatory process: A narrative review.Biomed. Pharmacother.202316811576410.1016/j.biopha.2023.115764 37897973
    [Google Scholar]
  63. HolečekM. Histidine in health and disease: Metabolism, physiological importance, and use as a supplement.Nutrients202012384810.3390/nu12030848 32235743
    [Google Scholar]
  64. ChristensenJ. VecchioS. ElberlingJ. Arendt-NielsenL. AndersenH. Assessing punctate administration of beta-alanine as a potential human model of non-histaminergic itch.Acta Derm. Venereol.201999222222310.2340/00015555‑3067 30320870
    [Google Scholar]
  65. YeZ. WangS. ZhangC. ZhaoY. Coordinated modulation of energy metabolism and inflammation by branched-chain amino acids and fatty acids.Front. Endocrinol.20201161710.3389/fendo.2020.00617 33013697
    [Google Scholar]
  66. de VriesL.E. LunghiM. KrishnanA. KooijT.W.A. Soldati-FavreD. Pantothenate and CoA biosynthesis in Apicomplexa and their promise as antiparasitic drug targets.PLoS Pathog.20211712e101012410.1371/journal.ppat.1010124 34969059
    [Google Scholar]
  67. MilesE.A. ChildsC.E. CalderP.C. Long-chain polyunsaturated fatty acids (LCPUFAs) and the Developing Immune System: A narrative review.Nutrients202113124710.3390/nu13010247 33467123
    [Google Scholar]
  68. NakamuraH. MurayamaT. Role of sphingolipids in arachidonic acid metabolism.J. Pharmacol. Sci.2014124330731210.1254/jphs.13R18CP 24599139
    [Google Scholar]
  69. WangB. WuL. ChenJ. DongL. ChenC. WenZ. HuJ. FlemingI. WangD.W. Metabolism pathways of arachidonic acids: mechanisms and potential therapeutic targets.Signal Transduct. Target. Ther.2021619410.1038/s41392‑020‑00443‑w 33637672
    [Google Scholar]
  70. KroetzD.L. ZeldinD.C. Cytochrome P450 pathways of arachidonic acid metabolism.Curr. Opin. Lipidol.200213327328310.1097/00041433‑200206000‑00007 12045397
    [Google Scholar]
  71. HarrisS.G. PadillaJ. KoumasL. RayD. PhippsR.P. Prostaglandins as modulators of immunity.Trends Immunol.200223314415010.1016/S1471‑4906(01)02154‑8 11864843
    [Google Scholar]
  72. PanchaudA. AvoisL. RouletM. PiletM. HugC. SaugyM. DecosterdL.A. A validated liquid chromatography–mass spectrometry method for the determination of leukotrienes B4 and B5 produced by stimulated human polymorphonuclear leukocytes.Anal. Biochem.20053411586810.1016/j.ab.2005.02.030 15866528
    [Google Scholar]
  73. NodeK. HuoY. RuanX. YangB. SpieckerM. LeyK. ZeldinD.C. LiaoJ.K. Anti-inflammatory properties of cytochrome P450 epoxygenase-derived eicosanoids.Science199928554311276127910.1126/science.285.5431.1276 10455056
    [Google Scholar]
  74. GrahamM.T. NadeauK.C. Lessons learned from mice and man: Mimicking human allergy through mouse models.Clin. Immunol.2014155111610.1016/j.clim.2014.08.002 25131136
    [Google Scholar]
  75. ShioharaT. HayakawaJ. MizukawaY. Animal models for atopic dermatitis: Are they relevant to human disease?J. Dermatol. Sci.20043611910.1016/j.jdermsci.2004.02.013 15488700
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073345094241226112758
Loading
/content/journals/cchts/10.2174/0113862073345094241226112758
Loading

Data & Media loading...

Supplements

Supplementary material, along with the published article, is available on the publisher’s website.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test