Skip to content
2000
Volume 28, Issue 17
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Cardiovascular diseases (CVDs) remain a key contributor to global morbidity and mortality. Being a vital regulator of hypoxia, hypoxia-inducible factor-1α (HIF-1α) is a crucial player in CVD treatment. Recently, increasing attention has been paid to the effect of natural drugs on CVDs. According to some studies, HIF-1α is a potential target for CVD treatment in traditional Chinese medicine. In this study, we describe the mechanism underlying the regulatory role of HIF-1α in CVDs and summarize 30 natural drugs and 3 formulations for CVD treatment through HIF-1α and its signaling pathway. The study provides new ideas for CVD prevention and treatment.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073331615241018081811
2024-11-05
2025-12-20
Loading full text...

Full text loading...

References

  1. AbeH. SembaH. TakedaN. The roles of hypoxia signaling in the pathogenesis of CVD.J. Atheroscler. Thromb.201724988489410.5551/jat.RV17009 28757538
    [Google Scholar]
  2. WuL. ChenY. ChenY. YangW. HanY. LuL. YangK. CaoJ. Effect of HIF‐1α/miR‐10b‐5p/PTEN on hypoxia‐induced cardiomyocyte apoptosis.J. Am. Heart Assoc.2019818e01194810.1161/JAHA.119.011948 31480879
    [Google Scholar]
  3. LiX. ZhangQ. NasserM.I. XuL. ZhangX. ZhuP. HeQ. ZhaoM. Oxygen homeostasis and cardiovascular disease: A role for HIF?Biomed. Pharmacother.202012811033810.1016/j.biopha.2020.110338 32526454
    [Google Scholar]
  4. WangG.L. JiangB.H. SemenzaG.L. Effect of protein kinase and phosphatase inhibitors on expression of hypoxia-inducible factor 1.Biochem. Biophys. Res. Commun.1995216266967510.1006/bbrc.1995.2674 7488163
    [Google Scholar]
  5. YangS.L. WuC. XiongZ.F. FangX. Progress on hypoxia-inducible factor-3: Its structure, gene regulation and biological function (Review).Mol. Med. Rep.20151222411241610.3892/mmr.2015.3689 25936862
    [Google Scholar]
  6. LeeJi-Won BaeS.-H. JeongJ.-W. KimS.-H. KimK.-W. Hypoxia-inducible factor (HIF-1)α: Its protein stability and biological functions.Exp. Mol. Med.2004361210.1038/emm.2004.1
    [Google Scholar]
  7. XuR. WangF. YangH. WangZ. Action sites and clinical application of hif-1α inhibitors.Molecules20222711342610.3390/molecules27113426 35684364
    [Google Scholar]
  8. ShengZ. LuW. ZuoZ. WangD. ZuoP. YaoY. MaG. MicroRNA‐7b attenuates ischemia/reperfusion‐induced H9C2 cardiomyocyte apoptosis via the hypoxia inducible factor‐1/p‐p38 pathway.J. Cell. Biochem.201912069947995510.1002/jcb.28277 30548297
    [Google Scholar]
  9. GengB. WangX. ParkK.H. LeeK.E. KimJ. ChenP. ZhouX. TanT. YangC. ZouX. JanssenP.M. CaoL. YeL. WangX. CaiC. ZhuH. UCHL1 protects against ischemic heart injury via activating HIF-1α signal pathway.Redox Biol.20225210229510.1016/j.redox.2022.102295 35339825
    [Google Scholar]
  10. LiS. LiS. Effects of transplantation of hypoxia inducible factor-1α gene-modified cardiac stem cells on cardiac function of heart failure rats after myocardial infarction.Anatol. J. Cardiol.201820631832910.14744/AnatolJCardiol.2018.91979 30504732
    [Google Scholar]
  11. ZhangY. LiuD. HuH. ZhangP. XieR. CuiW. HIF-1α/BNIP3 signaling pathway-induced-autophagy plays protective role during myocardial ischemia-reperfusion injury.Biomed. Pharmacother.201912010946410.1016/j.biopha.2019.109464 31590128
    [Google Scholar]
  12. JanbandhuV. TallapragadaV. PatrickR. Hif-1a suppresses ROS-induced proliferation of cardiac fibroblasts following MI.Cell Stem Cell2022292281297.e1210.1016/j.stem.2021.10.009 34762860
    [Google Scholar]
  13. KidoM. DuL. SullivanC.C. Hypoxia-inducible factor 1-alpha reduces infarction and attenuates progression of cardiac dysfunction after MI in the mouse.J. Am. Coll. Cardiol.200546112116212410.1016/j.jacc.2005.08.045 16325051
    [Google Scholar]
  14. ChenQ.F. WangW. HuangZ. HuangD.L. Hypoxia-inducible factor-1α attenuates myocardial inflammatory injury in rats induced by coronary microembolization.An. Acad. Bras. Cienc.2020921e2019065810.1590/0001‑3765202020190658 32428089
    [Google Scholar]
  15. LaiX.X. ZhangN. ChenL.Y. Latifolin protects against MI by alleviating myocardial inflammatory via the HIF-1α/NF-κB/IL-6 pathway.Pharm. Biol.20205811156116610.1080/13880209.2020.1840597 33222562
    [Google Scholar]
  16. GuoL. ZhangX. LvN. WangL. GanJ. JiangX. WangY. Therapeutic role and potential mechanism of resveratrol in atherosclerosis: TLR4/NF-κB/HIF-1α.Mediators Inflamm.2023202311310.1155/2023/1097706 37292256
    [Google Scholar]
  17. WaltenbergerB. MocanA. ŠmejkalK. HeissE. AtanasovA. Natural products to counteract the epidemic of cardiovascular and metabolic disorders.Molecules201621680710.3390/molecules21060807 27338339
    [Google Scholar]
  18. LiuX.W. LuM.K. ZhongH.T. WangL.H. FuY.P. Panax notoginseng saponins attenuate myocardial ischemia-reperfusion injury through the HIF-1α/BNIP3 pathway of autophagy.J. Cardiovasc. Pharmacol.2019732929910.1097/FJC.0000000000000640 30531436
    [Google Scholar]
  19. LiuX.W. LuM.K. ZhongH.T. LiuJ.J. FuY.P. Panax notoginseng saponins protect H9c2 cells from hypoxia-reoxygenation injury through the forkhead Box O3a hypoxia-inducible factor-1 alpha cell signaling pathway.J. Cardiovasc. Pharmacol.2021785e681e68910.1097/FJC.0000000000001120 34354001
    [Google Scholar]
  20. JiangL. ZengH. NiL. QiL. XuY. XiaL. YuY. LiuB. YangH. HaoH. LiP. HIF-1α preconditioning potentiates antioxidant activity in ischemic injury: The role of sequential administration of dihydrotanshinone I and protocatechuic aldehyde in cardioprotection.Antioxid. Redox Signal.201931322724210.1089/ars.2018.7624 30799630
    [Google Scholar]
  21. DongP. LiH. YuX. LiQ. LiuJ. LiuC. HanH. Effect and mechanism of “Danggui–kushen” herb pair on ischemic heart disease.Biomed. Pharmacother.202214511245010.1016/j.biopha.2021.112450 34839257
    [Google Scholar]
  22. ToddeV. VeenhuisM. van der KleiI.J. Autophagy: Principles and significance in health and disease.Biochim. Biophys. Acta Mol. Basis Dis.20091792131310.1016/j.bbadis.2008.10.016 19022377
    [Google Scholar]
  23. ZhangJ. NeyP.A. Role of BNIP3 and NIX in cell death, autophagy, and mitophagy.Cell Death Differ.200916793994610.1038/cdd.2009.16 19229244
    [Google Scholar]
  24. FengC.C. LinC.C. LaiY.P. ChenT.S. Marthandam AsokanS. LinJ.Y. LinK.H. ViswanadhaV.P. KuoW.W. HuangC.Y. Hypoxia suppresses myocardial survival pathway through HIF-1α-IGFBP-3-dependent signaling and enhances cardiomyocyte autophagic and apoptotic effects mainly via FoxO3a-induced BNIP3 expression.Growth Factors2016343-4738610.1080/08977194.2016.1191480 27366871
    [Google Scholar]
  25. KongL.Y. XiZ. MaW.T. YangF.Y. NiuL.D. ShiJ.H. Effects of Notch signal on the expressions of HIF-α and autophagy- related genes Beclin1, LC3I, LC3II in oxygen-glucose deprivation induced myocardial cell injury.Chung Kuo Ying Yung Sheng Li Hsueh Tsa Chih201935216516810.12047/j.cjap.5729.2019.036 31250610
    [Google Scholar]
  26. HuangB. ChenN. ChenZ. ShenJ. ZhangH. WangC. SunY. HIF‐1α contributes to hypoxia‐induced VSMC proliferation and migration by regulating autophagy in type A aortic dissection.Adv. Biol.202481230029210.1002/adbi.202300292 37786269
    [Google Scholar]
  27. van der PolA. van GilstW.H. VoorsA.A. van der MeerP. Treating oxidative stress in heart failure: Past, present and future.Eur. J. Heart Fail.201921442543510.1002/ejhf.1320 30338885
    [Google Scholar]
  28. JabsT. Reactive oxygen intermediates as mediators of programmed cell death in plants and animals.Biochem. Pharmacol.199957323124510.1016/S0006‑2952(98)00227‑5 9890550
    [Google Scholar]
  29. PoytonR.O. BallK.A. CastelloP.R. Mitochondrial generation of free radicals and hypoxic signaling.Trends Endocrinol. Metab.200920733234010.1016/j.tem.2009.04.001 19733481
    [Google Scholar]
  30. FangJ. SekiT. MaedaH. Therapeutic strategies by modulating oxygen stress in cancer and inflammation.Adv. Drug Deliv. Rev.200961429030210.1016/j.addr.2009.02.005 19249331
    [Google Scholar]
  31. SemenzaG.L. Hypoxia-inducible factor 1: Master regulator of O2 homeostasis.Curr. Opin. Genet. Dev.19988558859410.1016/S0959‑437X(98)80016‑6 9794818
    [Google Scholar]
  32. LiH.S. ZhouY.N. LiL. LiS.F. LongD. ChenX.L. ZhangJ.B. FengL. LiY.P. HIF-1α protects against oxidative stress by directly targeting mitochondria.Redox Biol.20192510110910.1016/j.redox.2019.101109 30686776
    [Google Scholar]
  33. DavidB.T. CurtinJ.J. GoldbergD.C. ScorpioK. KandaswamyV. HillC.E. Hypoxia-inducible factor 1α (HIF-1α) counteracts the acute death of cells transplanted into the injured spinal cord.eNeuro202073ENEURO.0092-19.201910.1523/ENEURO.0092‑19.2019 31488552
    [Google Scholar]
  34. DavidB.T. CurtinJ.J. BrownJ.L. CouttsD.J.C. BolesN.C. HillC.E. Treatment with hypoxia‐mimetics protects cultured rat Schwann cells against oxidative stress‐induced cell death.Glia20216992215223410.1002/glia.24019 34019306
    [Google Scholar]
  35. MitsosS. KatsanosK. KoletsisE. KagadisG.C. AnastasiouN. DiamantopoulosA. KarnabatidisD. DougenisD. Therapeutic angiogenesis for myocardial ischemia revisited: Basic biological concepts and focus on latest clinical trials.Angiogenesis201215112210.1007/s10456‑011‑9240‑2 22120824
    [Google Scholar]
  36. MengozziM. CervelliniI. VillaP. ErbayraktarZ. GökmenN. YilmazO. ErbayraktarS. ManohasandraM. Van HummelenP. VandenabeeleP. ChernajovskyY. AnnenkovA. GhezziP. Erythropoietin-induced changes in brain gene expression reveal induction of synaptic plasticity genes in experimental stroke.Proc. Natl. Acad. Sci. USA2012109249617962210.1073/pnas.1200554109 22645329
    [Google Scholar]
  37. HongM. ShiH. WangN. TanH.Y. WangQ. FengY. Dual effects of Chinese herbal medicines on angiogenesis in cancer and ischemic stroke treatments: Role of HIF-1 network.Front. Pharmacol.20191069610.3389/fphar.2019.00696 31297056
    [Google Scholar]
  38. SongW. LiangQ. CaiM. TianZ. HIF-1α-induced up-regulation of microRNA-126 contributes to the effectiveness of exercise training on myocardial angiogenesis in MI rats.J. Cell. Mol. Med.20202422129701297910.1111/jcmm.15892 32939968
    [Google Scholar]
  39. WenX. PengY. GaoM. Endothelial transient receptor potential canonical channel regulates angiogenesis and promotes recovery after MI.J. Am. Heart Assoc.2022116e02367810.1161/JAHA.121.023678 35253458
    [Google Scholar]
  40. EltzschigH.K. CarmelietP. Hypoxia and inflammation.N. Engl. J. Med.2011364765666510.1056/NEJMra0910283 21323543
    [Google Scholar]
  41. IshiiD. SchenkA.D. BabaS. FairchildR.L. Role of TNFalpha in early chemokine production and leukocyte infiltration into heart allografts.Am. J. Transplant.2010101596810.1111/j.1600‑6143.2009.02921.x 19958333
    [Google Scholar]
  42. ChenX. LiX. ZhangW. HeJ. XuB. LeiB. WangZ. CatesC. RousselleT. LiJ. Activation of AMPK inhibits inflammatory response during hypoxia and reoxygenation through modulating JNK-mediated NF-κB pathway.Metabolism20188325627010.1016/j.metabol.2018.03.004 29526538
    [Google Scholar]
  43. ZhouP. XieW. SunY. DaiZ. LiG. SunG. SunX. Ginsenoside Rb1 and mitochondria: A short review of the literature.Mol. Cell. Probes2019431510.1016/j.mcp.2018.12.001 30529056
    [Google Scholar]
  44. FanW. HuangY. ZhengH. Ginsenosides for the treatment of metabolic syndrome and CVD: Pharmacology and mechanisms.Biomed. Pharmacother.202013211091510.1016/j.biopha.2020.110915 33254433
    [Google Scholar]
  45. JiangL. YinX. ChenY.H. Proteomic analysis reveals ginsenoside Rb1 attenuates myocardial ischemia/reperfusion injury through inhibiting ROS production from mitochondrial complex I. Theranostics. 2021;11(4):1703.,17202021110.7150/thno.43895 33408776
    [Google Scholar]
  46. QinL. FanS. JiaR. LiuY. Ginsenoside Rg1 protects cardiomyocytes from hypoxia-induced injury through the PI3K/AKT/mTOR pathway.Pharmazie201873634935510.1691/ph.2018.8329 29880088
    [Google Scholar]
  47. YuanC. WangH. YuanZ. Ginsenoside Rg1 inhibits myocardial ischaemia and reperfusion injury via HIF-1 α-ERK signalling pathways in a diabetic rat model.Pharmazie201974315716210.1691/ph.2019.8858 30961682
    [Google Scholar]
  48. LiJ. YangY.L. LiL.Z. ZhangL. LiuQ. LiuK. LiP. LiuB. QiL.W. Succinate accumulation impairs cardiac pyruvate dehydrogenase activity through GRP91-dependent and independent signaling pathways: Therapeutic effects of ginsenoside Rb1.Biochim. Biophys. Acta Mol. Basis Dis.20171863112835284710.1016/j.bbadis.2017.07.017 28736181
    [Google Scholar]
  49. LiuJ. WangY. QiuL. YuY. WangC. Saponins of Panax notoginseng: Chemistry, cellular targets and therapeutic opportunities in CVD.Expert Opin. Investig. Drugs201423452353910.1517/13543784.2014.892582 24555869
    [Google Scholar]
  50. FanJ.S. LiuD.N. HuangG. XuZ.Z. JiaY. ZhangH.G. LiX.H. HeF.T. Panax notoginseng saponins attenuate atherosclerosis via reciprocal regulation of lipid metabolism and inflammation by inducing liver X receptor alpha expression.J. Ethnopharmacol.2012142373273810.1016/j.jep.2012.05.053 22683903
    [Google Scholar]
  51. ZangY. WanJ. ZhangZ. HuangS. LiuX. ZhangW. An updated role of astragaloside IV in heart failure.Biomed. Pharmacother.202012611001210.1016/j.biopha.2020.110012 32213428
    [Google Scholar]
  52. TanY.Q. ChenH.W. LiJ. AstragalosideI.V. An effective drug for the treatment of CVD.Drug Des. Devel. Ther.2020143731374610.2147/DDDT.S272355 32982178
    [Google Scholar]
  53. YuJ. ZhangX. ZhangY. Astragaloside attenuates myocardial injury in a rat model of acute MI by upregulating hypoxia inducible factor-1α and Notch1/Jagged1 signaling.Mol. Med. Rep.20171564015402010.3892/mmr.2017.6522 28487976
    [Google Scholar]
  54. SemwalP. PainuliS. Abu-IzneidT. RaufA. SharmaA. DaştanS.D. KumarM. AlshehriM.M. TaheriY. DasR. MitraS. EmranT.B. Sharifi-RadJ. CalinaD. ChoW.C. Diosgenin: An updated pharmacological review and therapeutic perspectives.Oxid. Med. Cell. Longev.2022202211710.1155/2022/1035441 35677108
    [Google Scholar]
  55. ZhangS.Q. SongY.X. ZhangW.X. ChenM.J. ManS.L. Research on anti-tumor natural product diosgenin.Zhongguo Zhongyao Zazhi202146174360436610.19540/j.cnki.cjcmm.20210610.701 34581038
    [Google Scholar]
  56. LiX. LiuS. QuL. ChenY. YuanC. QinA. LiangJ. HuangQ. JiangM. ZouW. Dioscin and diosgenin: Insights into their potential protective effects in cardiac diseases.J. Ethnopharmacol.202127411401810.1016/j.jep.2021.114018 33716083
    [Google Scholar]
  57. LiX. LiangJ. QinA. WangT. LiuS. LiW. YuanC. QuL. ZouW. Protective effect of Di’ao Xinxuekang capsule against doxorubicin-induced chronic cardiotoxicity.J. Ethnopharmacol.202228711494310.1016/j.jep.2021.114943 34954266
    [Google Scholar]
  58. SunM.Y. MaD.S. ZhaoS. WangL. MaC.Y. BaiY. Salidroside mitigates hypoxia/reoxygenation injury by alleviating endoplasmic reticulum stress induced apoptosis in H9c2 cardiomyocytes.Mol. Med. Rep.20181843760376810.3892/mmr.2018.9403 30132527
    [Google Scholar]
  59. GaoX.F. ShiH.M. SunT. AoH. Effects of radix et rhizoma rhodiolae kirilowii on expressions of von willebrand factor, hypoxia-inducible factor 1 and vascular endothelial growth factor in myocardium of rats with acute MI.J. Chin. Integr. Med.20097543444010.3736/jcim20090507 19435557
    [Google Scholar]
  60. LvJ. SharmaA. ZhangT. WuY. DingX. Pharmacological review on asiatic acid and its derivatives: A potential compound.SLAS Technol.201823211112710.1177/2472630317751840 29361877
    [Google Scholar]
  61. MaZ.G. DaiJ. WeiW.Y. ZhangW.B. XuS.C. LiaoH.H. YangZ. TangQ.Z. Asiatic acid protects against cardiac hypertrophy through activating AMPKα signalling pathway.Int. J. Biol. Sci.201612786187110.7150/ijbs.14213 27313499
    [Google Scholar]
  62. HuoL. ShiW. ChongL. WangJ. ZhangK. LiY. Asiatic acid inhibits left ventricular remodeling and improves cardiac function in a rat model of MI.Exp. Ther. Med.2016111576410.3892/etm.2015.2871 26889217
    [Google Scholar]
  63. HuangX. ZuoL. LvY. ChenC. YangY. XinH. LiY. QianY. Asiatic acid attenuates myocardial ischemia/reperfusion injury via Akt/GSK-3β/HIF-1α signaling in rat H9c2 cardiomyocytes.Molecules2016219124810.3390/molecules21091248 27657024
    [Google Scholar]
  64. WuK. HuM. ChenZ. XiangF. ChenG. YanW. PengQ. ChenX. Asiatic acid enhances survival of human AC16 cardiomyocytes under hypoxia by upregulating miR‐1290.IUBMB Life201769966066710.1002/iub.1648 28686797
    [Google Scholar]
  65. DongY. Morris-NatschkeS.L. LeeK.H. Biosynthesis, total syntheses, and antitumor activity of tanshinones and their analogs as potential therapeutic agents.Nat. Prod. Rep.201128352954210.1039/c0np00035c 21225077
    [Google Scholar]
  66. WuX. LiuL. ZhengQ. YeH. YangH. HaoH. LiP. Dihydrotanshinone I preconditions myocardium against ischemic injury via PKM2 glutathionylation sensitive to ROS.Acta Pharm. Sin. B202313111312710.1016/j.apsb.2022.07.006 36815040
    [Google Scholar]
  67. LiX. SunC. ZhangJ. Protective effects of paeoniflorin on CVD: A pharmacological and mechanistic overview.Front. Pharmacol.202314112296910.3389/fphar.2023.1122969 37324475
    [Google Scholar]
  68. JiQ. YangL. ZhouJ. LinR. ZhangJ. LinQ. WangW. ZhangK. Protective effects of paeoniflorin against cobalt chloride-induced apoptosis of endothelial cells via HIF-1α pathway.Toxicol. In Vitro201226345546110.1016/j.tiv.2012.01.016 22269387
    [Google Scholar]
  69. XuD. LiY. WangJ. DaveyA.K. ZhangS. EvansA.M. The cardioprotective effect of isosteviol on rats with heart ischemia-reperfusion injury.Life Sci.200780426927410.1016/j.lfs.2006.09.008 17055001
    [Google Scholar]
  70. LiuF. SongL. LuZ. Isosteviol improves cardiac function and promotes angiogenesis after MI in rats.Cell Tissue Res.2022387227528510.1007/s00441‑021‑03559‑9 34820705
    [Google Scholar]
  71. YangY.H. MaoJ.W. TanX.L. Research progress on the source, production, and anti-cancer mechanisms of paclitaxel.Chin. J. Nat. Med.2020181289089710.1016/S1875‑5364(20)60032‑2 33357719
    [Google Scholar]
  72. GuoH. ZhengM. JiaoY.B. ZhengH. Paclitaxel enhances the protective effect of myocardial ischemia preconditioning on ischemia/reperfusion injury in aged rat.Zhonghua Xin Xue Guan Bing Za Zhi201846971972410.3760/cma.j.issn.0253‑3758.2018.09.009 30293379
    [Google Scholar]
  73. ThomasS.D. JhaN.K. JhaS.K. SadekB. OjhaS. Pharmacological and molecular insight on the cardioprotective role of apigenin.Nutrients202315238510.3390/nu15020385 36678254
    [Google Scholar]
  74. WangF. ZhangJ. NiuG. WengJ. ZhangQ. XieM. LiC. SunK. Apigenin inhibits isoproterenol‐induced myocardial fibrosis and Smad pathway in mice by regulating oxidative stress and miR‐122‐5p/155‐5p expressions.Drug Dev. Res.20228341003101510.1002/ddr.21928 35277868
    [Google Scholar]
  75. ZhuZ.Y. GaoT. HuangY. XueJ. XieM.L. Apigenin ameliorates hypertension-induced cardiac hypertrophy and down-regulates cardiac hypoxia inducible factor-lα in rats.Food Funct.2016741992199810.1039/C5FO01464F 26987380
    [Google Scholar]
  76. ZhuZ.Y. WangF. JiaC.H. XieM.L. Apigenin-induced HIF-1α inhibitory effect improves abnormal glucolipid metabolism in AngII/hypoxia-stimulated or HIF-1α-overexpressed H9c2 cells.Phytomedicine20196215271310.1016/j.phymed.2018.10.010 31078968
    [Google Scholar]
  77. Perez-VizcainoF. DuarteJ. Flavonols and cardiovascular disease.Mol. Aspects Med.201031647849410.1016/j.mam.2010.09.002 20837053
    [Google Scholar]
  78. FanR. SuiY. Study on mechanism of invigorating Qi and promoting blood circulation in treatment of angiogenesis after MI using network pharmacology.Evid. Based Complement. Alternat. Med.20222022509348610.1155/2022/5093486 35656461
    [Google Scholar]
  79. LiW. LiY. SunR. ZhouS. LiM. FengM. XieY. Dual character of flavonoids in attenuating and aggravating ischemia-reperfusion-induced myocardial injury.Exp. Ther. Med.20171421307131410.3892/etm.2017.4670 28810591
    [Google Scholar]
  80. Cavia-SaizM. BustoM.D. Pilar-IzquierdoM.C. OrtegaN. Perez-MateosM. MuñizP. Antioxidant properties, radical scavenging activity and biomolecule protection capacity of flavonoid naringenin and its glycoside naringin: A comparative study.J. Sci. Food Agric.20109071238124410.1002/jsfa.3959 20394007
    [Google Scholar]
  81. Heidary MoghaddamR. SamimiZ. MoradiS.Z. LittleP.J. XuS. FarzaeiM.H. Naringenin and naringin in cardiovascular disease prevention: A preclinical review.Eur. J. Pharmacol.202088717353510.1016/j.ejphar.2020.173535 32910944
    [Google Scholar]
  82. LiS. JiangJ. FangJ. LiX. HuangC. LiangW. WuK. Naringin protects H9C2 cardiomyocytes from chemical hypoxia induced injury by promoting the autophagic flux via the activation of the HIF 1α/BNIP3 signaling pathway.Int. J. Mol. Med.202147610210.3892/ijmm.2021.4935 33907819
    [Google Scholar]
  83. ZhouY.X. ZhangH. PengC. Puerarin: A review of pharmacological effects.Phytother. Res.201428796197510.1002/ptr.5083 24339367
    [Google Scholar]
  84. ZhangS. ChenS. ShenY. Puerarin induces angiogenesis in myocardium of rat with MI.Biol. Pharm. Bull.200629594595010.1248/bpb.29.945 16651724
    [Google Scholar]
  85. XuJ. TianZ. LiZ. DuX. CuiY. WangJ. GaoM. HouY. Puerarin-tanshinone IIA suppresses atherosclerosis inflammatory plaque via targeting succinate/HIF-1α/IL-1β axis.J. Ethnopharmacol.202331711667510.1016/j.jep.2023.116675 37257708
    [Google Scholar]
  86. LeeD.S. KimK.S. KoW. LiB. KeoS. JeongG.S. OhH. KimY.C. The neoflavonoid latifolin isolated from MeOH extract of Dalbergia odorifera attenuates inflammatory responses by inhibiting NF-κB activation via Nrf2-mediated heme oxygenase-1 expression.Phytother. Res.20142881216122310.1002/ptr.5119 24474433
    [Google Scholar]
  87. YinH.Q. LeeB.W. KimY.C. SohnD.H. LeeB.H. Induction of the anticarcinogenic marker enzyme, quinone reductase, by Dalbergiae Lignum.Arch. Pharm. Res.200427991992210.1007/BF02975844 15473661
    [Google Scholar]
  88. LimS.H. LiB.S. ZhuR.Z. SeoJ.H. ChoiB.M. Latifolin inhibits oxidative stress-induced senescence via upregulation of SIRT1 in human dermal fibroblasts.Biol. Pharm. Bull.20204371104111010.1248/bpb.b20‑00094 32404543
    [Google Scholar]
  89. GuptaS.C. PatchvaS. AggarwalB.B. Therapeutic roles of curcumin: Lessons learned from clinical trials.AAPS J.201315119521810.1208/s12248‑012‑9432‑8 23143785
    [Google Scholar]
  90. Pourbagher-ShahriA.M. FarkhondehT. AshrafizadehM. TalebiM. SamargahndianS. Curcumin and CVD: Focus on cellular targets and cascades.Biomed. Pharmacother.202113611121410.1016/j.biopha.2020.111214 33450488
    [Google Scholar]
  91. ChenX. XieQ. ZhuY. XuJ. LinG. LiuS. SuZ. LaiX. LiQ. XieJ. YangX. Cardio-protective effect of tetrahydrocurcumin, the primary hydrogenated metabolite of curcumin in vivo and in vitro: Induction of apoptosis and autophagy via PI3K/AKT/mTOR pathways.Eur. J. Pharmacol.202191117449510.1016/j.ejphar.2021.174495 34555398
    [Google Scholar]
  92. MoulinS. ArnaudC. BouyonS. PépinJ.L. Godin-RibuotD. BelaidiE. Curcumin prevents chronic intermittent hypoxia-induced myocardial injury.Ther. Adv. Chronic Dis.20201110.1177/2040622320922104 32637058
    [Google Scholar]
  93. GanaiA.A. FarooqiH. Bioactivity of genistein: A review of in vitro and in vivo studies.Biomed. Pharmacother.201576303810.1016/j.biopha.2015.10.026 26653547
    [Google Scholar]
  94. RasheedS. RehmanK. ShahidM. SuhailS. AkashM.S.H. Therapeutic potentials of genistein: New insights and perspectives.J. Food Biochem.2022469e1422810.1111/jfbc.14228 35579327
    [Google Scholar]
  95. ShiY.N. ZhangX.Q. HuZ.Y. ZhangC.J. LiaoD.F. HuangH.L. QinL. Genistein protects H9c2 cardiomyocytes against chemical hypoxia-induced injury via inhibition of apoptosis.Pharmacology20191035-628229010.1159/000497061 30808828
    [Google Scholar]
  96. GaliniakS. AebisherD. Bartusik-AebisherD. Health benefits of resveratrol administration.Acta Biochim. Pol.2019661132110.18388/abp.2018_2749 30816367
    [Google Scholar]
  97. BreussJ.M. AtanasovA.G. UhrinP. Resveratrol and its effects on the vascular system.Int. J. Mol. Sci.2019207152310.3390/ijms20071523 30934670
    [Google Scholar]
  98. DyckG.J.B. RajP. ZierothS. DyckJ.R.B. EzekowitzJ.A. The effects of resveratrol in patients with cardiovascular disease and heart failure: A narrative review.Int. J. Mol. Sci.201920490410.3390/ijms20040904 30791450
    [Google Scholar]
  99. Bezerra-FilhoC.S.M. BarbozaJ.N. SouzaM.T.S. SabryP. IsmailN.S.M. de SousaD.P. Therapeutic potential of vanillin and its main metabolites to regulate the inflammatory response and oxidative stress.Mini Rev. Med. Chem.201919201681169310.2174/1389557519666190312164355 30864521
    [Google Scholar]
  100. SirangeloI. SapioL. RagoneA. NaviglioS. IannuzziC. BaroneD. GiordanoA. BorrielloM. Vanillin prevents doxorubicin-induced apoptosis and oxidative stress in rat H9c2 cardiomyocytes.Nutrients2020128231710.3390/nu12082317 32752227
    [Google Scholar]
  101. ElseweidyM.M. AliS.I. ShaheenM.A. AbdelghafourA.M. HammadS.K. Vanillin and pentoxifylline ameliorate isoproterenol-induced myocardial injury in rats via the Akt/HIF-1α/VEGF signaling pathway.Food Funct.20231473067308210.1039/D2FO03570G 36917190
    [Google Scholar]
  102. WangX. WangD. DengB. YanL. Syringaresinol attenuates osteoarthritis via regulating the NF-κB pathway.Int. Immunopharmacol.202311810998210.1016/j.intimp.2023.109982 36989902
    [Google Scholar]
  103. ChoS. ChoM. KimJ. KaeberleinM. LeeS.J. SuhY. Syringaresinol protects against hypoxia/reoxygenation-induced cardiomyocytes injury and death by destabilization of HIF-1α in a FOXO3-dependent mechanism.Oncotarget201561435510.18632/oncotarget.2723 25415049
    [Google Scholar]
  104. WangK. FengX. ChaiL. CaoS. QiuF. The metabolism of berberine and its contribution to the pharmacological effects.Drug Metab. Rev.201749213915710.1080/03602532.2017.1306544 28290706
    [Google Scholar]
  105. SongD. HaoJ. FanD. Biological properties and clinical applications of berberine.Front. Med.202014556458210.1007/s11684‑019‑0724‑6 32335802
    [Google Scholar]
  106. LiuD.Q. ChenS.P. SunJ. WangX.M. ChenN. ZhouY.Q. TianY.K. YeD.W. Berberine protects against ischemia-reperfusion injury: A review of evidence from animal models and clinical studies.Pharmacol. Res.201914810438510.1016/j.phrs.2019.104385 31400402
    [Google Scholar]
  107. ZhuN. LiJ. LiY. ZhangY. DuQ. HaoP. LiJ. CaoX. LiL. Berberine protects against simulated ischemia/reperfusion injury-induced H9C2 cardiomyocytes apoptosis in vitro and myocardial ischemia/reperfusion-induced apoptosis in vivo by regulating the mitophagy-mediated HIF-1α/BNIP3 pathway.Front. Pharmacol.20201136710.3389/fphar.2020.00367 32292345
    [Google Scholar]
  108. HaqI.U. ImranM. NadeemM. TufailT. GondalT.A. MubarakM.S. Piperine: A review of its biological effects.Phytother. Res.202135268070010.1002/ptr.6855 32929825
    [Google Scholar]
  109. TaqviS.I.H. ShahA.J. GilaniA.H. Blood pressure lowering and vasomodulator effects of piperine.J. Cardiovasc. Pharmacol.200852545245810.1097/FJC.0b013e31818d07c0 19033825
    [Google Scholar]
  110. ViswanadhaV.P. DhivyaV. BeerakaN.M. HuangC.Y. GavryushovaL.V. MinyaevaN.N. ChubarevV.N. MikhalevaL.M. TarasovV.V. AlievG. The protective effect of piperine against isoproterenol-induced inflammation in experimental models of myocardial toxicity.Eur. J. Pharmacol.202088517352410.1016/j.ejphar.2020.173524 32882215
    [Google Scholar]
  111. WuL. LingH. LiL. JiangL. HeM. Beneficial effects of the extract from Corydalis yanhusuo in rats with heart failure following MI.J. Pharm. Pharmacol.200759569570110.1211/jpp.59.5.0010 17524235
    [Google Scholar]
  112. HanY. ZhangW. TangY. BaiW. YangF. XieL. LiX. ZhouS. PanS. ChenQ. FerroA. JiY. l-Tetrahydropalmatine, an active component of Corydalis yanhusuo W.T. Wang, protects against myocardial ischaemia-reperfusion injury in rats.PLoS One201276e3862710.1371/journal.pone.0038627 22715398
    [Google Scholar]
  113. ShangA. CaoS.Y. XuX.Y. GanR.Y. TangG.Y. CorkeH. MavumengwanaV. LiH.B. Bioactive compounds and biological functions of garlic (Allium sativum L.).Foods20198724610.3390/foods8070246 31284512
    [Google Scholar]
  114. MondalA. BanerjeeS. BoseS. MazumderS. HaberR.A. FarzaeiM.H. BishayeeA. Garlic constituents for cancer prevention and therapy: From phytochemistry to novel formulations.Pharmacol. Res.202217510583710.1016/j.phrs.2021.105837 34450316
    [Google Scholar]
  115. YuL. DiW. DongX. LiZ. XueX. ZhangJ. WangQ. XiaoX. HanJ. YangY. WangH. Diallyl trisulfide exerts cardioprotection against myocardial ischemia-reperfusion injury in diabetic state, role of AMPK-mediated AKT/GSK-3β/HIF-1α activation.Oncotarget2017843747917480510.18632/oncotarget.20422 29088824
    [Google Scholar]
  116. LinK.H. WeiY.M. LiuC.H. LiuJ.S. HuangI.C. ViswanadhaV.P. HuangC.Y. KuoW.W. Diallyl trisulfide suppresses high-glucose-induced cardiomyocyte apoptosis by targeting reactive oxygen species-mediated hypoxia-inducible factor-1α/insulin-like growth factor binding protein 3 activation.J. Agric. Food Chem.20216939116961170810.1021/acs.jafc.1c02384 34558885
    [Google Scholar]
  117. AkbariG. ali Mard, S.; Veisi, A. A comprehensive review on regulatory effects of crocin on ischemia/reperfusion injury in multiple organs.Biomed. Pharmacother.20189966467010.1016/j.biopha.2018.01.113 29710463
    [Google Scholar]
  118. MakaritsisK.P. KotidisC. PapacharalampousK. KouvarasE. PoulakidaE. TarantilisP. AsprodiniE. NtaiosG. KoukoulisG.K. DalekosG.N. IoannouM. Mechanistic insights on the effect of crocin, an active ingredient of saffron, on atherosclerosis in apolipoprotein E knockout mice.Coron. Artery Dis.202233539440210.1097/MCA.0000000000001142 35880561
    [Google Scholar]
  119. WangF. LiC. ZhengY. LiY. PengG. Study on the anaphylactoid of three phenolic acids in Honeysuckle.J. Ethnopharmacol.20151701710.1016/j.jep.2015.05.011 25978951
    [Google Scholar]
  120. HuH. WuL. LiM. XueC. WangG. ChenS. HuangY. ZhengL. WangA. LiY. GongZ. Comparative absorption kinetics of seven active ingredients of Eucommia ulmoides extracts by intestinal in situ circulatory perfusion in normal and spontaneous hypertensive rats.Biomed. Chromatogr.2020341e471410.1002/bmc.4714 31633806
    [Google Scholar]
  121. LiJ. ChenX. LiX. TangJ. LiY. LiuB. GuoS. Cryptochlorogenic acid and its metabolites ameliorate myocardial hypertrophy through a HIF1α-related pathway.Food Funct.20221342269228210.1039/D1FO03838A 35141734
    [Google Scholar]
  122. ChangM.X. XiongF. Astaxanthin and its effects in inflammatory responses and inflammation-associated diseases: Recent advances and future directions.Molecules20202522534210.3390/molecules25225342 33207669
    [Google Scholar]
  123. KishimotoY. YoshidaH. KondoK. Potential anti-atherosclerotic properties of astaxanthin.Mar. Drugs20161423510.3390/md14020035 26861359
    [Google Scholar]
  124. GaiY.S. RenY.H. GaoY. LiuH.N. Astaxanthin protecting myocardial cells from hypoxia/reoxygenation injury by regulating miR-138/HIF-1α axis.Eur. Rev. Med. Pharmacol. Sci.202024147722773110.26355/eurrev_202007_22276 32744699
    [Google Scholar]
  125. MatkowskiA. ZielińskaS. OszmiańskiJ. Lamer-ZarawskaE. Antioxidant activity of extracts from leaves and roots of Salvia miltiorrhiza Bunge, S. przewalskii Maxim., and S. verticillata L.Bioresour. Technol.200899167892789610.1016/j.biortech.2008.02.013 18396038
    [Google Scholar]
  126. WangY. DuoD. YanY. HeR. WangS. WangA. WuX. Extract of Salvia przewalskii repair tissue damage in chronic hypoxia maybe through the RhoA-ROCK signalling pathway.Biol. Pharm. Bull.202043343243910.1248/bpb.b19‑00775 31875579
    [Google Scholar]
  127. MillerA.L. Botanical influences on cardiovascular disease.Altern. Med. Rev.199836422431 9855567
    [Google Scholar]
  128. SwaminathanJ.K. KhanM. MohanI.K. SelvendiranK. Niranjali DevarajS. RiveraB.K. KuppusamyP. Cardioprotective properties of Crataegus oxycantha extract against ischemia-reperfusion injury.Phytomedicine2010171074475210.1016/j.phymed.2010.01.009 20171068
    [Google Scholar]
  129. JayachandranK.S. KhanM. SelvendiranK. DevarajS.N. KuppusamyP. Crataegus oxycantha extract attenuates apoptotic incidence in myocardial ischemia-reperfusion injury by regulating Akt and HIF-1 signaling pathways.J. Cardiovasc. Pharmacol.201056552653110.1097/FJC.0b013e3181f64c51 20729753
    [Google Scholar]
  130. LiuT. YanT. JiaX. Systematic exploration of the potential material basis and molecular mechanism of the Mongolian medicine Nutmeg-5 in improving cardiac remodeling after MI.J. Ethnopharmacol.202228511484710.1016/j.jep.2021.114847 34800647
    [Google Scholar]
  131. LinS.S. LiuC.X. WangX.L. MaoJ.Y. Intervention mechanisms of xinmailong injection, a Periplaneta americana extract, on cardiovascular disease: A systematic review of basic researches.Evid. Based Complement. Alternat. Med.2019201911310.1155/2019/8512405 32454845
    [Google Scholar]
  132. ZhangW. LiK. DingY. RenJ. WangH. SiQ. Protective effect of xinmailong injection on rats with MI.Front. Physiol.20211159576010.3389/fphys.2020.595760 33584329
    [Google Scholar]
  133. HuangL.X. WuX.H. Effect of Xinmailong on hypoxia-inducible factor-1alpha expression in neonatal rats with asphyxia.Zhongguo Dang Dai Er Ke Za Zhi2009118683686 19695202
    [Google Scholar]
  134. SemenzaG.L. The genomics and genetics of oxygen homeostasis.Annu. Rev. Genomics Hum. Genet.202021118320410.1146/annurev‑genom‑111119‑073356 32255719
    [Google Scholar]
  135. HsuT.S. LinY.L. WangY.A. MoS.T. ChiP.Y. LaiA.C.Y. PanH.Y. ChangY.J. LaiM.Z. HIF-2α is indispensable for regulatory T cell function.Nat. Commun.2020111500510.1038/s41467‑020‑18731‑y 33024109
    [Google Scholar]
  136. HanH. SaeidiS. KimS.J. PiaoJ.Y. LimS. Guillen-QuispeY.N. ChoiB.Y. SurhY.J. Alternative regulation of HIF-1α stability through Phosphorylation on Ser451.Biochem. Biophys. Res. Commun.202154515015610.1016/j.bbrc.2021.01.047 33550096
    [Google Scholar]
  137. LendahlU. LeeK.L. YangH. PoellingerL. Generating specificity and diversity in the transcriptional response to hypoxia.Nat. Rev. Genet.2009101282183210.1038/nrg2665 19884889
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073331615241018081811
Loading
/content/journals/cchts/10.2174/0113862073331615241018081811
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test