Skip to content
2000
Volume 28, Issue 19
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

The prevalence of depression in COVID-19 patients is notably high, disrupting daily life routines and compounding the burden of other chronic health conditions. In addition, to elucidate the connection between COVID-19 and depression, we conducted an analysis of commonly differentially expressed genes (co-DEGs), uncovering potential biomarkers and therapeutic avenues specific to COVID-19-related depression.

Methods

We obtained gene expression profiles from the Gene Expression Omnibus (GEO) database with strategic keyword searches (“COVID-19”, “depression”, and “SARS”). We used functional enrichment analysis of the co-DEGs to decipher their likely biological roles. Then, we utilized protein-protein interaction (PPI) network analysis to identify hub genes among the co-DEGs. These findings were validated an independent third-party dataset.

Results

Our analysis of blood samples from COVID-19 patients revealed 10,716 upregulated genes and 10,319 downregulated genes. In addition, by applying the same approach to depression samples, we identified 571 upregulated and 847 downregulated genes. Furthermore, by intersecting these datasets, we extracted 121 upregulated and 175 downregulated co-DEGs. Through PPI network construction and hub gene selection, we identified MPO, ARG1, CD163, FCGR1A, ELANE, LCN2, and CR1 as co-upregulated hub genes and MRPL13, RPS23, and MRPL1 as co-downregulated hub genes. The incorporation of third-party datasets revealed that these hub genes are specific targets of SARS-CoV-2, not generic viral response mechanisms.

Conclusion

The identification of potential biomarkers represents a groundbreaking strategy for assessing and treating depression in the context of COVID-19, with the potential to reduce its prevalence among these patients. However, to fully harness this potential, additional clinical research is paramount.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073322931241030104813
2025-01-07
2025-12-14
Loading full text...

Full text loading...

References

  1. LalA. EronduN.A. HeymannD.L. GitahiG. YatesR. Fragmented health systems in COVID-19: Rectifying the misalignment between global health security and universal health coverage.Lancet202139710268616710.1016/S0140‑6736(20)32228‑533275906
    [Google Scholar]
  2. HanE. TanM.M.J. TurkE. SridharD. LeungG.M. ShibuyaK. AsgariN. OhJ. García-BasteiroA.L. HanefeldJ. CookA.R. HsuL.Y. TeoY.Y. HeymannD. ClarkH. McKeeM. Legido-QuigleyH. Lessons learnt from easing COVID-19 restrictions: An analysis of countries and regions in Asia Pacific and Europe.Lancet2020396102611525153410.1016/S0140‑6736(20)32007‑932979936
    [Google Scholar]
  3. MicahA.E. CogswellI.E. CunninghamB. EzoeS. HarleA.C. MaddisonE.R. McCrackenD. NomuraS. SimpsonK.E. StutzmanH.N. TsakalosG. WallaceL.E. ZhaoY. ZendeR.R. AbbafatiC. AbdelmassehM. AbediA. AbegazK.H. AbhilashE.S. AbolhassaniH. AbrigoM.R.M. AdhikariT.B. AfzalS. AhinkorahB.O. AhmadiS. AhmedH. AhmedM.B. Ahmed RashidT. AjamiM. AjiB. AkaluY. AkunnaC.J. Al HamadH. AlamK. AlaneziF.M. AlanziT.M. AlemayehuY. AlhassanR.K. AliniaC. AljunidS.M. AlmustanyirS.A. Alvis-GuzmanN. Alvis-ZakzukN.J. AminiS. Amini-RaraniM. AmuH. AncuceanuR. AndreiC.L. AndreiT. AngellB. AnjomshoaM. AntonioC.A.T. AntonyC.M. AqeelM. ArablooJ. Arab-ZozaniM. AripovT. ArrigoA. AshrafT. AtnafuD.D. AusloosM. Avila-BurgosL. AwanA.T. AyanoG. AyanoreM.A. AzariS. AzharG.S. BabalolaT.K. BahramiM.A. BaigA.A. BanachM. BaratiN. BärnighausenT.W. BarrowA. BasuS. BauneB.T. BayatiM. BenzianH. BermanA.E. BhagavathulaA.S. BhardwajN. BhardwajP. BhaskarS. BibiS. BijaniA. BodolicaV. BragazziN.L. BraithwaiteD. BreitbordeN.J.K. BreusovA.V. BrikoN.I. BusseR. Cahuana-HurtadoL. CallanderE.J. CámeraL.A. Castañeda-OrjuelaC.A. Catalá-LópezF. CharanJ. ChatterjeeS. ChattuS.K. ChattuV.K. ChenS. CiceroA.F.G. DadrasO. DahlawiS.M.A. DaiX. DalalK. DandonaL. DandonaR. DavitoiuD.V. De NeveJ-W. de Sá-JuniorA.R. Denova-GutiérrezE. DhamnetiyaD. DharmaratneS.D. DoshmangirL. DubeJ. Ehsani-ChimehE. El Sayed ZakiM. El TantawiM. EskandariehS. FarzadfarF. FeredeT.Y. FischerF. FoigtN.A. FreitasA. FriedmanS.D. FukumotoT. FullmanN. GaalP.A. GadM.M. Garcia-GordilloM.A. GargT. GhafourifardM. GhashghaeeA. GholamianA. GholamrezanezhadA. GhozaliG. GilaniS.A. GlăvanI-R. GlushkovaE.V. GoharinezhadS. GolechhaM. GoliS. GuhaA. GuptaV.B. GuptaV.K. HaakenstadA. HaiderM.R. HailuA. HamidiS. HanifA. HarapanH. HartonoR.K. HasaballahA.I. HassanS. HassaneinM.H. HayatK. HegazyM.I. HeidariG. HendrieD. Heredia-PiI. HerteliuC. HezamK. HollaR. HossainS.J. HosseinzadehM. HostiucS. HudaT.M. HwangB-F. IavicoliI. IdrisovB. IlesanmiO.S. IrvaniS.S.N. IslamS.M.S. IsmailN.E. IsolaG. JahaniM.A. JahanmehrN. JakovljevicM. JanodiaM.D. JavaheriT. JayapalS.K. JayawardenaR. JazayeriS.B. JhaR.P. JonasJ.B. JooT. JoukarF. JürissonM. KaambwaB. KalhorR. KanchanT. KandelH. Karami MatinB. KarimiS.E. KassahunG. KayodeG.A. Kazemi KaryaniA. Keikavoosi-AraniL. KhaderY.S. KhajuriaH. KhalilovR. KhammarniaM. KhanJ. KhubchandaniJ. KianipourN. KimG.R. KimY.J. KisaA. KisaS. KohlerS. KosenS. KoteeswaranR. Koulmane LaxminarayanaS.L. KoyanagiA. KrishanK. KumarG.A. KusumaD. LamnisosD. LansinghV.C. LarssonA.O. LasradoS. LeL.K.D. LeeS.W.H. LeeY.Y. LimS.S. LoboS.W. LozanoR. Magdy Abd El RazekH. Magdy Abd El RazekM. MahdaviM.M. MajeedA. MakkiA. MalekiA. MalekzadehR. MandaA.L. Mansour-GhanaeiF. MansourniaM.A. Marrugo ArnedoC.A. Martinez-ValleA. MasoumiS.Z. MaudeR.J. McKeeM. Medina-SolísC.E. MenezesR.G. MeretojaA. MeretojaT.J. MesregahM.K. MestrovicT. Milevska KostovaN. MillerT.R. MiniG.K. MiricaA. MirrakhimovE.M. MohajerB. MohamedT.A. MohammadiM. Mohammadian-HafshejaniA. MohammedS. MoitraM. MokdadA.H. MolokhiaM. MoniM.A. MoradiY. MorzeJ. MousaviS.M. Mpundu-KaambwaC. MuriithiM.K. MuthupandianS. NagarajanA.J. NaimzadaM.D. NangiaV. NaqviA.A. NarayanaA.I. NascimentoB.R. NaveedM. NayakB.P. NazariJ. NdejjoR. NegoiI. Neupane KandelS. NguyenT.H. NonvignonJ. NoubiapJ.J. NwatahV.E. OanceaB. OjelabiF.A.O. OlagunjuA.T. OlakundeB.O. OlgiatiS. OlusanyaJ.O. OnwujekweO.E. OtoiuA. OtstavnovN. OtstavnovS.S. OwolabiM.O. PadubidriJ.R. PalladinoR. Panda-JonasS. ParkE-C. Pashazadeh KanF. PawarS. Pazoki ToroudiH. PereiraD.M. PerianayagamA. PesudovsK. PiccinelliC. PostmaM.J. PradaS.I. RabieeM. RabieeN. RahimF. Rahimi-MovagharV. RahmanM.H.U. RahmanM. RahmaniA.M. RamU. RanabhatC.L. RanasingheP. RaoC.R. RathiP. RawafD.L. RawafS. RawalL. RawassizadehR. ReinerR.C.Jr RenzahoA.M.N. ReshmiB. RiazM.A. RiponR.K. SaadA.M. SahraianM.A. SahuM. SalamaJ.S. SalehiS. SamyA.M. SanabriaJ. SanmarchiF. SantosJ.V. Santric-MilicevicM.M. SathianB. SavicM. SaxenaD. SayyahM. SchwendickeF. SenthilkumaranS. SepanlouS.G. SeylaniA. ShahabiS. ShaikhM.A. SheikhA. ShettyA. ShettyP.H. ShibuyaK. ShrimeM.G. ShujaK.H. SinghJ.A. SkryabinV.Y. SkryabinaA.A. SoltaniS. SoofiM. SpurlockE.E. StefanS.C. SzerencsésV. SzócskaM. Tabarés-SeisdedosR. TaddeleB.W. TeferaY.G. ThavamaniA. Tobe-GaiR. Topor-MadryR. Tovani-PaloneM.R. TranB.X. Tudor CarL. UllahA. UllahS. UmarN. UndurragaE.A. ValdezP.R. VasankariT.J. VillafañeJ.H. ViolanteF.S. VlassovV. VoB. VollmerS. VosT. VuG.T. VuL.G. WamaiR.G. WerdeckerA. WoldekidanM.A. WubishetB.L. XuG. YayaS. Yazdi-FeyzabadiV. YiğitV. YipP. YirdawB.W. YonemotoN. YounisM.Z. YuC. YunusaI. Zahirian MoghadamT. ZandianH. ZastrozhinM.S. ZastrozhinaA. ZhangZ-J. ZiapourA. ZunigaY.M.H. HayS.I. MurrayC.J.L. DielemanJ.L. Tracking development assistance for health and for COVID-19: A review of development assistance, government, out-of-pocket, and other private spending on health for 204 countries and territories, 1990–2050.Lancet2021398103081317134310.1016/S0140‑6736(21)01258‑734562388
    [Google Scholar]
  4. McIntyreP.B. AggarwalR. JaniI. JawadJ. KochharS. MacDonaldN. MadhiS.A. MohsniE. MulhollandK. NeuzilK.M. NohynekH. OlayinkaF. PitisuttithumP. PollardA.J. CraviotoA. COVID-19 vaccine strategies must focus on severe disease and global equity.Lancet20223991032240641010.1016/S0140‑6736(21)02835‑X34922639
    [Google Scholar]
  5. HuangC. WangY. LiX. RenL. ZhaoJ. HuY. ZhangL. FanG. XuJ. GuX. ChengZ. YuT. XiaJ. WeiY. WuW. XieX. YinW. LiH. LiuM. XiaoY. GaoH. GuoL. XieJ. WangG. JiangR. GaoZ. JinQ. WangJ. CaoB. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.Lancet20203951022349750610.1016/S0140‑6736(20)30183‑531986264
    [Google Scholar]
  6. DrakeT.M. RiadA.M. FairfieldC.J. EganC. KnightS.R. PiusR. HardwickH.E. NormanL. ShawC.A. McLeanK.A. ThompsonA.A.R. HoA. SwannO.V. SullivanM. SoaresF. HoldenK.A. MersonL. PlotkinD. SigfridL. de SilvaT.I. GirvanM. JacksonC. RussellC.D. DunningJ. SolomonT. CarsonG. OlliaroP. Nguyen-Van-TamJ.S. TurtleL. DochertyA.B. OpenshawP.J.M. BaillieJ.K. HarrisonE.M. SempleM.G. BaillieJ.K. SempleM.G. OpenshawP.J.M. CarsonG. AlexB. BachB. BarclayW.S. BogaertD. ChandM. CookeG.S. DochertyA.B. DunningJ. da Silva FilipeA. FletcherT. GreenC.A. HarrisonE.M. HiscoxJ.A. HoA.Y.W. HorbyP.W. IjazS. KhooS. KlenermanP. LawA. LimW.S. MentzerA.J. MersonL. MeynertA.M. NoursadeghiM. MooreS.C. PalmariniM. PaxtonW.A. PollakisG. PriceN. RambautA. RobertsonD.L. RussellC.D. Sancho-ShimizuV. ScottJ.T. de SilvaT. SigfridL. SolomonT. SriskandanS. StuartD. SummersC. TedderR.S. ThomsonE.C. ThompsonA.A.R. ThwaitesR.S. TurtleL.C.W. GuptaR.K. PalmieriC. SwannO.V. ZambonM. DumasM-E. GriffinJ. TakatsZ. ChechiK. AndrikopoulosP. OsagieA. OlanipekunM. LiggiS. LewisM. dos Santos CorreiaG. SandsC. TakisP. MaslenL. HardwickH. DonohueC. GriffithsF. OosthuyzenW. NormanL. PiusR. DrakeT.M. FairfieldC.J. KnightS.R. McleanK.A. MurphyD. ShawC.A. DaltonJ. GirvanM. SaviciuteE. RobertsS. HarrisonJ. MarshL. ConnorM. HalpinS. JacksonC. GambleC. PlotkinD. LeeJ. LeemingG. LawA. WhamM. ClohiseyS. HendryR. Scott-BrownJ. GreenhalfW. ShawV. McDonaldS.E. KeatingS. AhmedK.A. ArmstrongJ.A. AshworthM. AsiimweI.G. BakshiS. BarlowS.L. BoothL. BrennanB. BullockK. CatterallB.W.A. ClarkJ.J. ClarkeE.A. ColeS. CooperL. CoxH. DavisC. DincarslanO. DunnC. DyerP. ElliottA. EvansA. FinchL. FisherL.W.S. FosterT. Garcia-DorivalI. GreenhalfW. GunningP. HartleyC. JensenR.L. JonesC.B. JonesT.R. KhandakerS. KingK. KiyR.T. KoukoravaC. LakeA. LantS. LatawiecD. Lavelle-LanghamL. LefteriD. LettL. LivotiL.A. ManciniM. McDonaldS. McEvoyL. McLauchlanJ. MetelmannS. MiahN.S. MiddletonJ. MitchellJ. MooreS.C. MurphyE.G. Penrice-RandalR. PilgrimJ. PrinceT. ReynoldsW. RidleyP.M. SalesD. ShawV.E. ShearsR.K. SmallB. SubramaniamK.S. SzemielA. TaggartA. Tanianis-HughesJ. ThomasJ. TrochuE. van TonderL. WilcockE. ZhangJ.E. FlahertyL. MaziereN. CassE. Doce CarracedoA. CarlucciN. HolmesA. MasseyH. MurphyL. WrobelN. McCaffertyS. MorriceK. MacLeanA. AdenijiK. AgranoffD. AgwuhK. AilD. AlderaE.L. AlegriaA. AngusB. AshishA. AtkinsonD. BariS. BarlowG. BarnassS. BarrettN. BassfordC. BasudeS. BaxterD. BeadsworthM. BernatonieneJ. BerridgeJ. BestN. BothmaP. ChadwickD. Brittain-LongR. BulteelN. BurdenT. BurtenshawA. CaruthV. ChadwickD. ChamblerD. CheeN. ChildJ. ChukkambotlaS. ClarkT. ColliniP. CosgroveC. CupittJ. Cutino-MoguelM-T. DarkP. DawsonC. DervisevicS. DonnisonP. DouthwaiteS. DrummondA. DuRandI. DushianthanA. DyerT. EvansC. EziefulaC. FeganC. FinnA. FullertonD. GargS. GargS. GargA. Gkrania-KlotsasE. GoddenJ. GoldsmithA. GrahamC. HardyE. HartshornS. HarveyD. HavaldaP. HawcuttD.B. HobrokM. HodgsonL. HormisA. JacobsM. JainS. JenningsP. KaliappanA. KasipandianV. KeggS. KelseyM. KendallJ. KerrisonC. KerslakeI. KochO. KoduriG. KoshyG. LahaS. LairdS. LarkinS. LeinerT. LillieP. LimbJ. LinnettV. LittleJ. LyttleM. MacMahonM. MacNaughtonE. MankregodR. MassonH. MatovuE. McCulloughK. McEwenR. MedaM. MillsG. MintonJ. MirfendereskyM. MohandasK. MokQ. MoonJ. MooreE. MorganP. MorrisC. MortimoreK. MosesS. MpengeM. MullaR. MurphyM. NagelM. NagarajanT. NelsonM. NorrisL. O’SheaM.K. OtahalI. OstermannM. PaisM. PalmieriC. PanchatsharamS. PapakonstantinouD. ParaisoH. PatelB. PattisonN. PepperellJ. PetersM. PhullM. PintusS. Singh PooniJ. PostF. PriceD. ProutR. RaeN. ReschreiterH. ReynoldsT. RichardsonN. RobertsM. RobertsD. RoseA. RousseauG. RyanB. SalujaT. ShahA. ShanmugaP. SharmaA. ShawcrossA. SizerJ. Shankar-HariM. SmithR. SnelsonC. SpittleN. StainesN. StambachT. StewartR. SubudhiP. SzakmanyT. TathamK. ThomasJ. ThompsonC. ThompsonR. TridenteA. Tupper-CareyD. TwagiraM. VallottonN. VancheeswaranR. Vincent-SmithL. VisuvanathanS. VuylstekeA. WaddyS. WakeR. WaldenA. WeltersI. WhitehouseT. WhittakerP. WhittingtonA. PapineniP. WijesingheM. WilliamsM. WilsonL. SarahS. WinchesterS. WiselkaM. WolversonA. WoottonD.G. WorkmanA. YatesB. YoungP. Characterisation of in-hospital complications associated with COVID-19 using the ISARIC WHO Clinical Characterisation Protocol UK: A prospective, multicentre cohort study.Lancet20213981029622323710.1016/S0140‑6736(21)00799‑634274064
    [Google Scholar]
  7. WangJ. ZhuK. XueY. WenG. TaoL. Research progress in the treatment of complications and sequelae of COVID-19.Front. Med. (Lausanne)2021875760510.3389/fmed.2021.75760534926504
    [Google Scholar]
  8. ChouS.H.Y. BeghiE. HelbokR. MoroE. SampsonJ. AltamiranoV. MainaliS. BassettiC. SuarezJ.I. McNettM. NolanL. TemroK. Cervantes-ArslanianA.M. AnandP. MukerjiS. AlabasiH. WestoverM.B. KaviT. JohnS. Da SilvaI. ShaikA. SarwalA. IzzyS. LiottaE.M. BatraA. AysenneA. RubinosC. AzzamA.Y. AzabM.A. SandallJ. PersondekL.A.M. UlmerH. RassV. PfauslerB. MüllerC. JungS. CreanM. MeoniS. BereczkiD. KovácsT. AgajanyN. ArmonC. WolfsonS. CotelliM.S. BianchiE. RiahiA. ÖztürkS. UralO. ViktoriiaG. LesivM. MaiaL. OliveiraV. SeabraM. CarvalhoV. VespaP. ProvencioJ. OlsonD. HemphillC. Venkatasubba RaoC.P. KoN. FinkE. RobertsonC. SchoberM. Smith ScottA. HammondM. PaulN. SafonovaA. KaplanL. RatnayakeC. SharmaA.D. SkeelA. Villamizar RosalesC. DolakD. VarelasP. LotmanL. KaltenbachL. DavidK. M. Global incidence of neurological manifestations among patients hospitalized with COVID-19—A report for the GCS-NeuroCOVID consortium and the energy consortium.JAMA Netw. Open202145e211213110.1001/jamanetworkopen.2021.1213133974053
    [Google Scholar]
  9. HelmsJ. KremerS. MerdjiH. Clere-JehlR. SchenckM. KummerlenC. CollangeO. BoulayC. Fafi-KremerS. OhanaM. AnheimM. MezianiF. Neurologic features in severe SARS-CoV-2 infection.N. Engl. J. Med.2020382232268227010.1056/NEJMc200859732294339
    [Google Scholar]
  10. MaoL. JinH. WangM. HuY. ChenS. HeQ. ChangJ. HongC. ZhouY. WangD. MiaoX. LiY. HuB. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China.JAMA Neurol.202077668369010.1001/jamaneurol.2020.112732275288
    [Google Scholar]
  11. NalbandianA. SehgalK. GuptaA. MadhavanM.V. McGroderC. StevensJ.S. CookJ.R. NordvigA.S. ShalevD. SehrawatT.S. AhluwaliaN. BikdeliB. DietzD. Der-NigoghossianC. Liyanage-DonN. RosnerG.F. BernsteinE.J. MohanS. BeckleyA.A. SeresD.S. ChoueiriT.K. UrielN. AusielloJ.C. AcciliD. FreedbergD.E. BaldwinM. SchwartzA. BrodieD. GarciaC.K. ElkindM.S.V. ConnorsJ.M. BilezikianJ.P. LandryD.W. WanE.Y. Post-acute COVID-19 syndrome.Nat. Med.202127460161510.1038/s41591‑021‑01283‑z33753937
    [Google Scholar]
  12. TaquetM. LucianoS. GeddesJ.R. HarrisonP.J. Bidirectional associations between COVID-19 and psychiatric disorder: Retrospective cohort studies of 62 354 COVID-19 cases in the USA.Lancet Psychiatry20218213014010.1016/S2215‑0366(20)30462‑433181098
    [Google Scholar]
  13. TaquetM. GeddesJ.R. HusainM. LucianoS. HarrisonP.J. 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: A retrospective cohort study using electronic health records.Lancet Psychiatry20218541642710.1016/S2215‑0366(21)00084‑533836148
    [Google Scholar]
  14. PerlisR.H. OgnyanovaK. SantillanaM. BaumM.A. LazerD. DruckmanJ. Della VolpeJ. Association of acute symptoms of COVID-19 and symptoms of depression in adults.JAMA Netw. Open202143e21322310.1001/jamanetworkopen.2021.322333710287
    [Google Scholar]
  15. McCarronR.M. ShapiroB. RawlesJ. Luo, J. Depression.Ann. Intern. Med.20211745ITC65ITC8010.7326/AITC20210518033971098
    [Google Scholar]
  16. MazzaM.G. PalladiniM. PolettiS. BenedettiF. Post-COVID-19 depressive symptoms: Epidemiology, pathophysiology, and pharmacological treatment.CNS Drugs202236768170210.1007/s40263‑022‑00931‑335727534
    [Google Scholar]
  17. SimonM.S. SchiweckC. Arteaga-HenríquezG. PolettiS. HaarmanB.C.M. DikW.A. SchwarzM. VriezeE. MikovaO. JoergensS. MusilR. ClaesS. BauneB.T. LeboyerM. BenedettiF. FurlanR. BerghmansR. de WitH. WijkhuijsA. AroltV. MüllerN. DrexhageH.A. Monocyte mitochondrial dysfunction, inflammaging, and inflammatory pyroptosis in major depression.Prog. Neuropsychopharmacol. Biol. Psychiatry202111111039110.1016/j.pnpbp.2021.11039134171401
    [Google Scholar]
  18. WohlebE.S. FranklinT. IwataM. DumanR.S. Integrating neuroimmune systems in the neurobiology of depression.Nat. Rev. Neurosci.201617849751110.1038/nrn.2016.6927277867
    [Google Scholar]
  19. KempurajD. SelvakumarG.P. AhmedM.E. RaikwarS.P. ThangavelR. KhanA. ZaheerS.A. IyerS.S. BurtonC. JamesD. ZaheerA. COVID-19, mast cells, cytokine storm, psychological stress, and neuroinflammation.Neuroscientist2020265-640241410.1177/107385842094147632684080
    [Google Scholar]
  20. GrolliR.E. MingotiM.E.D. BertolloA.G. LuzardoA.R. QuevedoJ. RéusG.Z. IgnácioZ.M. Impact of COVID-19 in the mental health in elderly: Psychological and biological updates.Mol. Neurobiol.20215851905191610.1007/s12035‑020‑02249‑x33404981
    [Google Scholar]
  21. GautierL. CopeL. BolstadB.M. IrizarryR.A. Affy-analysis of Affymetrix GeneChip data at the probe level.Bioinformatics200420330731510.1093/bioinformatics/btg40514960456
    [Google Scholar]
  22. RitchieM.E. PhipsonB. WuD. HuY. LawC.W. ShiW. SmythG.K. Limma powers differential expression analyses for RNA-sequencing and microarray studies.Nucleic Acids Res.2015437e4710.1093/nar/gkv00725605792
    [Google Scholar]
  23. ShankarR. LeimanisM.L. NewburyP.A. LiuK. XingJ. NedveckD. KortE.J. ProkopJ.W. ZhouG. BachmannA.S. ChenB. RajasekaranS. Gene expression signatures identify paediatric patients with multiple organ dysfunction who require advanced life support in the intensive care unit.EBioMedicine20206210312210.1016/j.ebiom.2020.10312233248372
    [Google Scholar]
  24. AshburnerM. BallC.A. BlakeJ.A. BotsteinD. ButlerH. CherryJ.M. DavisA.P. DolinskiK. DwightS.S. EppigJ.T. HarrisM.A. HillD.P. Issel-TarverL. KasarskisA. LewisS. MateseJ.C. RichardsonJ.E. RingwaldM. RubinG.M. SherlockG. Gene Ontology: Tool for the unification of biology.Nat. Genet.2000251252910.1038/7555610802651
    [Google Scholar]
  25. AltermannE. KlaenhammerT.R. PathwayVoyager: Pathway mapping using the kyoto encyclopedia of genes and genomes (KEGG) database.BMC Genomics2005616010.1186/1471‑2164‑6‑6015869710
    [Google Scholar]
  26. WalterW. Sánchez-CaboF. RicoteM. GOplot: An R package for visually combining expression data with functional analysis.Bioinformatics201531172912291410.1093/bioinformatics/btv30025964631
    [Google Scholar]
  27. RosenthalR. CadieuxE.L. SalgadoR. BakirM.A. MooreD.A. HileyC.T. LundT. TanićM. ReadingJ.L. JoshiK. HenryJ.Y. GhoraniE. WilsonG.A. BirkbakN.J. Jamal-HanjaniM. VeeriahS. SzallasiZ. LoiS. HellmannM.D. FeberA. ChainB. HerreroJ. QuezadaS.A. DemeulemeesterJ. Van LooP. BeckS. McGranahanN. SwantonC. Neoantigen-directed immune escape in lung cancer evolution.Nature2019567774947948510.1038/s41586‑019‑1032‑730894752
    [Google Scholar]
  28. ShannonP. MarkielA. OzierO. BaligaN.S. WangJ.T. RamageD. AminN. SchwikowskiB. IdekerT. Cytoscape: A software environment for integrated models of biomolecular interaction networks.Genome Res.200313112498250410.1101/gr.123930314597658
    [Google Scholar]
  29. ChinCH ChenSH WuHH HoCW KoMT LinCY cyto-Hubba: Identifying hub objects and sub-networks from complex interactome.BMC Syst Biol.20148 Suppl 4Suppl 4S11
    [Google Scholar]
  30. YuG. WangL.G. HanY. HeQ.Y. clusterProfiler: An R package for comparing biological themes among gene clusters.OMICS201216528428710.1089/omi.2011.011822455463
    [Google Scholar]
  31. KhraisatB. ToubasiA. AlZoubiL. Al-SayeghT. MansourA. Meta-analysis of prevalence: The psychological sequelae among COVID-19 survivors.Int. J. Psychiatry Clin. Pract.202111034709105
    [Google Scholar]
  32. Lyra e SilvaN.M. Barros-AragãoF.G.Q. De FeliceF.G. FerreiraS.T. Inflammation at the crossroads of COVID-19, cognitive deficits and depression.Neuropharmacology.202220910902310.1016/j.neuropharm.2022.10902335257690
    [Google Scholar]
  33. MahaseE. Covid-19: One in three has neurological or psychiatric condition diagnosed after covid infection, study finds.BMJ2021373908n90810.1136/bmj.n90833827790
    [Google Scholar]
  34. YangA.C. KernF. LosadaP.M. AgamM.R. MaatC.A. SchmartzG.P. FehlmannT. SteinJ.A. SchaumN. LeeD.P. CalcuttawalaK. VestR.T. BerdnikD. LuN. HahnO. GateD. McNerneyM.W. ChannappaD. CobosI. LudwigN. Schulz-SchaefferW.J. KellerA. Wyss-CorayT. Dysregulation of brain and choroid plexus cell types in severe COVID-19.Nature2021595786856557110.1038/s41586‑021‑03710‑034153974
    [Google Scholar]
  35. UverskyV.N. ElrashdyF. AljadawiA. AliS.M. KhanR.H. RedwanE.M. Severe acute respiratory syndrome coronavirus 2 infection reaches the human nervous system: How?J. Neurosci. Res.202199375077710.1002/jnr.2475233217763
    [Google Scholar]
  36. SwansonP.A.II McGavernD.B. Viral diseases of the central nervous system.Curr. Opin. Virol.201511445410.1016/j.coviro.2014.12.00925681709
    [Google Scholar]
  37. KoyuncuO.O. HogueI.B. EnquistL.W. Virus infections in the nervous system.Cell Host Microbe201313437939310.1016/j.chom.2013.03.01023601101
    [Google Scholar]
  38. WuY. XuX. ChenZ. DuanJ. HashimotoK. YangL. LiuC. YangC. Nervous system involvement after infection with COVID-19 and other coronaviruses.Brain Behav. Immun.202087182210.1016/j.bbi.2020.03.03132240762
    [Google Scholar]
  39. FronteraJ.A. SimonN.M. Bridging knowledge gaps in the diagnosis and management of neuropsychiatric sequelae of COVID-19.JAMA Psychiatry202279881181710.1001/jamapsychiatry.2022.161635767287
    [Google Scholar]
  40. PousoS. BorjaÁ. FlemingL.E. Gómez-BaggethunE. WhiteM.P. UyarraM.C. Contact with blue-green spaces during the COVID-19 pandemic lockdown beneficial for mental health.Sci. Total Environ.202175614398410.1016/j.scitotenv.2020.14398433277006
    [Google Scholar]
  41. PfefferbaumB. NorthC.S. Mental health and the Covid-19 pandemic.N. Engl. J. Med.2020383651051210.1056/NEJMp200801732283003
    [Google Scholar]
  42. BrooksS.K. WebsterR.K. SmithL.E. WoodlandL. WesselyS. GreenbergN. RubinG.J. The psychological impact of quarantine and how to reduce it: Rapid review of the evidence.Lancet20203951022791292010.1016/S0140‑6736(20)30460‑832112714
    [Google Scholar]
  43. LedfordC.J.W. RobertsC. WhisenantE. WaltersC. AkamiroK. ButlerJ. AliA. SeehusenD.A. Quantifying worsened glycemic control during the COVID-19 pandemic.J. Am. Board Fam. Med.202134Suppl.S192S19510.3122/jabfm.2021.S1.20044633622837
    [Google Scholar]
  44. LabibS.M. BrowningM.H.E.M. RigolonA. HelbichM. JamesP. Nature’s contributions in coping with a pandemic in the 21st century: A narrative review of evidence during COVID-19.Sci. Total Environ.202283315509510.1016/j.scitotenv.2022.15509535395304
    [Google Scholar]
  45. XiangY.T. YangY. LiW. ZhangL. ZhangQ. CheungT. NgC.H. Timely mental health care for the 2019 novel coronavirus outbreak is urgently needed.Lancet Psychiatry20207322822910.1016/S2215‑0366(20)30046‑832032543
    [Google Scholar]
  46. LiW. YangY. LiuZ.H. ZhaoY.J. ZhangQ. ZhangL. CheungT. XiangY.T. Progression of mental health services during the COVID-19 outbreak in China.Int. J. Biol. Sci.202016101732173810.7150/ijbs.4512032226291
    [Google Scholar]
  47. DempseyL.A. SARS-CoV-2 neuroinvasion.Nat. Immunol.2021221733335326
    [Google Scholar]
  48. SolomonI.H. NormandinE. BhattacharyyaS. MukerjiS.S. KellerK. AliA.S. AdamsG. HornickJ.L. PaderaR.F.Jr SabetiP. Neuropathological features of Covid-19.N. Engl. J. Med.20203831098999210.1056/NEJMc201937332530583
    [Google Scholar]
  49. MatschkeJ. LütgehetmannM. HagelC. SperhakeJ.P. SchröderA.S. EdlerC. MushumbaH. FitzekA. AllweissL. DandriM. DottermuschM. HeinemannA. PfefferleS. SchwabenlandM. Sumner MagruderD. BonnS. PrinzM. GerloffC. PüschelK. KrasemannS. AepfelbacherM. GlatzelM. Neuropathology of patients with COVID-19 in Germany: A post-mortem case series.Lancet Neurol.2020191191992910.1016/S1474‑4422(20)30308‑233031735
    [Google Scholar]
  50. DanielsB.P. JujjavarapuH. DurrantD.M. WilliamsJ.L. GreenR.R. WhiteJ.P. LazearH.M. GaleM.Jr DiamondM.S. KleinR.S. Regional astrocyte IFN signaling restricts pathogenesis during neurotropic viral infection.J. Clin. Invest.2017127384385610.1172/JCI8872028134626
    [Google Scholar]
  51. JohnsonL.A. EdwardsM. GamboaA. HallJ. RobinsonM. O’BryantS.E. Depression, inflammation, and memory loss among Mexican Americans: Analysis of the HABLE cohort.Int. Psychogeriatr.201729101693169910.1017/S104161021700101628629481
    [Google Scholar]
  52. van den AmeeleS. CoppensV. SchuermansJ. De BoerP. TimmersM. FransenE. SabbeB. MorrensM. Neurotrophic and inflammatory markers in bipolar disorder: A prospective study.Psychoneuroendocrinology20178414315010.1016/j.psyneuen.2017.07.00328711724
    [Google Scholar]
  53. MazzaM.G. PalladiniM. De LorenzoR. MagnaghiC. PolettiS. FurlanR. CiceriF. Rovere-QueriniP. BenedettiF. Persistent psychopathology and neurocognitive impairment in COVID-19 survivors: Effect of inflammatory biomarkers at three-month follow-up.Brain Behav. Immun.20219413814710.1016/j.bbi.2021.02.02133639239
    [Google Scholar]
  54. MazzaM.G. De LorenzoR. ConteC. PolettiS. VaiB. BollettiniI. MelloniE.M.T. FurlanR. CiceriF. Rovere-QueriniP. BenedettiF. Anxiety and depression in COVID-19 survivors: Role of inflammatory and clinical predictors.Brain Behav. Immun.20208959460010.1016/j.bbi.2020.07.03732738287
    [Google Scholar]
  55. LorkiewiczP. WaszkiewiczN. Biomarkers of post-COVID depression.J. Clin. Med.20211018414210.3390/jcm1018414234575258
    [Google Scholar]
  56. NaveO.P. ShemeshU. HarTuv, I. Applying Laplace Adomian decomposition method (LADM) for solving a model of Covid-19.Comput. Methods Biomech. Biomed. Engin.202124141618162810.1080/10255842.2021.190439933787397
    [Google Scholar]
  57. ArataniY. Myeloperoxidase: Its role for host defense, inflammation, and neutrophil function.Arch. Biochem. Biophys.2018640475210.1016/j.abb.2018.01.00429336940
    [Google Scholar]
  58. GałeckiP. TalarowskaM. Inflammatory theory of depression.Psychiatr. Pol.201852343744710.12740/PP/7686330218560
    [Google Scholar]
  59. ChenS. ChenH. DuQ. ShenJ. Targeting myeloperoxidase (MPO) mediated oxidative stress and inflammation for reducing brain ischemia injury: Potential application of natural compounds.Front. Physiol.20201143310.3389/fphys.2020.0043332508671
    [Google Scholar]
  60. SanthanamL ChristiansonDW NyhanD BerkowitzDE Arginase and vascular aging.J Appl Physiol200810551632164210.1152/japplphysiol.90627.2008
    [Google Scholar]
  61. JacobsenL.C. Theilgaard-MönchK. ChristensenE.I. BorregaardN. Arginase 1 is expressed in myelocytes/metamyelocytes and localized in gelatinase granules of human neutrophils.Blood200710973084308710.1182/blood‑2006‑06‑03259917119118
    [Google Scholar]
  62. KanM.J. LeeJ.E. WilsonJ.G. EverhartA.L. BrownC.M. HoofnagleA.N. JansenM. VitekM.P. GunnM.D. ColtonC.A. Arginine deprivation and immune suppression in a mouse model of Alzheimer’s disease.J. Neurosci.201535155969598210.1523/JNEUROSCI.4668‑14.201525878270
    [Google Scholar]
  63. HsiehC.L. KimC.C. RybaB.E. NiemiE.C. BandoJ.K. LocksleyR.M. LiuJ. NakamuraM.C. SeamanW.E. Traumatic brain injury induces macrophage subsets in the brain.Eur. J. Immunol.20134382010202210.1002/eji.20124308423630120
    [Google Scholar]
  64. AsanoS. ChantlerP.D. BarrT.L. Gene expression profiling in stroke: Relevance of blood–brain interaction.Curr. Opin. Pharmacol.201626808610.1016/j.coph.2015.10.00426562440
    [Google Scholar]
  65. SkyttheM.K. GraversenJ.H. MoestrupS.K. Targeting of CD163+ macrophages in inflammatory and malignant diseases.Int. J. Mol. Sci.20202115549710.3390/ijms2115549732752088
    [Google Scholar]
  66. PeyP. PearceR.K.B. KalaitzakisM.E. GriffinW.S.T. GentlemanS.M. Phenotypic profile of alternative activation marker CD163 is different in Alzheimer’s and Parkinson’s disease.Acta Neuropathol. Commun.2014212110.1186/2051‑5960‑2‑2124528486
    [Google Scholar]
  67. EtzerodtA. MoestrupS.K. CD163 and inflammation: Biological, diagnostic, and therapeutic aspects.Antioxid. Redox Signal.201318172352236310.1089/ars.2012.483422900885
    [Google Scholar]
  68. KiyoshiM. CaaveiroJ.M.M. KawaiT. TashiroS. IdeT. AsaokaY. HatayamaK. TsumotoK. Structural basis for binding of human IgG1 to its high-affinity human receptor FcγRI.Nat. Commun.201561686610.1038/ncomms786625925696
    [Google Scholar]
  69. XuJ. GuoY. FCGR1A serves as a novel biomarker and correlates with immune infiltration in four cancer types.Front. Mol. Biosci.2020758161510.3389/fmolb.2020.58161533344503
    [Google Scholar]
  70. van der PoelCE SpaapenRM van de WinkelJG LeusenJH Functional characteristics of the high affinity IgG receptor, FcγRI.J Immunol.2011186526992704
    [Google Scholar]
  71. CidJ. AguinacoR. SánchezR. García-PardoG. LlorenteA. Neutrophil CD64 expression as marker of bacterial infection: A systematic review and meta-analysis.J. Infect.201060531331910.1016/j.jinf.2010.02.01320206205
    [Google Scholar]
  72. ZhangQ. HuY. WeiP. ShiL. ShiL. LiJ. ZhaoY. ChenY. ZhangX. YeF. LiuX. LinS. Identification of hub genes for adult patients with sepsis via RNA sequencing.Sci. Rep.2022121512810.1038/s41598‑022‑09175‑z35332254
    [Google Scholar]
  73. SrivastavaP. BambaC. PilaniaR.K. KumariA. KumrahR. SilA. SinghS. Exploration of potential biomarker genes and pathways in kawasaki disease: An integrated in-Silico approach.Front. Genet.20221384983410.3389/fgene.2022.84983435615376
    [Google Scholar]
  74. PhamC.T.N. Neutrophil serine proteases: Specific regulators of inflammation.Nat. Rev. Immunol.20066754155010.1038/nri184116799473
    [Google Scholar]
  75. KorkmazB. HorwitzM.S. JenneD.E. GauthierF. Neutrophil elastase, proteinase 3, and cathepsin G as therapeutic targets in human diseases.Pharmacol. Rev.201062472675910.1124/pr.110.00273321079042
    [Google Scholar]
  76. CuiC. ChakrabortyK. TangX.A. ZhouG. SchoenfeltK.Q. BeckerK.M. HoffmanA. ChangY.F. BlankA. ReardonC.A. KennyH.A. VaisarT. LengyelE. GreeneG. BeckerL. Neutrophil elastase selectively kills cancer cells and attenuates tumorigenesis.Cell20211841231633177.e2110.1016/j.cell.2021.04.01633964209
    [Google Scholar]
  77. ZhuY. HuangD. ZhaoZ. LuC. Bioinformatic analysis identifies potential key genes of epilepsy.PLoS One2021169e025432610.1371/journal.pone.025432634555062
    [Google Scholar]
  78. LiuS. HuangZ. DengX. ZouX. LiH. MuS. CaoB. Identification of key candidate biomarkers for severe influenza infection by integrated bioinformatical analysis and initial clinical validation.J. Cell. Mol. Med.20212531725173810.1111/jcmm.1627533448094
    [Google Scholar]
  79. Santiago-SánchezG.S. Pita-GrisantiV. Quiñones-DíazB. GumpperK. Cruz-MonserrateZ. Vivas-MejíaP.E. Biological functions and therapeutic potential of lipocalin 2 in cancer.Int. J. Mol. Sci.20202112436510.3390/ijms2112436532575507
    [Google Scholar]
  80. SukK. Lipocalin-2 as a therapeutic target for brain injury: An astrocentric perspective.Prog. Neurobiol.201614415817210.1016/j.pneurobio.2016.08.00127498195
    [Google Scholar]
  81. PinyopornpanishK. ChattipakornN. ChattipakornS.C. Lipocalin‐2: Its perspectives in brain pathology and possible roles in cognition.J. Neuroendocrinol.20193110e1277910.1111/jne.1277931393997
    [Google Scholar]
  82. KheraR. DasN. Complement receptor 1: Disease associations and therapeutic implications.Mol. Immunol.200946576177210.1016/j.molimm.2008.09.02619004497
    [Google Scholar]
  83. ZhuX.C. YuJ.T. JiangT. WangP. CaoL. TanL. CR1 in Alzheimer’s disease.Mol. Neurobiol.201551275376510.1007/s12035‑014‑8723‑824794147
    [Google Scholar]
  84. HampelH. CaraciF. CuelloA.C. CarusoG. NisticòR. CorboM. BaldacciF. ToschiN. GaraciF. ChiesaP.A. VerdoonerS.R. Akman-AndersonL. HernándezF. ÁvilaJ. EmanueleE. ValenzuelaP.L. LucíaA. WatlingM. ImbimboB.P. VergalloA. ListaS. A path toward precision medicine for neuroinflammatory mechanisms in Alzheimer’s disease.Front. Immunol.20201145610.3389/fimmu.2020.0045632296418
    [Google Scholar]
  85. ZhengH. QianX. TianW. CaoL. Exploration of the common gene characteristics and molecular mechanism of Parkinson’s disease and crohn’s disease from transcriptome data.Brain Sci.202212677410.3390/brainsci1206077435741659
    [Google Scholar]
  86. TaoZ. SuoH. ZhangL. JinZ. WangZ. WangD. WuM. PengN. ZhaoY. ChenB. MRPL13 is a prognostic cancer biomarker and correlates with immune infiltrates in breast cancer.OncoTargets Ther.202013122551226810.2147/OTT.S26399833273831
    [Google Scholar]
  87. JingC. FuR. WangC. LiX. ZhangW. MRPL13 act as a novel therapeutic target and could promote cell proliferation in non-small cell lung cancer.Cancer Manag. Res.2021135535554510.2147/CMAR.S31642834285575
    [Google Scholar]
  88. MaZ. QuB. YaoL. GaoZ. ZhangS. Identification and functional characterization of ribosomal protein S23 as a new member of antimicrobial protein.Dev. Comp. Immunol.202011010373010.1016/j.dci.2020.10373032423862
    [Google Scholar]
  89. ZhouX. LiaoW.J. LiaoJ.M. LiaoP. LuH. Ribosomal proteins: Functions beyond the ribosome.J. Mol. Cell Biol.2015729210410.1093/jmcb/mjv01425735597
    [Google Scholar]
  90. HippM.S. KasturiP. HartlF.U. The proteostasis network and its decline in ageing.Nat. Rev. Mol. Cell Biol.201920742143510.1038/s41580‑019‑0101‑y30733602
    [Google Scholar]
  91. ChenF. WangN. HeX. Identification of differential genes of DNA methylation associated with Alzheimer’s disease based on integrated bioinformatics and its diagnostic significance.Front. Aging Neurosci.20221488436710.3389/fnagi.2022.88436735615586
    [Google Scholar]
  92. NobisA. ZalewskiD. WaszkiewiczN. Peripheral markers of depression.J. Clin. Med.2020912379310.3390/jcm912379333255237
    [Google Scholar]
  93. ScarrE. MillanM.J. BahnS. BertolinoA. TurckC.W. KapurS. MöllerH.J. DeanB. Biomarkers for psychiatry: The journey from fantasy to fact, a report of the 2013 CINP think tank: Figure 1.Int. J. Neuropsychopharmacol.20151810pyv04210.1093/ijnp/pyv04225899066
    [Google Scholar]
  94. PostolacheT.T. BenrosM.E. BrennerL.A. Targetable biological mechanisms implicated in emergent psychiatric conditions associated with SARS-CoV-2 infection.JAMA Psychiatry202032735332
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073322931241030104813
Loading
/content/journals/cchts/10.2174/0113862073322931241030104813
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): bioinformatic analysis; biomarker; COVID-19; depression; differentially expressed genes
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test