Skip to content
2000
Volume 28, Issue 16
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Neurodegenerative diseases present significant public health challenges, driving the search for innovative therapeutic strategies. This review explores the neuroprotective potential of furan-containing compounds, which are derived from various natural and synthetic sources. These compounds are observed for their diverse pharmacological activities, including antioxidant and anti-inflammatory properties. By scavenging free radicals and mitigating oxidative stress, they address a key aspect of neurodegeneration. Additionally, furan derivatives modulate inflammatory pathways, potentially reducing neuroinflammation, a critical factor in the progression of these disorders. The review also highlights the impact of these compounds on neuronal survival and regeneration, suggesting their role in promoting neurogenesis and enhancing neuronal plasticity. Their interactions with neurotransmitter systems further support their neuroprotective effects, particularly in maintaining synaptic function and neurotransmission. The potential applications of furan-containing compounds are discussed concerning specific neurodegenerative diseases, such as Alzheimer's and Parkinson's. Insights from preclinical studies and experiments underscore their therapeutic promise across various experimental models. While still in the early stages of research, the evidence suggests that furan-containing compounds could be valuable in developing effective interventions for neurodegenerative diseases. This review emphasizes the need for further investigation into these compounds to realize their potential as neuroprotective agents fully.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073319757240912055303
2024-09-27
2025-12-15
Loading full text...

Full text loading...

References

  1. Cristina CamposH. The Role of Natural Products in the Discovery of New Drug Candidates for the Treatment of Neurodegenerative Disorders I: Parkinsons Disease.CNS Neurol. Disord. Drug Targets201210223925010.2174/187152711794480483
    [Google Scholar]
  2. TeleanuD.M. NiculescuA.G. LunguI.I. RaduC.I. VladâcencoO. RozaE. CostăchescuB. GrumezescuA.M. TeleanuR.I. An Overview of Oxidative Stress, Neuroinflammation, and Neurodegenerative Diseases.Int. J. Mol. Sci.20222311593810.3390/ijms23115938 35682615
    [Google Scholar]
  3. MursalM. Role of natural bioactive compounds in the management of neurodegenerative disorders.Intell. Pharm.2023(Sep).10.1016/j.ipha.2023.09.006
    [Google Scholar]
  4. FrühaufA. BehringerM. Meyer-AlmesF.J. Significance of Five-Membered Heterocycles in Human Histone Deacetylase Inhibitors.Molecules20232815568610.3390/molecules28155686 37570656
    [Google Scholar]
  5. SurguchovA. BernalL. SurguchevA.A. Phytochemicals as regulators of genes involved in synucleinopathies.Biomolecules202111562410.3390/biom11050624 33922207
    [Google Scholar]
  6. MattioliR. FranciosoA. MoscaL. SilvaP. Anthocyanins: A comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases.Molecules20202517380910.3390/molecules25173809 32825684
    [Google Scholar]
  7. LimanaqiF. BiagioniF. MastroiacovoF. PolzellaM. LazzeriG. FornaiF. Merging the multi-target effects of phytochemicals in neurodegeneration: From oxidative stress to protein aggregation and inflammation.Antioxidants2020910102210.3390/antiox9101022 33092300
    [Google Scholar]
  8. AlizadehM. MoludiJ. KhodaeiH. SaberA. KheirouriS. Pourteymour Fard TabriziF. KamariN. Recent updates on anti-inflammatory and antimicrobial effects of furan natural derivatives.J. Inflamm. Res.20201345146310.2147/JIR.S262132 32884326
    [Google Scholar]
  9. GableJ.E. AckerT.M. CraikC.S. Current and potential treatments for ubiquitous but neglected herpesvirus infections.Chem. Rev.201411422113821141210.1021/cr500255e 25275644
    [Google Scholar]
  10. SperryJ.B. WrightD.L. Furans, thiophenes and related heterocycles in drug discovery.Curr. Opin. Drug Discov. Devel.200586723740
    [Google Scholar]
  11. KumarJ. Synthesis and neuropharmacological evaluation of some new isoxazoline derivatives as antidepressant and anti-anxiety agents.Afr. J. Pharm. Pharmacol.20137221523153010.5897/AJPP2013.3566
    [Google Scholar]
  12. KumarJ. ChawlaG. AkhtarM. SahuK. RathoreV. SahuS. Design, synthesis and pharmacological evaluation of some novel derivatives of 1-[3-(furan-2-yl)-5-phenyl-4,5-dihydro-1,2-oxazol-4-yl]methyl-4-methyl piperazine.Arab. J. Chem.201710114114910.1016/j.arabjc.2013.04.027
    [Google Scholar]
  13. ÖzdemirZ. KandilciH.B. GümüşelB. ÇalışÜ. BilginA.A. Synthesis and studies on antidepressant and anticonvulsant activities of some 3-(2-furyl)-pyrazoline derivatives.Eur. J. Med. Chem.200742337337910.1016/j.ejmech.2006.09.006 17069933
    [Google Scholar]
  14. Panneer SelvamT. KarthickV. Vijayaraj KumarP. Ashraf AliM. Antiepileptic Activity of Novel 2-(substituted benzylidene)-7-(4-fluorophenyl)-5-(furan-2-yl)-2H-thiazolo[3,2-a]pyrimidin-3(7H)-one Derivatives.Lett. Drug Des. Discov.201310320421110.2174/1570180811310030003
    [Google Scholar]
  15. ChenP.C. TsaiW.J. UengY.F. TzengT.T. ChenH.L. ZhuP.R. HuangC.H. ShiaoY.J. LiW.T. Neuroprotective and Antineuroinflammatory Effects of Hydroxyl-Functionalized Stilbenes and 2-Arylbenzo[ b]furans.J. Med. Chem.20176094062407310.1021/acs.jmedchem.7b00376 28459572
    [Google Scholar]
  16. LiF. ZhuQ. ZhangY. FengY. LengY. ZhangA. Design, synthesis, and pharmacological evaluation of N-(4-mono and 4,5-disubstituted thiazol-2-yl)-2-aryl-3-(tetrahydro-2H-pyran-4-yl) propanamides as glucokinase activators.Bioorg. Med. Chem.201018113875388410.1016/j.bmc.2010.04.038 20472448
    [Google Scholar]
  17. AzamF. El-GnidiB.A. AlkskasI.A. AhmedM.A. Design, synthesis and anti-Parkinsonian evaluation of 3-alkyl/aryl-8-(furan-2-yl)thiazolo[5,4-e][1,2,4]triazolo[1,5-c]pyrimidine-2(3H)-thiones against neuroleptic-induced catalepsy and oxidative stress in mice.J. Enzyme Inhib. Med. Chem.201025681882610.3109/14756361003671052
    [Google Scholar]
  18. BologninoI. GiangregorioN. TonazziA. MartínezA.L. AltomareC.D. LozaM.I. SabloneS. CellamareS. CattoM. Synthesis and Biological Evaluation of Dantrolene‐Like Hydrazide and Hydrazone Analogues as Multitarget Agents for Neurodegenerative Diseases.ChemMedChem202116182807281610.1002/cmdc.202100209 34047061
    [Google Scholar]
  19. HosoyaT. AoyamaH. IkemotoT. KiharaY. HiramatsuT. EndoM. SuzukiM. Dantrolene analogues revisited: general synthesis and specific functions capable of discriminating two kinds of Ca2+ release from sarcoplasmic reticulum of mouse skeletal muscle.Bioorg. Med. Chem.200311566367310.1016/S0968‑0896(02)00600‑4 12537995
    [Google Scholar]
  20. Kumar ReddyA.L.V. KathaleN.E. Synthesis and anti-inflammatory activity of hydrazones bearing biphenyl moiety and vanillin based hybrids.Orient. J. Chem.201733297197810.13005/ojc/330250
    [Google Scholar]
  21. WięckowskiK. SałatK. BytnarJ. BajdaM. FilipekB. StablesJ.P. MalawskaB. Search for anticonvulsant and analgesic active derivatives of dihydrofuran-2(3H)-one.Bioorg. Med. Chem.201220216533654410.1016/j.bmc.2012.08.037 23010454
    [Google Scholar]
  22. ChakrabortiA. GargS. KumarR. MotiwalaH. JadhavarP. Progress in COX-2 inhibitors: A journey so far.Curr. Med. Chem.201017151563159310.2174/092986710790979980 20166930
    [Google Scholar]
  23. BarmadeM.A. GhugeR.B. Vicinal diaryl heterocyclic system: A privileged scaffold in the discovery of potential therapeutic agents.Nov. Ther. Agents2018Jan12010.1016/B978‑0‑08‑102237‑5.00001‑8
    [Google Scholar]
  24. LampteyR.N.L. ChaulagainB. TrivediR. GothwalA. LayekB. SinghJ. A Review of the Common Neurodegenerative Disorders: Current Therapeutic Approaches and the Potential Role of Nanotherapeutics.Int. J. Mol. Sci.2022233185110.3390/ijms23031851 35163773
    [Google Scholar]
  25. RaineA. BobrinB.D. Cognitive deficits.Psychopathol. Crime1993Feb21524110.1016/B978‑0‑08‑057148‑5.50013‑7 32644478
    [Google Scholar]
  26. SchrankS. BarringtonN. StutzmannG.E. Calcium-handling defects and neurodegenerative disease.Cold Spring Harb. Perspect. Biol.2020127a03521210.1101/cshperspect.a035212 31427373
    [Google Scholar]
  27. PassaroA.P. LebosA.L. YaoY. SticeS.L. Immune response in neurological pathology: Emerging role of central and peripheral immune crosstalk.Front. Immunol.20211267662110.3389/fimmu.2021.676621 34177918
    [Google Scholar]
  28. WarehamL.K. LiddelowS.A. TempleS. BenowitzL.I. Di PoloA. WellingtonC. GoldbergJ.L. HeZ. DuanX. BuG. DavisA.A. ShekharK. TorreA.L. ChanD.C. Canto-SolerM.V. FlanaganJ.G. SubramanianP. RossiS. BrunnerT. BovenkampD.E. CalkinsD.J. Solving neurodegeneration: common mechanisms and strategies for new treatments.Mol. Neurodegener.20221712310.1186/s13024‑022‑00524‑0 35313950
    [Google Scholar]
  29. GuoH. AhnS. ZhangL. Benzene-associated immunosuppression and chronic inflammation in humans: A systematic review.Occup. Environ. Med.202178537738410.1136/oemed‑2020‑106517 32938756
    [Google Scholar]
  30. ChenQ. JiangP. GuoM. YangJ. Synthesis of new 2-arylbenzo[b]furan derivatives via palladium-catalyzed suzuki cross-coupling reactions in aqueous media.Molecules20182310245010.3390/molecules23102450
    [Google Scholar]
  31. AyoubA.J. El-AchkarG.A. GhayadS.E. HarissL. HaidarR.H. AntarL.M. MallahZ.I. BadranB. GréeR. HachemA. HamadeE. HabibA. Fluorinated benzofuran and dihydrobenzofuran as anti-inflammatory and potential anticancer agents.Int. J. Mol. Sci.202324121039910.3390/ijms241210399 37373544
    [Google Scholar]
  32. WonJ.H. ImH.T. KimY.H. YunK.J. ParkH.J. ChoiJ.W. LeeK.T. Anti‐inflammatory effect of buddlejasaponin IV through the inhibition of iNOS and COX‐2 expression in RAW 264.7 macrophages via the NF‐ κ B inactivation.Br. J. Pharmacol.2006148221622510.1038/sj.bjp.0706718 16520738
    [Google Scholar]
  33. AttiqA. JalilJ. HusainK. AhmadW. Raging the war against inflammation with natural products.Front. Pharmacol.20189SEP97610.3389/fphar.2018.00976 30245627
    [Google Scholar]
  34. StockwellJ. JakovaE. CayabyabF. Adenosine A1 and A2A receptors in the brain: Current research and their role in neurodegeneration.Molecules201722467610.3390/molecules22040676 28441750
    [Google Scholar]
  35. MiaoY. HuY. YangJ. LiuT. SunJ. WangX. Natural source, bioactivity and synthesis of benzofuran derivatives.RSC Adv.2019947275102754010.1039/C9RA04917G 35529241
    [Google Scholar]
  36. KoulH.K. PalM. KoulS. Role of p38 MAP Kinase Signal Transduction in Solid Tumors.Genes Cancer201349-1034235910.1177/1947601913507951 24349632
    [Google Scholar]
  37. da Cruz NascimentoS.S. Carvalho de QueirozJ.L. Fernandes de MedeirosA. de França NunesA.C. PiuvezamG. Lima MacielB.L. Souza PassosT. MoraisA.H.A. Anti-inflammatory agents as modulators of the inflammation in adipose tissue: A systematic review.PLoS One2022179e027394210.1371/journal.pone.0273942 36048868
    [Google Scholar]
  38. KapcheD.W.F.G. LekaneN.M. KulabasS.S. IpekH. TokT.T. NgadjuiB.T. DemirtasI. TumerT.B. Aryl benzofuran derivatives from the stem bark of Calpocalyx dinklagei attenuate inflammation.Phytochemistry2017141707910.1016/j.phytochem.2017.05.007 28577435
    [Google Scholar]
  39. EasonC.T. Greenshell™ Mussels: A review of veterinary trials and future research directions.Vet. Sci.2018523610.3390/vetsci5020036
    [Google Scholar]
  40. KarimN. KhanI. KhanW. KhanI. KhanA. HalimS.A. KhanH. HussainJ. Al-HarrasiA. Anti-nociceptive and anti-inflammatory activities of asparacosin a involve selective cyclooxygenase 2 and inflammatory cytokines inhibition: An in-vitro,] in-vivo, and in-silico approach.Front. Immunol.201910MAR58110.3389/fimmu.2019.00581 30972073
    [Google Scholar]
  41. LüJ.M. LinP.H. YaoQ. ChenC. Chemical and molecular mechanisms of antioxidants: Experimental approaches and model systems.J. Cell. Mol. Med.201014484086010.1111/j.1582‑4934.2009.00897.x 19754673
    [Google Scholar]
  42. FujiiJ. HommaT. OsakiT. Superoxide radicals in the execution of cell death.Antioxidants202211350110.3390/antiox11030501
    [Google Scholar]
  43. ShahidiF. ZhongY. Measurement of antioxidant activity.J. Funct. Foods20151875778110.1016/j.jff.2015.01.047
    [Google Scholar]
  44. MartemucciG. CostagliolaC. MarianoM. D’andreaL. NapolitanoP. D’AlessandroA.G. Free radical properties, source and targets, antioxidant consumption and health.Oxygen20222487810.3390/oxygen2020006
    [Google Scholar]
  45. De CarvalhoC. CaramujoM. The various roles of fatty acids.Molecules20182310258310.3390/molecules23102583 30304860
    [Google Scholar]
  46. ShiraniK. Evaluating the effects of galbanic acid on hydrogen peroxide-induced oxidative DNA damage in human lymphocytes.Avicenna J. Phytomed.201445337342
    [Google Scholar]
  47. TeixeiraA. CoxR.C. EgmondM.R. Furan fatty acids efficiently rescue brain cells from cell death induced by oxidative stress.Food Funct.2013481209121510.1039/c3fo60094g 23719714
    [Google Scholar]
  48. GaschlerM.M. StockwellB.R. Lipid peroxidation in cell death.Biochem. Biophys. Res. Commun.2017482341942510.1016/j.bbrc.2016.10.086 28212725
    [Google Scholar]
  49. WakimotoT. KondoH. NiiH. KimuraK. EgamiY. OkaY. YoshidaM. KidaE. YeY. AkahoshiS. AsakawaT. MatsumuraK. IshidaH. NukayaH. TsujiK. KanT. AbeI. Furan fatty acid as an anti-inflammatory component from the green-lipped mussel Perna canaliculus.Proc. Natl. Acad. Sci. USA201110842175331753710.1073/pnas.1110577108 21972415
    [Google Scholar]
  50. DasagrandhiC. KimY.S. KimI.H. HouC.T. KimH.R. 7,10-Epoxyoctadeca-7,9-dienoic Acid: A Small Molecule Adjuvant That Potentiates β-Lactam Antibiotics Against Multidrug-Resistant Staphylococcus aureus.Indian J. Microbiol.201757446146910.1007/s12088‑017‑0680‑2 29151647
    [Google Scholar]
  51. DasagrandhiC. EllamarJ.B. KimY.S. KimH.R. Antimicrobial activity of a novel furan fatty acid, 7,10-epoxyoctadeca-7,9-dienoic acid against methicillin-resistant Staphylococcus aureus.Food Sci. Biotechnol.20162561671167510.1007/s10068‑016‑0257‑6 30263461
    [Google Scholar]
  52. AnokwahD. KwatiaE.A. AmponsahI.K. JibiraY. HarleyB.K. AmeyawE.O. ObeseE. BineyR.P. MensahA.Y. Evaluation of the anti-inflammatory and antioxidant potential of the stem bark extract and some constituents of Aidia genipiflora (DC.) dandy (rubiaceae).Heliyon202288e1008210.1016/j.heliyon.2022.e10082 36042726
    [Google Scholar]
  53. RoachJ.T. SufkaK.J. Characterization of the chick carrageenan response.Brain Res.2003994221622510.1016/j.brainres.2003.09.038 14642647
    [Google Scholar]
  54. ChenY.F. TsaiH.Y. WuT.S. Anti-inflammatory and analgesic activities from roots of Angelica pubescens.Planta Med.19956112810.1055/s‑2006‑957987 7700984
    [Google Scholar]
  55. MumtazF. ZubairM. KhanF. NiazK. Recent advances in natural products analysis.Recent Adv. Nat. Prod. Anal202067770510.1016/B978‑0‑12‑816455‑6.00022‑6
    [Google Scholar]
  56. NiinivehmasS. PentikäinenO. Coumarins as tool compounds to aid the discovery of selective function modulators of steroid hormone binding proteins.Molecules20212617514210.3390/molecules26175142 34500576
    [Google Scholar]
  57. JanS. KhanM.R. RashidU. BokhariJ. Assessment of antioxidant potential, total phenolics and flavonoids of different solvent fractions of monotheca buxifolia fruit.Osong Public Health Res. Perspect.20134524625410.1016/j.phrp.2013.09.003 24298440
    [Google Scholar]
  58. HungW.L. SuhJ.H. WangY. Chemistry and health effects of furanocoumarins in grapefruit.J. Food Drug Anal.2017251718310.1016/j.jfda.2016.11.008 28911545
    [Google Scholar]
  59. TodorovL. SasoL. KostovaI. Antioxidant activity of coumarins and their metal complexes.Pharmaceuticals (Basel)202316565110.3390/ph16050651 37242434
    [Google Scholar]
  60. BruniR. Botanical sources, chemistry, analysis, and biological activity of furanocoumarins of pharmaceutical interest.Molecules20192411216310.3390/molecules24112163
    [Google Scholar]
  61. AlbertB.B. Cameron-SmithD. HofmanP.L. CutfieldW.S. Oxidation of marine omega-3 supplements and human health.BioMed Res. Int.201320131810.1155/2013/464921 23738326
    [Google Scholar]
  62. VimalV. DevakiT. Linear furanocoumarin protects rat myocardium against lipidperoxidation and membrane damage during experimental myocardial injury.Biomed. Pharmacother.2004586-739340010.1016/j.biopha.2003.12.007 15271422
    [Google Scholar]
  63. BanH.S. LimS.S. SuzukiK. JungS.H. LeeS. LeeY.S. ShinK.H. OhuchiK. Inhibitory effects of furanocoumarins isolated from the roots of Angelica dahurica on prostaglandin E2 production.Planta Med.200369540841210.1055/s‑2003‑39702 12802720
    [Google Scholar]
  64. MurakamiM. KudoI. Phospholipase A2.J. Biochem.2002131328529210.1093/oxfordjournals.jbchem.a003101 11872155
    [Google Scholar]
  65. AndersonG.D. HauserS.D. McGarityK.L. BremerM.E. IsaksonP.C. GregoryS.A. Selective inhibition of cyclooxygenase (COX)-2 reverses inflammation and expression of COX-2 and interleukin 6 in rat adjuvant arthritis.J. Clin. Invest.199697112672267910.1172/JCI118717 8647962
    [Google Scholar]
  66. MuchaP. SkoczyńskaA. MałeckaM. HikiszP. BudziszE. Overview of the antioxidant and anti-inflammatory activities of selected plant compounds and their metal ions complexes.Molecules20212616488610.3390/molecules26164886 34443474
    [Google Scholar]
  67. MoitaE. Gil-IzquierdoA. SousaC. FerreresF. SilvaL.R. ValentãoP. Domínguez-PerlesR. BaenasN. AndradeP.B. Integrated analysis of COX-2 and iNOS derived inflammatory mediators in LPS-stimulated RAW macrophages pre-exposed to Echium plantagineum L. bee pollen extract.PLoS One201383e5913110.1371/journal.pone.0059131 23520554
    [Google Scholar]
  68. SalveminiD. KimS.F. MollaceV. Reciprocal regulation of the nitric oxide and cyclooxygenase pathway in pathophysiology: Relevance and clinical implications.Am. J. Physiol. Regul. Integr. Comp. Physiol.20133047R473R48710.1152/ajpregu.00355.2012 23389111
    [Google Scholar]
  69. ShastriA. BonifatiD.M. KishoreU. Innate immunity and neuroinflammation.Mediators Inflamm.2013201311910.1155/2013/342931 23843682
    [Google Scholar]
  70. FrancoR. LilloA. Rivas-SantistebanR. Reyes-ResinaI. NavarroG. Microglial adenosine receptors: From preconditioning to modulating the M1/M2 balance in activated cells.Cells2021105112410.3390/cells10051124 34066933
    [Google Scholar]
  71. BrancoA.C.C.C. YoshikawaF.S.Y. PietrobonA.J. SatoM.N. Role of histamine in modulating the immune response and inflammation.Mediators Inflamm.2018201811010.1155/2018/9524075 30224900
    [Google Scholar]
  72. FrancucciB. AngeloniS. Dal BenD. LambertucciC. RicciutelliM. SpinaciA. SmirnovA. VolpiniR. BuccioniM. MarucciG. Dual anta-inhibitors targeting protein kinase CK1δ and A2A adenosine receptor useful in neurodegenerative disorders.Molecules20232812476210.3390/molecules28124762 37375315
    [Google Scholar]
  73. SpinaciA. BuccioniM. CatarziD. CuiC. ColottaV. Dal BenD. CesconE. FrancucciB. GriecoI. LambertucciC. MarucciG. BassaniD. PavanM. VaranoF. FedericoS. SpallutoG. MoroS. VolpiniR. “Dual anta-inhibitors” of the A2A adenosine receptor and casein kinase CK1delta: Synthesis, biological evaluation, and molecular modeling studies.Pharmaceuticals (Basel)202316216710.3390/ph16020167 37259317
    [Google Scholar]
  74. StephensonJ. NutmaE. van der ValkP. AmorS. Inflammation in CNS neurodegenerative diseases.Immunology2018154220421910.1111/imm.12922 29513402
    [Google Scholar]
  75. RaufA. RahmanM.M. Potential therapeutics against neurological disorders: Natural products-based drugs.Front. Pharmacol.20221395045710.3389/fphar.2022.950457 36060010
    [Google Scholar]
  76. DiSabatoD.J. QuanN. GodboutJ.P. Neuroinflammation: the devil is in the details.J. Neurochem.2016139Suppl. 213615310.1111/jnc.13607
    [Google Scholar]
  77. GraeningT. ThrunF. Furans and their benzo derivatives: Synthesis.Compr. Heterocycl. Chem. III2008349756910.1016/B978‑008044992‑0.00307‑2
    [Google Scholar]
  78. SunW. ShahrajabianM.H. Therapeutic Potential of Phenolic Compounds in Medicinal Plants—Natural Health Products for Human Health.Molecules2023284184510.3390/molecules28041845 36838831
    [Google Scholar]
  79. Neuroprotective effects of natural compounds on LPS-induced inflammatory responses in microglia.Am. J. Transl. Res.20201262353
    [Google Scholar]
  80. Bedoya-RamírezD. CillaA. Contreras-CalderónJ. Alegría-ToránA. Evaluation of the antioxidant capacity, furan compounds and cytoprotective/cytotoxic effects upon Caco-2 cells of commercial Colombian coffee.Food Chem.201721936437210.1016/j.foodchem.2016.09.159 27765239
    [Google Scholar]
  81. Research brings new insights to the complex immune response in the brain.Available from: https://www.ansto.gov.au/news/research-brings-new-insights-to-complex-immune-response-brain
  82. IsikS. Yeman KiyakB. AkbayirR. SeyhaliR. ArpaciT. Microglia mediated neuroinflammation in parkinson’s disease.Cells2023127101210.3390/cells12071012
    [Google Scholar]
  83. LawrenceT. The nuclear factor NF-kappaB pathway in inflammation.Cold Spring Harb. Perspect. Biol.200916a00165110.1101/cshperspect.a001651 20457564
    [Google Scholar]
  84. TianZ. JiX. LiuJ. Neuroinflammation in Vascular Cognitive Impairment and Dementia: Current Evidence, Advances, and Prospects.Int. J. Mol. Sci.20222311622410.3390/ijms23116224 35682903
    [Google Scholar]
  85. HewlingsS.J. DraayerK. KalmanD.S. Palm fruit bioactive complex (PFBc), a source of polyphenols, demonstrates potential benefits for inflammaging and related cognitive function.Nutrients2021134112710.3390/nu13041127 33808068
    [Google Scholar]
  86. FuW. ZhuangW. ZhouS. WangX. Plant-derived neuroprotective agents in Parkinson’s disease.Am. J. Transl. Res.2015771189
    [Google Scholar]
  87. JoH.G. KimH. BaekE. LeeD. HwangJ.H. Efficacy and Key Materials of East Asian Herbal Medicine Combined with Conventional Medicine on Inflammatory Skin Lesion in Patients with Psoriasis Vulgaris: A Meta-Analysis, Integrated Data Mining, and Network Pharmacology.Pharmaceuticals (Basel)2023168116010.3390/ph16081160 37631075
    [Google Scholar]
  88. ShaoF. WangX. WuH. WuQ. ZhangJ. Microglia and Neuroinflammation: Crucial Pathological Mechanisms in Traumatic Brain Injury-Induced Neurodegeneration.Front. Aging Neurosci.20221482508610.3389/fnagi.2022.825086 35401152
    [Google Scholar]
  89. SocałaK. SzopaA. SerefkoA. PoleszakE. WlaźP. Neuroprotective effects of coffee bioactive compounds: A Review.Int. J. Mol. Sci.202122110710.3390/ijms22010107
    [Google Scholar]
  90. Five-membered rings with one heteroatom.Available from: https://www.britannica.com/science/heterocyclic-compound/Five-membered-rings-with-one-heteroatom
  91. TianM. PengY. ZhengJ. Metabolic Activation and Hepatotoxicity of Furan-Containing Compounds.Drug Metab. Dispos.202250565567010.1124/dmd.121.000458 35078805
    [Google Scholar]
  92. PhuongJ. KimS. ThomasR. ZhangL. Predicted toxicity of the biofuel candidate 2,5‐dimethylfuran in environmental and biological systems.Environ. Mol. Mutagen.201253647848710.1002/em.21702 22730190
    [Google Scholar]
  93. BathinaS. DasU.N. Brain-derived neurotrophic factor and its clinical implications.Arch. Med. Sci.2015661164117810.5114/aoms.2015.56342 26788077
    [Google Scholar]
  94. YangT. NieZ. ShuH. KuangY. ChenX. ChengJ. YuS. LiuH. The Role of BDNF on Neural Plasticity in Depression.Front. Cell. Neurosci.2020148210.3389/fncel.2020.00082 32351365
    [Google Scholar]
  95. LiuP. FanD. QiaoW. HeX. ZhangL. JiangY. YangT. SAR Study and Molecular Mechanism Investigation of Novel Naphthoquinone-furan-2-cyanoacryloyl Hybrids with Antitumor Activity.Pharmaceutics20221410210410.3390/pharmaceutics14102104 36297539
    [Google Scholar]
  96. FukuyamaY. KuboM. HaradaK. The search for, and chemistry and mechanism of, neurotrophic natural products.J. Nat. Med.202074464867110.1007/s11418‑020‑01431‑8 32643028
    [Google Scholar]
  97. BaazaouiN. IqbalK. Alzheimer’s Disease: Challenges and a Therapeutic Opportunity to Treat It with a Neurotrophic Compound.Biomolecules20221210140910.3390/biom12101409
    [Google Scholar]
  98. BatoolZ. XuD. ZhangX. LiX. LiY. ChenZ. LiB. LiL. A review on furan: Formation, analysis, occurrence, carcinogenicity, genotoxicity and reduction methods.Crit. Rev. Food Sci. Nutr.202161339540610.1080/10408398.2020.1734532 32146825
    [Google Scholar]
  99. MalbergJ.E. Implications of adult hippocampal neurogenesis in antidepressant action.J. Psychiatry Neurosci.2004293196205
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073319757240912055303
Loading
/content/journals/cchts/10.2174/0113862073319757240912055303
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test