Skip to content
2000
Volume 28, Issue 15
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Most cancers have become immune to normal cancer therapy, like chemotherapy and radiation. Therefore, exploring more effective and economical treatment options is important. Plants and herbs contain substances called phytochemicals, which have biological effects. Many phytochemicals having antioxidant and anticancer properties have been studied previously. There is increasing evidence that phytochemicals' anti-carcinogenic benefits originate from their ability to inhibit oxidation, inflammation, cell proliferation, and angiogenesis. These phytochemicals inhibit the spread of cancer by controlling the cell cycle and other molecular processes, such as metastasis. Along with therapeutic potential, other advantages, like their abundance, greater tolerability, and economic use, increase their utility in cancer therapeutics. In recent years, a number of scientists have examined lycophytes and ferns for their potential medicinal and phytochemical properties. This analysis emphasizes the significance of chemicals obtained from ferns and their derivatives in therapeutics. The authors discuss the pteridophyte's anti-cancer properties and other medical uses in this article. This information may help researchers in further research related to the most promising anticancer phytochemicals and their possibility as alternative drugs against cancer.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073318080240902080232
2024-09-19
2026-01-03
Loading full text...

Full text loading...

References

  1. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.21763 36633525
    [Google Scholar]
  2. BrayF. LaversanneM. SungH. FerlayJ. SiegelR.L. SoerjomataramI. JemalA. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202474322926310.3322/caac.21834 38572751
    [Google Scholar]
  3. SathishkumarK. ChaturvediM. DasP. StephenS. MathurP. Cancer incidence estimates for 2022 & projection for 2025: Result from National Cancer Registry Programme, India.IJMR20221564-5598607 36510887
    [Google Scholar]
  4. PerilloB. Di DonatoM. PezoneA. Di ZazzoE. GiovannelliP. GalassoG. CastoriaG. MigliaccioA. ROS in cancer therapy: The bright side of the moon.Exp. Mol. Med.202052219220310.1038/s12276‑020‑0384‑2 32060354
    [Google Scholar]
  5. EmranT.B. ShahriarA. MahmudA.R. RahmanT. AbirM.H. SiddiqueeM.F. AhmedH. RahmanN. NainuF. WahyudinE. MitraS. DhamaK. HabiballahM.M. HaqueS. IslamA. HassanM.M. Multidrug resistance in cancer: Understanding molecular mechanisms, immunoprevention and therapeutic approaches.Front. Oncol.20221289165210.3389/fonc.2022.891652 35814435
    [Google Scholar]
  6. TalibW.H. AlsayedA.R. BarakatM. Abu-TahaM.I. MahmodA.I. Targeting drug chemo-resistance in cancer using natural products.Biomedicines2021910135310.3390/biomedicines9101353 34680470
    [Google Scholar]
  7. RudzińskaA. JuchaniukP. OberdaJ. WiśniewskaJ. WojdanW. SzklenerK. MańdziukS. Phytochemicals in cancer treatment and cancer prevention—review on epidemiological data and clinical trials.Nutrients2023158189610.3390/nu15081896 37111115
    [Google Scholar]
  8. TayebB.A. KusumaI.Y. OsmanA.A. MinoricsR. Herbal compounds as promising therapeutic agents in precision medicine strategies for cancer: A systematic review.J. Integr. Med.202422213716210.1016/j.joim.2024.02.001 38462407
    [Google Scholar]
  9. SharmaA.N. DewanganH.K. UpadhyayP.K. Comprehensive review on herbal medicine: emphasis on current therapy and role of phytoconstituents for cancer treatment.Chem. Biodivers.2024213e20230146810.1002/cbdv.202301468 38206170
    [Google Scholar]
  10. AliM. WaniS.U.D. SalahuddinM. S N, M.; K, M.; Dey, T.; Zargar, M.I.; Singh, J. Recent advance of herbal medicines in cancer- a molecular approach.Heliyon202392e1368410.1016/j.heliyon.2023.e13684 36865478
    [Google Scholar]
  11. BenniciA. Origin and early evolution of land plants.Commun. Integr. Biol.20081221221810.4161/cib.1.2.6987 19513262
    [Google Scholar]
  12. MurthyH.N. Bioactive compounds in bryophytes and pteridophytes. Reference series in phytochemistry.Springer202310.1007/978‑3‑031‑23243‑5
    [Google Scholar]
  13. BandyopadhyayA. DeyA. Medicinal pteridophytes: Ethnopharmacological, phytochemical, and clinical attributes.Univ. J. Basic Appl. Sci.202211111310.1186/s43088‑022‑00283‑3
    [Google Scholar]
  14. JainV. GhoraiM. BiswasP. DeyA. Anticancer properties of pteridophytes and derived compounds: Pharmacological perspectives and medicinal use. In: Bioactive Compounds in Bryophytes and Pteridophytes.Springer2023283308
    [Google Scholar]
  15. CaoH. ChaiT.T. WangX. Morais-BragaM.F. YangJ.H. WongF.C. WangR. YaoH. CaoJ. CornaraL. BurlandoB. WangY. XiaoJ. CoutinhoH.D. Phytochemicals from fern species: Potential for medicine applications.Phytochem. Rev.201716337944010.1007/s11101‑016‑9488‑7 32214919
    [Google Scholar]
  16. GoswamiH.K. SenK. MukhopadhyayR. Pteridophytes: Evolutionary boon as medicinal plants.Plant Genet. Resour.201614432835510.1017/S1479262116000290
    [Google Scholar]
  17. BaskaranX. Geo VigilaA. ZhangS. FengS. LiaoW. A review of the use of pteridophytes for treating human ailments.J. Zhejiang Univ. Sci. B20181928511910.1631/jzus.B1600344 29405039
    [Google Scholar]
  18. AdnanM. SiddiquiA.J. HamadouW.S. PatelM. AshrafS.A. JamalA. AwadelkareemA.M. SachidanandanM. SnoussiM. De FeoV. Phytochemistry, bioactivities, pharmacokinetics and toxicity prediction of selaginella repanda with its anticancer potential against human lung, breast and colorectal carcinoma cell lines.Molecules202126376810.3390/molecules26030768 33540783
    [Google Scholar]
  19. DubalK. GhorpadeP. KaleM. Studies on bioactive compounds of Tectaria coadunata(Wall. ex Hook. & Grev.).C. Chr. Asian J. Pharm. Clin. Res.20136186187
    [Google Scholar]
  20. JarialR. ThakurS. SakinahM. ZularisamA.W. SharadA. KanwarS.S. SinghL. Potent anticancer, antioxidant and antibacterial activities of isolated flavonoids from Asplenium nidus.J. King Saud Univ. Sci.201830218519210.1016/j.jksus.2016.11.006
    [Google Scholar]
  21. LudwiczukA. AsakawaY. Bryophytes as a source of bioactive volatile terpenoids – A review.Food Chem. Toxicol.201913211064910.1016/j.fct.2019.110649 31254593
    [Google Scholar]
  22. LinS. ZhuQ. WenL. YangB. JiangG. GaoH. ChenF. JiangY. Production of quercetin, kaempferol and their glycosidic derivatives from the aqueous-organic extracted residue of litchi pericarp with Aspergillus awamori.Food Chem.201414522022710.1016/j.foodchem.2013.08.048 24128471
    [Google Scholar]
  23. ChenS.J. HsuC.P. LiC.W. LuJ.H. ChuangL.T. Pinolenic acid inhibits human breast cancer MDA-MB-231 cell metastasis] in vitro.Food Chem.201112641708171510.1016/j.foodchem.2010.12.064 25213948
    [Google Scholar]
  24. SureshkumarJ. SilambarasanR. BharatiK.A. KrupaJ. AmalrajS. AyyanarM. A review on ethnomedicinally important pteridophytes of India.J. Ethnopharmacol.201821926928710.1016/j.jep.2018.03.024 29578072
    [Google Scholar]
  25. TurpinG. RitmejerytėE. JamieJ. CraynD. WangchukP. Aboriginal medicinal plants of Queensland: Ethnopharmacological uses, species diversity, and biodiscovery pathways.J. Ethnobiol. Ethnomed.20221815410.1186/s13002‑022‑00552‑6 35948982
    [Google Scholar]
  26. HanifK. KumarM. SinghN. ShuklaR. Effect of homeopathic Lycopodium clavatum on memory functions and cerebral blood flow in memory-impaired rats.Homeopathy: J. Facul. Homeopath.201510412428
    [Google Scholar]
  27. GautamA. PalL.C. RaoC.V. KumarV. The role of indian magical herb selaginella bryopteris l. (selaginaceae) in pharmacotherapeutic perspective: An overview.Pharmacogn. J.2023151142010.5530/pj.2023.15.3
    [Google Scholar]
  28. person-group person-group-type=“author”> BiswasS.A better understanding of pharmacological activities and uses of phytochemicals of Lycopodium clavatum: A review.JPP201431207210
    [Google Scholar]
  29. BhattamisraS.K. KhannaV.K. AgrawalA.K. SinghP.N. SinghS.K. Antidepressant activity of standardised extract of Marsilea minuta Linn.J. Ethnopharmacol.20081171515710.1016/j.jep.2008.01.012 18299179
    [Google Scholar]
  30. AkinwumiK.A. AbamE.O. OloyedeS.T. AdeduroM.N. AdeogunY.A. UwagboeJ.E. Acrostichium aureum Linn: traditional use, phytochemistry and biological activity.Clin. Phytosci.2022811810.1186/s40816‑022‑00349‑w
    [Google Scholar]
  31. WuX. HuangQ. XuN. CaiJ. LuoD. ZhangQ. SuZ. GaoC. LiuY. Antioxidative and anti-inflammatory effects of water extract of acrostichum aureum linn. against ethanol-induced gastric ulcer in rats.Evid Based Comp. Alter. Med.201820183585394
    [Google Scholar]
  32. TelagariM. HullattiK.K. In vitro screening of Actiniopteris dichotoma for enzyme inhibitory activity related to type 2 Diabetes.Indian Drugs2016536707310.53879/id.53.06.10505
    [Google Scholar]
  33. KrishnasamyR. MJN2, Dhanabal SP. Pharmacognostical studies on whole plant of Actiniopteris dichotoma.Int. J. Res. Pharm. Sci.201783364372
    [Google Scholar]
  34. PatilA. GaonkarV.P. ChimagaveS.S. HullattiK. Pharmacognostical and biological evaluation of Mayurshikha (Actiniopteries dichotoma Bedd): An Ayurvedic medicinal plant.Int. J. Ayurvedic Med.202213233834410.47552/ijam.v13i2.2736
    [Google Scholar]
  35. MunnaS. Antitubercular activity of actiniopteris radiata linn.J. Glob. Trends Pharm. Sci.20145114431445
    [Google Scholar]
  36. ManuboluM. GoodlaL. RavillaS. ThanasekaranJ. DuttaP. MalmlöfK. ObulumV.R. Protective effect of Actiniopteris radiata (Sw.) Link. against CCl4 induced oxidative stress in albino rats.J. Ethnopharmacol.2014153374475210.1016/j.jep.2014.03.040 24680994
    [Google Scholar]
  37. ShirishS. P. Recent developments in Actiniopteris radiata Int.Res. J. of Sci. Eng.20183165172
    [Google Scholar]
  38. KasabriV. Al-HallaqE.K. BustanjiY.K. Abdul-RazzakK.K. AbazaI.F. AfifiF.U. Antiobesity and antihyperglycaemic effects of Adiantum capillus-veneris extracts: in vitro and in vivo evaluations.Pharm. Biol.201755116417210.1080/13880209.2016.1233567 27663206
    [Google Scholar]
  39. AnsariR. Ekhlasi-KazajK. Adiantum capillus-veneris. l: phytochemical constituents, traditional uses and pharmacological properties: A review.Int. J. Adv. Sci. Res.20123041520
    [Google Scholar]
  40. DehdariS. HajimehdipoorH. Medicinal properties of adiantum capillus-veneris linn. in traditional medicine and modern phytotherapy: A review article.Iran. J. Public Health2018472188197 29445628
    [Google Scholar]
  41. KashkooeA. SardariA.F. MehrabadiM.M. Review of pharmacological properties and toxicological effects of adiantum capillus-veneris L.Curr. Drug Discov. Technol.2021182186193
    [Google Scholar]
  42. AshokB.S. Anthelmintic activity of methanol extract of Amaranthus caudatus Linn. 127Internet.J. Food Saf.201012127129
    [Google Scholar]
  43. BalsamoR. LanataL. EganC.G. Mucoactive drugs.Eur. Respir. Rev.20101911612713310.1183/09059180.00003510 20956181
    [Google Scholar]
  44. ShedoevaA. LeavesleyD. UptonZ. FanC. Wound healing and the use of medicinal plants.Evid. Based Complement. Alternat. Med.2019201913010.1155/2019/2684108 31662773
    [Google Scholar]
  45. MoonS.H. SonJ.L. ShinS.J. OhS.H. KimS.H. BaeJ.M. Inhibitory effect of asplenium incisum on bacterial growth, inflammation, and osteoclastogenesis.Medicina202157764110.3390/medicina57070641 34206271
    [Google Scholar]
  46. BilalH.M. SharifA. MalikM.N. ZubairH.M. Aqueous ethanolic extract of adiantum incisum forssk. protects against type 2 diabetes mellitus via attenuation of α-amylase and oxidative stress.ACS Omega2022742377243773510.1021/acsomega.2c04673 36312418
    [Google Scholar]
  47. DigheP. Ethnomedicinal review of adiantum lunulatum (hanspadi). In: Futuristic Trends in Pharmacy and Nursinge.IIP2024181187
    [Google Scholar]
  48. Diseases of the respiratory system.Vet. Med.201720178451090
    [Google Scholar]
  49. AkhterT. BristyN.Y. ShikdarM.E. DuttaA.K. SarkerD.K. AhmedK.S. Chemical and pharmacological potential of adiantum philippense linn and further molecular simulation study of its compounds against COX-2.TJNPR20237938423855
    [Google Scholar]
  50. AliM.S. AminM.R. KamalC.M. HossainM.A. In vitro antioxidant, cytotoxic, thrombolytic activities and phytochemical evaluation of methanol extract of the A. philippense L. leaves.Asian Pac. J. Trop. Biomed.20133646446910.1016/S2221‑1691(13)60097‑0 23730559
    [Google Scholar]
  51. AdnanM. PatelM. DeshpandeS. AlreshidiM. SiddiquiA.J. ReddyM.N. EmiraN. De FeoV. Effect of adiantum philippense extract on biofilm formation, adhesion with its antibacterial activities against foodborne pathogens, and characterization of bioactive metabolites: An in vitro-in silico approach.Front. Microbiol.20201182310.3389/fmicb.2020.00823 32477292
    [Google Scholar]
  52. Ghaleb DailahH. The ethnomedicinal evidences pertaining to traditional medicinal herbs used in the treatment of respiratory illnesses and disorders in Saudi Arabia: A review.Saudi J. Biol. Sci.202229910338610.1016/j.sjbs.2022.103386 35928928
    [Google Scholar]
  53. RamasamiP. 2 Phytochemical and antioxidant activity of Cadaba farinosa Forssk stem bark extractsIn: Ramasami, P., Ed.; Pharmaceutical Applications; De Gruyter: Berlin, Boston2021193010.1515/9783110710823
    [Google Scholar]
  54. JuhiU.H. El-NasharH.A.S. Al FaruqA. BhuiaM. Phytochemical analysis and biological investigation of Cheilanthes tenuifolia (Burm.f.).Swartz Front. Pharmacol.2024151366889
    [Google Scholar]
  55. SemwalP. PainuliS. PainuliK.M. AntikaG. TumerT.B. ThapliyalA. SetzerW.N. MartorellM. AlshehriM.M. TaheriY. DaştanS.D. AyatollahiS.A. PetkoskaA.T. Sharifi-RadJ. ChoW.C. Diplazium esculentum (retz.) sw.: Ethnomedicinal, phytochemical, and pharmacological overview of the himalayan ferns.Oxid. Med. Cell. Longev.2021202111510.1155/2021/1917890 34512863
    [Google Scholar]
  56. RainaK. ChaudharyA. SharmaP. SharmaR. BhardwajK. KumarP. KabraA. ThakurS. ChaudharyA. PrajapatiM. PrajapatiP.K. SinglaR.K. SharmaR. Phytochemical profiling and biological activities of Diplazium esculentum (Retz.) Sw.: An edible vegetable fern.Drug Metab. Pers. Ther.202438430932210.1515/dmpt‑2023‑0035 37535427
    [Google Scholar]
  57. YangC.M. YangS.H. LeeT.H. FangJ.Y. LinC.F. JouM.J. HsiehH.L. Erratum to: Evaluation of anti-inflammatory effects of helminthostachys zeylanica extracts via inhibiting bradykinin-induced mmp-9 expression in brain astrocytes.Mol. Neurobiol.2016539600610.1007/s12035‑016‑9896‑0 26526842
    [Google Scholar]
  58. DhawalA. PandeyR. PandeyV.N. Occurrence, phenology and traditional uses of Helminthostachys zeylanica in northeastern terai region of Uttar Pradesh, India.J. Indian Bot. Soc.20241034302305
    [Google Scholar]
  59. RaghuvanshiD. DhalariaR. SharmaA. KumarD. KumarH. ValisM. KučaK. VermaR. PuriS. Ethnomedicinal plants traditionally used for the treatment of jaundice (icterus) in himachal pradesh in western himalaya—a review.Plants202110223210.3390/plants10020232 33504029
    [Google Scholar]
  60. BhattN. DeshpandeM. A critical review and scientific prospective on contraceptive therapeutics from ayurveda and allied ancient knowledge.Front. Pharmacol.20211262959110.3389/fphar.2021.629591 34149405
    [Google Scholar]
  61. KregielD. PawlikowskaE. AntolakH. Urtica spp.: Ordinary plants with extraordinary properties.Molecules2018237166410.3390/molecules23071664 29987208
    [Google Scholar]
  62. Nikkhah BodaghM. MalekiI. HekmatdoostA. Ginger in gastrointestinal disorders: A systematic review of clinical trials.Food Sci. Nutr.2019719610810.1002/fsn3.807 30680163
    [Google Scholar]
  63. ChoudhariA.S. RainaP. DeshpandeM.M. WaliA.G. ZanwarA. BodhankarS.L. Kaul-GhanekarR. Evaluating the anti-inflammatory potential of Tectaria cicutaria L. rhizome extract in vitro as well as in vivo.J. Ethnopharmacol.2013150121522210.1016/j.jep.2013.08.025 23993910
    [Google Scholar]
  64. V., M. Total accepted phenolic, tannin, triterpenoid, flavonoid and sterol contents, anti-diabetic, anti-inflammatory and cytotoxic activities of Tectaria paradoxa (Fee.).Sledge. Toxicol. Rep.2020714651468
    [Google Scholar]
  65. ShresthaS.S. SutS. Barbon Di MarcoS. ZenginG. GandinV. De FrancoM. PantD.R. MahomoodallyM.F. Dall’AcquaS. RajbhandaryS. Phytochemical fingerprinting and in vitro bioassays of the ethnomedicinal fern tectaria coadunata (j. smith) c. christensen from central Nepal.Molecules20192424445710.3390/molecules24244457 31817382
    [Google Scholar]
  66. BajracharyaG.B. BajracharyaB. A comprehensive review on Nepalese wild vegetable food ferns.Heliyon2022811e1168710.1016/j.heliyon.2022.e11687 36444246
    [Google Scholar]
  67. PariharP. PariharL. BohraA. Antifungal activity of Cheilanthes albomarginata Clarke and Marsilea minuta Linn. against Aspergillus flavus.Indian Fern J.200421140143
    [Google Scholar]
  68. Modena de MedeirosC. GonzattiF. Ritter, Rejane M. Ferns and lycophytes: An ethnobotany review for Brazil.Ethnobot. Res. Appl.20232512710.32859/era.25.20.1‑27
    [Google Scholar]
  69. OjhaR. DevkotaH.P. Edible and medicinal pteridophytes of Nepal: A review.Ethnobot. Res. Appl.20212211610.32859/era.22.16.1‑16
    [Google Scholar]
  70. RemeshM. KumarM. ManilalK.S. Medicinal pter-idophytes in rheed’s hortus malabaricus.Indian Fern. J.2001205159
    [Google Scholar]
  71. BenjaminA. ManickamV.S. Medicinal pteridophytes from the Western Ghats.Indian J. Tradit. Knowl.20076611618
    [Google Scholar]
  72. AkhterT. BristyN.Y. ShikdarM. Chemical and pharmacological potential of adiantum philippense linn and further molecular simulation study of its compounds against cox-2: an unexplored medicinal fern.Trop. J. Nat. Pro. Res.2023793842
    [Google Scholar]
  73. LinY. ShiR. WangX. ShenH.M. Luteolin, a flavonoid with potential for cancer prevention and therapy.Curr. Cancer Drug Targets20088763464610.2174/156800908786241050 18991571
    [Google Scholar]
  74. AmaralS. MiraL. NogueiraJ.M. SilvaA.P. Helena FlorêncioM. Plant extracts with anti-inflammatory properties—A new approach for characterization of their bioactive compounds and establishment of structure–antioxidant activity relationships.Bioorg. Med. Chem.20091751876188310.1016/j.bmc.2009.01.045 19201196
    [Google Scholar]
  75. López-LázaroM. Distribution and biological activities of the flavonoid luteolin.Mini Rev. Med. Chem.200991315910.2174/138955709787001712 19149659
    [Google Scholar]
  76. GovindappaM. Naga SravyaS. PoojashriM.N. Antimicrobial, antioxidant and in vitro anti-inflammatory activity of ethanol extract and active phytochemical screening of Wedelia trilobata (L.).Hitchc. J. Pharmacogn. Phytother.2011334351
    [Google Scholar]
  77. SonH. TranH. In vitro antioxidant and anti-cancer properties of active compounds from methanolic extract of Pteris multifida Poir Leaves.European J. Med. Plants20144329230210.9734/EJMP/2014/7053
    [Google Scholar]
  78. YuC. ChenJ. HuangL. A study on the antitumour effect of total flavonoids from <i>Pteris multifida</i> poir in H22 tumour-bearing mice.Afr. J. Tradit. Complement. Altern. Med.201310645946310.4314/ajtcam.v10i6.11 24311869
    [Google Scholar]
  79. QinB. ZhuD. JiangS. Chemical constituents of Pteris multifida and their inhibitory effects on growth of rat prostatic epithelial cells in vitro.Chin. J. Nat. Med.200646428431
    [Google Scholar]
  80. ShuJ. LiuJ. ZhongY. PanJ. LiuL. ZhangR. Two new pterosin sesquiterpenes from Pteris multifida Poir.Phytochem. Lett.20125227627910.1016/j.phytol.2012.01.011
    [Google Scholar]
  81. BremnerP. HeinrichM. Natural products as targeted modulators of the nuclear factor- κ B pathway.J. Pharm. Pharmacol.201054445347210.1211/0022357021778637 11999122
    [Google Scholar]
  82. PanP.H. LinS.Y. OuY.C. ChenW.Y. ChuangY.H. YenY.J. LiaoS.L. RaungS.L. ChenC.J. Stearic acid attenuates cholestasis-induced liver injury.Biochem. Biophys. Res. Commun.201039131537154210.1016/j.bbrc.2009.12.119 20036638
    [Google Scholar]
  83. BaskaranX. JeyachandranR. Evaluation of antioxidantand phytochemical analysis of Pteris tripartita Sw. a critically endangered fern from South India.J. Fairy Lake Bot. Gard.2010932834
    [Google Scholar]
  84. ZhaoZ.H. JuX.Y. WangK.W. ChenX.J. SunH.X. ChengK.J. Structure characterization, antioxidant and immunomodulatory activities of polysaccharide from pteridium aquilinum (l.) kuhn.Foods20221113183410.3390/foods11131834 35804650
    [Google Scholar]
  85. LiuH. PengH. JiZ. ZhaoS. ZhangY. WuJ. FanJ. LiaoJ. Reactive oxygen species-mediated mitochondrial dysfunction is involved in apoptosis in human nasopharyngeal carcinoma CNE cells induced by Selaginella doederleinii extract.J. Ethnopharmacol.2011138118419110.1016/j.jep.2011.08.072 21924341
    [Google Scholar]
  86. LiS. ZhaoM. LiY. SuiY. YaoH. HuangL. LinX. Preparative isolation of six anti-tumour biflavonoids from Selaginella doederleinii Hieron by high-speed counter-current chromatography.Phytochem. Anal.201425212713310.1002/pca.2478 24115163
    [Google Scholar]
  87. CoêlhoM.L. IslamM.T. Laylson da Silva OliveiraG. Oliveira Barros de AlencarM.V. Victor de Oliveira SantosJ. Campinho dos ReisA. Oliveira Ferreira da MataA.M. Correia Jardim PazM.F. DoceaA.O. CalinaD. Sharifi-RadJ. Amélia de Carvalho Melo-CavalcanteA. Cytotoxic and antioxidant properties of natural bioactive monoterpenes nerol, estragole, and 3,7-dimethyl-1-octanol.Adv. Pharmacol. Pharm. Sci.2022202211110.1155/2022/8002766 36465700
    [Google Scholar]
  88. SubhashiniP. DilipanE. ThangaradjouT. PapenbrockJ. Bioactive natural products from marine angiosperms: Abundance and functions.Nat. Prod. Bioprospect.20133412913610.1007/s13659‑013‑0043‑6
    [Google Scholar]
  89. MitraN. Flavonoids in some Iranian angiosperms. In: Phytochemicals a Global Perspective of their Role in Nutrition and Health. VenketeshwerR. INTECH2012151166
    [Google Scholar]
  90. KhanA.M. QureshiR.A. UllahR. Flavonoids distribution in selected medicinal plants of Margalla hills and surroundings.Pak. J. Bot.20124412411245
    [Google Scholar]
  91. BiY.F. ZhengX.K. FengW.S. ShiS.P. Isolation and structural identification of chemical constituents from Selaginella tamariscina (Beauv.).Acta Pharmaceut. Sin.20043914145 15127580
    [Google Scholar]
  92. ZhengX.K. BiY.F. FengW.S. ShiS.P. WangJ.F. NiuJ.Z. Study on the chemical constituents of Selaginella tamariscina (Beauv.) Spring.Acta Pharmaceut. Sin.2004394266268 15303655
    [Google Scholar]
  93. WooE.R. LeeJ.Y. ChoI.J. KimS.G. KangK.W. Amentoflavone inhibits the induction of nitric oxide synthase by inhibiting NF-κB activation in macrophages.Pharmacol. Res.200551653954610.1016/j.phrs.2005.02.002 15829434
    [Google Scholar]
  94. KangN.J. LeeK.W. KimB.H. BodeA.M. LeeH.J. HeoY.S. BoardmanL. LimburgP. LeeH.J. DongZ. Coffee phenolic phytochemicals suppress colon cancer metastasis by targeting MEK and TOPK.Carcinogenesis201132692192810.1093/carcin/bgr022 21317303
    [Google Scholar]
  95. JungJ.E. KimH.S. LeeC.S. ParkD.H. KimY.N. LeeM.J. LeeJ.W. ParkJ.W. KimM.S. YeS.K. ChungM.H. Caffeic acid and its synthetic derivative CADPE suppress tumor angiogenesis by blocking STAT3-mediated VEGF expression in human renal carcinoma cells.Carcinogenesis20072881780178710.1093/carcin/bgm130 17557905
    [Google Scholar]
  96. YangY. LiY. WangK. WangY. YinW. LiL. P38/NF-κB/snail pathway is involved in caffeic acid-induced inhibition of cancer stem cells-like properties and migratory capacity in malignant human keratinocyte.PLoS One201383e5891510.1371/journal.pone.0058915 23516577
    [Google Scholar]
  97. McCubreyJ.A. SteelmanL.S. ChappellW.H. AbramsS.L. WongE.W. ChangF. LehmannB. TerrianD.M. MilellaM. TafuriA. StivalaF. LibraM. BaseckeJ. EvangelistiC. MartelliA.M. FranklinR.A. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance.Biochim. Biophys. Acta2007177381263128410.1016/j.bbamcr.2006.10.001 17126425
    [Google Scholar]
  98. KhanA.Q. KhanR. QamarW. LateefA. AliF. TahirM. SultanaS. Caffeic acid attenuates 12-O-tetradecanoyl-phorbol-13-acetate (TPA)-induced NF-κB and COX-2 expression in mouse skin: Abrogation of oxidative stress, inflammatory responses and proinflammatory cytokine production.Food Chem. Toxicol.201250217518310.1016/j.fct.2011.10.043 22036979
    [Google Scholar]
  99. SongH.S. ParkT.W. SohnU.D. ShinY.K. ChoiB.C. KimC.J. SimS.S. The effect of caffeic acid on wound healing in skin-incised mice.Korean J. Physiol. Pharmacol.200812634334710.4196/kjpp.2008.12.6.343 19967077
    [Google Scholar]
  100. StærkD. LarsenJ. LarsenL.A. OlafsdottirE.S. WittM. JaroszewskiJ.W. Selagoline, a new alkaloid from Huperzia selago.Nat. Prod. Res.200418319720310.1080/14786410310001620600 15143827
    [Google Scholar]
  101. MaL.Y. MaS.C. WeiF. LinR.C. ButP.P. LeeS.H. LeeS.F. Uncinoside A and B, two new antiviral chromone glycosides from Selaginella uncinata.Chem. Pharm. Bull. 200351111264126710.1248/cpb.51.1264 14600370
    [Google Scholar]
  102. HoR. TeaiT. BianchiniJ. LafontR. RaharivelomananaP. Ferns: from traditional uses to pharmaceutical development, chemical identification of active principles. In: Working with Ferns Issues and Applications. FernandezH. KumarA. RevillaM.A. Berlin, Heidelberg, New YorkSpringer Science201132134610.1007/978‑1‑4419‑7162‑3_23
    [Google Scholar]
  103. GombauL. GarcíaF. LahozA. FabreM. Roda-NavarroP. MajanoP. Alonso-LebreroJ.L. PivelJ.P. CastellJ.V. Gómez-LechonM.J. GonzálezS. Polypodium leucotomos extract: Antioxidant activity and disposition.Toxicol. In Vitro 200620446447110.1016/j.tiv.2005.09.008 16263237
    [Google Scholar]
  104. LacerdaP.A. CostaL.M. BellatoG.C. Lopes-SantosL. AugustoT.M. CervigneN.K. Perspectives on cancer and phytotherapy: an overview focusing on Polypodium leucotomos therapeutic properties.J. Cancer Prev. Curr. Res.202112191810.15406/jcpcr.2021.12.00448
    [Google Scholar]
  105. SaraS.C. RubyR.G.D. In vitro antiproliferative effect of Angiopteris evecta (G. Forst.) hoffm. Extracts against cultured HT-29 colon cancer cells. In: Ferns. MarimuthuJ. FernándezH. KumarA. ThangaiahS. SingaporeSpringer202210.1007/978‑981‑16‑6170‑9_22
    [Google Scholar]
  106. CaiY. LuoQ. SunM. CorkeH. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer.Life Sci.200474172157218410.1016/j.lfs.2003.09.047 14969719
    [Google Scholar]
  107. UmaR. PravinB. In vitro cytotoxic activity of Marsilea quadrifolia Linn. of MCF-7 cells of human breast cancer.Int. Res. J. Med. Sci.2013111013
    [Google Scholar]
  108. PunzonC. AlcaideA. FresnoM. In vitro anti-inflammatory activity of Phlebodium decumanum.Int. Immunopharmacol.20033912931299
    [Google Scholar]
  109. WangG. ZhangL. M. Study of the extract from Pteris multifida Poir. on antitumor activity.Hebeisheng Kexueyuan Xuebao2008255224
    [Google Scholar]
  110. LaiH.Y. LimY.Y. KimK.H. Blechnum Orientale Linn - a fern with potential as antioxidant, anticancer and antibacterial agent.BMC Complement. Altern. Med.20101011510.1186/1472‑6882‑10‑15 20429956
    [Google Scholar]
  111. Pharmacopoeia of People’s Republic of China (ChP).Beijing, ChinaChemical Industry Press20054950
    [Google Scholar]
  112. ChangH.C. HuangG.J. AgrawalD.C. Antioxidant activities and polyphenol contents of six folk medicinal ferns used as “Gusuibu”.Bot. Stud.200748397406a
    [Google Scholar]
  113. SanthoshK.S. SamyduraiP. NagarajanN. Indigenous knowledge on some medicinal pteridophytic plant species among the Malasar tribe’s in Valparai Hills, Western Ghats of Tamil Nadu.Am J. Ethnomed.201413164173
    [Google Scholar]
  114. YangS. LiuM. LiangN. ZhaoQ. ZhangY. XueW. YangS. Discovery and antitumor activities of constituents from Cyrtomium fortumei(J.) Smith rhizomes.Chem. Cent. J.2013712410.1186/1752‑153X‑7‑24 23379693
    [Google Scholar]
  115. BarineI.N. ComfortC.M. AugustineA.U. Chemical composition of essential oil from the fiddleheads of Pteridium aquilinum L. Kuhn found in Ogoni.J. Med. Plants Res.201481778010.5897/JMPR2013.5093
    [Google Scholar]
  116. ShinS.L. LeeC.H. Antioxidant effects of the methanol extracts obtained from aerial part and rhizomes of fernsnative to Korea.Korean J. Plant Res.20102313846
    [Google Scholar]
  117. MohantaM.C. DeyA. RahmanS.M. ChowdhuryR.N. Evaluation of antioxidant, cytotoxic and antimicrobial properties of Drynaria quercifolia.Int. Res. J. Pharmacy201347464810.7897/2230‑8407.04710
    [Google Scholar]
  118. SuY. SunC.M. ChuangH.H. ChangP.T. Studies on the cytotoxic mechanisms of ginkgetin in a human ovarian adenocarcinoma cell line.Naunyn Schmiedebergs Arch. Pharmacol.20003621829010.1007/s002100000240 10935537
    [Google Scholar]
  119. ChenK. PlumbG.W. BennettR.N. BaoY. Antioxidant activities of extracts from five anti-viral medicinal plants.J. Ethnopharmacol.2005961-220120510.1016/j.jep.2004.09.020 15588671
    [Google Scholar]
  120. GaoL. YinS. LiZ. ShaY. PeiY. ShiG. JingY. HuaH. Three novel sterols isolated from Selaginella tamariscina with antiproliferative activity in leukemia cells.Planta Med.200773101112111510.1055/s‑2007‑981562 17611936
    [Google Scholar]
  121. ChenK. LiJ. LeiX. Comparison of cytotoxic activities of extracts from Selaginella species.Pharmacogn. Mag.2014104052953510.4103/0973‑1296.141794 25422557
    [Google Scholar]
  122. Herrera-CarreraE. Moreno-JiménezM.R. Rocha-GuzmánN.E. Gallegos-InfanteJ.A. Díaz-RivasJ.O. Gamboa-GómezC.I. González-LaredoR.F. Phenolic composition of selected herbal infusions and their anti-inflammatory effect on a colonic model in vitro in HT-29 cells.Cogent Food Agric.201511105903310.1080/23311932.2015.1059033
    [Google Scholar]
  123. ViralD. ShivanandP. JivaniN.P. Anti-cancer evaluation of Adiantum venustum Don.J. Young Pharm.201131485410.4103/0975‑1483.76419 21607054
    [Google Scholar]
  124. TomšíkP. Ferns and lycopods-a potential treasury of anticancer agents but also a carcinogenic hazard.Phytother. Res.201428679881010.1002/ptr.5070 24123573
    [Google Scholar]
  125. XiaX. CaoJ. ZhengY. WangQ. XiaoJ. Flavonoid concentrations and bioactivity of flavonoid extracts from 19 species of ferns from China.Ind. Crops Prod.201458919810.1016/j.indcrop.2014.04.005
    [Google Scholar]
  126. SarkerM.A.Q. MondolP.C. AlamM.J. Comparative study on antitumor activity of three pteridophytes ethanol extracts.Int. J. Agric. Technol.20117616611671
    [Google Scholar]
  127. ElekofehintiO.O. IwaloyeO. OlawaleF. AriyoE.O. Saponins in cancer treatment: Current progress and future prospects.Pathophysiology202128225027210.3390/pathophysiology28020017 35366261
    [Google Scholar]
  128. KhanN.H. MirM. QianL. BalochM. Ali KhanM.F. RehmanA. NgowiE.E. WuD.D. JiX.Y. Skin cancer biology and barriers to treatment: Recent applications of polymeric micro/nanostructures.J. Adv. Res.20223622324710.1016/j.jare.2021.06.014 35127174
    [Google Scholar]
  129. BafnaA. MishraS. Antioxidant and immunomodulatory activity of the alkaloidal fraction of Cissampelos pareira linn.Sci. Pharm.2010781213110.3797/scipharm.0904‑16 21179368
    [Google Scholar]
  130. ZattraE. ColemanC. AradS. HelmsE. LevineD. BordE. GuillaumeA. El-HajahmadM. ZwartE. van SteegH. GonzalezS. KishoreR. GoukassianD.A. Polypodium leucotomos extract decreases UV-induced Cox-2 expression and inflammation, enhances DNA repair, and decreases mutagenesis in hairless mice.Am. J. Pathol.200917551952196110.2353/ajpath.2009.090351 19808641
    [Google Scholar]
  131. BarabutisN. SchallyA.V. SiejkaA. P53, GHRH, inflammation and cancer.EBioMedicine20183755756210.1016/j.ebiom.2018.10.034 30344124
    [Google Scholar]
  132. RigbyC.M. RoyS. DeepG. Guillermo-LagaeR. JainA.K. DharD. OrlickyD.J. AgarwalC. AgarwalR. Role of p53 in silibinin-mediated inhibition of ultraviolet B radiation-induced DNA damage, inflammation and skin carcinogenesis.Carcinogenesis2017381405010.1093/carcin/bgw106 27729375
    [Google Scholar]
  133. AbramsJ.R. KelleyS.L. HayesE. KikuchiT. BrownM.J. KangS. LebwohlM.G. GuzzoC.A. JegasothyB.V. LinsleyP.S. KruegerJ.G. Blockade of T lymphocyte costimulation with cytotoxic T lymphocyte-associated antigen 4-immunoglobulin (CTLA4Ig) reverses the cellular pathology of psoriatic plaques, including the activation of keratinocytes, dendritic cells, and endothelial cells.J. Exp. Med.2000192568169410.1084/jem.192.5.681 10974034
    [Google Scholar]
  134. ZhuB. JingM. YuQ. GeX. YuanF. ShiL. Treatments in psoriasis: From standard pharmacotherapy to nanotechnology therapy.Postepy Dermatol. Alergol.202239346047110.5114/ada.2021.108445 35950130
    [Google Scholar]
  135. BooY.C. Emerging strategies to protect the skin from ultraviolet rays using plant-derived materials.Antioxidants20209763710.3390/antiox9070637 32708455
    [Google Scholar]
  136. CáceresA. CruzS.M. Application of Calahuala (Phlebodium spp) fern complex for the formulation of diverse medicinal and cosmetic products.Int. J. Phytocosm. Nat. Ingre.2018511110.15171/ijpni.2018.11
    [Google Scholar]
  137. SegarsK. McCarverV. MillerR.A. Dermatologic applications of polypodium leucotomos: A literature review.J. Clin. Aesthet. Dermatol.20211425060 34221229
    [Google Scholar]
  138. MasudaE.K. KommersG.D. MartinsT.B. BarrosC.S. PiazerJ.V. Morphological factors as indicators of malignancy of squamous cell carcinomas in cattle exposed naturally to bracken fern (Pteridium aquilinum).J. Comp. Pathol.20111441485410.1016/j.jcpa.2010.04.009 20542519
    [Google Scholar]
  139. FreitasR.N. Brasileiro-FilhoG. SilvaM.E. PenaS.D. Bracken fern-induced malignant tumors in rats: Absence of mutations in p53, H-ras and K-ras and no microsatellite instability.Mutat. Res.2002499218919610.1016/S0027‑5107(01)00275‑5 11827712
    [Google Scholar]
  140. MalíkM. MikaO.J. NavrátilováZ. KilliU.K. TlustošP. PatočkaJ. Health and environmental hazards of the toxic pteridium aquilinum (l.) kuhn (bracken fern).Plants20231311810.3390/plants13010018 38202326
    [Google Scholar]
  141. VetterJ. The norsesquiterpene glycoside ptaquiloside as a poisonous, carcinogenic component of certain ferns.Molecules20222719666210.3390/molecules27196662 36235199
    [Google Scholar]
  142. RasmussenL.H. Presence of the carcinogen ptaquiloside in fern-based food products and traditional medicine: Four cases of human exposure.Curr. Res. Food Sci.2021455756410.1016/j.crfs.2021.08.004 34458862
    [Google Scholar]
  143. RibeiroD.S. KellerK.M. Soto-BlancoB. Ptaquiloside and pterosin b levels in mature green fronds and sprouts of Pteridium arachnoideum.Toxins202012528829710.3390/toxins12050288 32369939
    [Google Scholar]
  144. AttyaM. NardiM. TagarelliA. SindonaG. A new facile synthesis of d4-pterosin B and d4-bromopterosin, deuterated analogues of ptaquiloside.Molecules20121755795580210.3390/molecules17055795 22592085
    [Google Scholar]
  145. KobetsT. SmithB.P. WilliamsG.M. Food-borne chemical carcinogens and the evidence for human cancer risk.Foods20221118282810.3390/foods11182828 36140952
    [Google Scholar]
  146. PotterD.M. BairdM.S. Carcinogenic effects of ptaquiloside in bracken fern and related compounds.Br. J. Cancer200083791492010.1054/bjoc.2000.1368 10970694
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073318080240902080232
Loading
/content/journals/cchts/10.2174/0113862073318080240902080232
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): cancer; chemotherapy; ferns; lycophytes; phytochemicals; Pteridophytes
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test