Skip to content
2000
Volume 28, Issue 10
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Epilepsy is a serious neurological disorder that affects millions of people each year, often leading to cognitive issues and reduced quality of life. Medication is the main treatment, but many patients experience negative side effects. Male Sprague-Dawley (SD) rats were chosen as experimental animals for this experiment due to their physiological and genetic similarities to humans, cost-effectiveness, and ease of handling in a laboratory setting.

Aims

The objective of this study was to assess the neuroprotective properties of baicalin (BA) in relation to its impact on anxiety and depressive-like behaviors in the epilepsy model.

Methods

Thirty male Sprague-Dawley (SD) rats were selected for this experiment. Pentylenetetrazol (PTZ) kindling (40 mg/kg; i.p.) was utilized to establish an epilepsy model. The effect of BA (50 mg/kg; gavage) on seizure severity (assessed using the Racine scale), anxiety, and depressive-like behaviors (evaluated through open field experiments and forced swimming tests) was examined. Histological examinations, including hematoxylin and eosin (HE) staining and Nissl staining, were conducted to assess neuronal damage. Furthermore, the neuroprotective properties of BA were examined through the analysis of Doublecortin (DCX), MKI67 (KI67), and Brain-Derived Neurotrophic Factor (BDNF) levels in the hippocampus of rats. The inhibitory impact of BA on neuroinflammation was assessed dual labeling for NOD-like receptor thermal protein domain associated protein 3 (NLRP3) and the microglial marker ionized calcium-binding adapter molecule 1 (Iba-1). The influence of BA on the expression of P2X7 receptor (P2X7R), NLRP3, and Interleukin-1β (IL-1β) was also assessed by reverse transcription quantitative PCR (RT-qPCR) in the brain. Finally, we employed a molecular docking model to assess the extent of receptor-ligand binding.

Results

Epilepsy models exhibited significant anxiety and depressive-like behaviors, and BA significantly reduced the severity of seizures in these rats while also alleviating their anxiety and depressive-like behaviors. Moreover, neuronal loss and damage were observed in the hippocampus of epileptic rats, but BA was able to effectively counteract this issue by enhancing BDNF expression and promoting neurogenesis within the hippocampus, especially in the DG region. The co-localization of Iba-1 with NLRP3 indicated the activation of NLRP3 inflammasome in microglia. Subsequent RT-PCR revealed that BA may alleviate anxiety and depressive-like behaviors in epileptic rats by activating the P2RX7/NLRP3/ IL-1β signaling pathway. The final molecular docking results indicated that BA had a good binding affinity with proteins, such as P2RX7, NLRP3, and IL-1β.

Conclusion

This study confirmed the effectiveness of BA in improving anxiety and depressive-like behaviors associated with epilepsy. Moreover, it provides theoretical support for the neuroprotective role demonstrated by BA.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073316021240520110301
2024-05-21
2025-10-11
Loading full text...

Full text loading...

References

  1. ZhangX. LiX. LiuN. ZhengP. MaL. GuoF. SunT. ZhouR. YuJ. The anticonvulsant effects of baldrinal on pilocarpine-induced convulsion in adult male mice.Molecules2019248161710.3390/molecules2408161731022879
    [Google Scholar]
  2. AkhtarM.J. PalR. SinghK. PaulJ. KhanS.A. NaimM.J. Overview of chemistry and therapeutic potential of non-nitrogen heterocyclics as anticonvulsant agents.Curr. Neuropharmacol.20222081519155310.2174/1570159X1966621080314481534344289
    [Google Scholar]
  3. RochaL. Frías-SoriaC.L. OrtizJ.G. AuzmendiJ. LazarowskiA. Is cannabidiol a drug acting on unconventional targets to control drug‐resistant epilepsy?Epilepsia Open202051364910.1002/epi4.1237632140642
    [Google Scholar]
  4. HiragiT. IkegayaY. KoyamaR. Microglia after Seizures and in Epilepsy.Cells2018742610.3390/cells704002629597334
    [Google Scholar]
  5. YuH. ShaoM. LuoX. PangC. SoK.F. YuJ. ZhangL. Treadmill exercise improves hippocampal neural plasticity and relieves cognitive deficits in a mouse model of epilepsy.Neural Regen. Res.202419365766210.4103/1673‑5374.37777137721298
    [Google Scholar]
  6. TanA.C. AshleyD.M. LópezG.Y. MalinzakM. FriedmanH.S. KhasrawM. Management of glioblastoma: State of the art and future directions.CA Cancer J. Clin.202070429931210.3322/caac.2161332478924
    [Google Scholar]
  7. LankauH.J. UnverferthK. GrunwaldC. HartenhauerH. HeineckeK. BernösterK. DostR. EgerlandU. RundfeldtC. New GABA-modulating 1,2,4-oxadiazole derivatives and their anticonvulsant activity.Eur. J. Med. Chem.200742687387910.1016/j.ejmech.2006.12.02217303289
    [Google Scholar]
  8. WongM. Herbs and spices: Unexpected sources of antiepileptogenic drug treatments?Epilepsy Curr.2010101212310.1111/j.1535‑7511.2009.01342.x20126335
    [Google Scholar]
  9. HanQ.T. YangW.Q. ZangC. ZhouL. ZhangC.J. BaoX. CaiJ. LiF. ShiQ. WangX.L. QuJ. ZhangD. YuS.S. The toxic natural product tutin causes epileptic seizures in mice by activating calcineurin.Signal Transduct. Target. Ther.20238110110.1038/s41392‑023‑01312‑y36894540
    [Google Scholar]
  10. GakhariaT. BakhtadzeS. LimM. KhachapuridzeN. KapanadzeN. Alterations of plasma pro-inflammatory cytokine levels in children with refractory epilepsies.Children (Basel)2022910150610.3390/children910150636291442
    [Google Scholar]
  11. FollwacznyP. SchieweckR. RiedemannT. DemleitnerA. StraubT. KlemmA.H. BilbanM. SutorB. PopperB. KieblerM.A. Pumilio2 deficient mice show a predisposition for epilepsy.Dis. Model. Mech.20171011dmm.02967810.1242/dmm.02967829046322
    [Google Scholar]
  12. NovakA. VizjakK. RakusaM. Cognitive impairment in people with epilepsy.J. Clin. Med.202211126710.3390/jcm1101026735012007
    [Google Scholar]
  13. DingW. FischerL. ChenQ. LiZ. YangL. YouZ. HuK. WuX. ZhouX. ChaoW. HuP. DagnewT.M. DubreuilD.M. WangS. XiaS. BaoC. ZhuS. ChenL. WangC. WaingerB. JinP. MaoJ. FengG. HarnettM.T. ShenS. Highly synchronized cortical circuit dynamics mediate spontaneous pain in mice.J. Clin. Invest.20231335e16640810.1172/JCI16640836602876
    [Google Scholar]
  14. KhazipovR. GABAergic synchronization in epilepsy.Cold Spring Harb. Perspect. Med.201662a02276410.1101/cshperspect.a02276426747834
    [Google Scholar]
  15. de KovelC.G.F. SyrbeS. BrilstraE.H. VerbeekN. KerrB. DubbsH. BayatA. DesaiS. NaiduS. SrivastavaS. CagaylanH. YisU. SaundersC. RookM. PluggeS. MuhleH. AfawiZ. KleinK.M. JayaramanV. RajagopalanR. GoldbergE. MarshE. KesslerS. BergqvistC. ConlinL.K. KrokB.L. ThiffaultI. PendziwiatM. HelbigI. PolsterT. BorggraefeI. LemkeJ.R. van den BoogaardtM.J. MøllerR.S. KoelemanB.P.C. Neurodevelopmental disorders caused by De Novo Variants in KCNB1 genotypes and phenotypes.JAMA Neurol.201774101228123610.1001/jamaneurol.2017.171428806457
    [Google Scholar]
  16. SaleemT. MaqboolH. SheikhN. TayyebA. MukhtarM. AshfaqA. GABRG2 C588T polymorphism is associated with idiopathic generalized epilepsy but not with antiepileptic drug resistance in Pakistani cohort.BioMed Res. Int.202220221810.1155/2022/346079236425336
    [Google Scholar]
  17. LiaoE.T. TangN.Y. LinY.W. Liang HsiehC. Long-term electrical stimulation at ear and electro-acupuncture at ST36-ST37 attenuated COX-2 in the CA1 of hippocampus in kainic acid-induced epileptic seizure rats.Sci. Rep.20177147210.1038/s41598‑017‑00601‑128352122
    [Google Scholar]
  18. VezzaniA. FujinamiR.S. WhiteH.S. PreuxP.M. BlümckeI. SanderJ.W. LöscherW. Infections, inflammation and epilepsy.Acta Neuropathol.2016131221123410.1007/s00401‑015‑1481‑526423537
    [Google Scholar]
  19. FengL. MuruganM. BoscoD.B. LiuY. PengJ. WorrellG.A. WangH.L. TaL.E. RichardsonJ.R. ShenY. WuL.J. Microglial proliferation and monocyte infiltration contribute to microgliosis following status epilepticus.Glia20196781434144810.1002/glia.2361631179602
    [Google Scholar]
  20. MooreA. BeidlerJ. HongM. Resveratrol and depression in animal models: A systematic review of the biological mechanisms.Molecules2018239219710.3390/molecules2309219730200269
    [Google Scholar]
  21. SatoK. Effects of microglia on neurogenesis.Glia20156381394140510.1002/glia.2285826010551
    [Google Scholar]
  22. WangK. SunM. JuanZ. ZhangJ. SunY. WangG. WangC. LiY. KongW. FanL. ZhangY. ZhaoH. ZhaoX. The improvement of sepsis-associated encephalopathy by P2X7R Inhibitor through inhibiting the Omi/HtrA2 apoptotic signaling pathway.Behav. Neurol.2022202211210.1155/2022/377735135126784
    [Google Scholar]
  23. Pérez-NúñezR. ChamorroA. GonzálezM.F. ContrerasP. ArtigasR. CorvalánA.H. van ZundertB. ReyesC. MoyaP.R. AvalosA.M. SchneiderP. QuestA.F.G. LeytonL. Protein kinase B (AKT) upregulation and Thy-1-αvβ3 integrin-induced phosphorylation of Connexin43 by activated AKT in astrogliosis.J. Neuroinflammat.2023201510.1186/s12974‑022‑02677‑736609298
    [Google Scholar]
  24. CaoF. HuL.Q. YaoS.R. HuY. WangD.G. FanY.G. PanG.X. TaoS.S. ZhangQ. PanH.F. WuG.C. P2X7 receptor: A potential therapeutic target for autoimmune diseases.Autoimmun. Rev.201918876777710.1016/j.autrev.2019.06.00931181327
    [Google Scholar]
  25. MokarizadehN. KarimiP. ErfaniM. Sadigh-EteghadS. Fathi MaroufiN. RashtchizadehN. β-Lapachone attenuates cognitive impairment and neuroinflammation in beta-amyloid induced mouse model of Alzheimer’s disease.Int. Immunopharmacol.20208110630010.1016/j.intimp.2020.10630032070922
    [Google Scholar]
  26. ShaoQ. ZhangX. YangP. YuanY. ChenN. Amyloidogenic proteins associated with neurodegenerative diseases activate the NLRP3 inflammasome.Int. Immunopharmacol.20174915516010.1016/j.intimp.2017.05.02728595078
    [Google Scholar]
  27. ChenZ. WangQ. Activation of PPAR γ by baicalin attenuates pulmonary hypertension in an infant rat model by suppressing HMGB 1/ RAGE signaling.FEBS Open Bio20177447748410.1002/2211‑5463.1218028396833
    [Google Scholar]
  28. HuQ. GaoL. PengB. LiuX. Baicalin and baicalein attenuate renal fibrosis in vitro via inhibition of the TGF-β1 signaling pathway.Exp. Ther. Med.20171443074308010.3892/etm.2017.488828928802
    [Google Scholar]
  29. WangC. GaoM.Q. Research progress on the antidepressant effects of baicalin and its aglycone baicalein: A systematic review of the biological mechanisms.Neurochem. Res.2024491142810.1007/s11064‑023‑04026‑337715823
    [Google Scholar]
  30. LiQ. LiQ.Q. JiaJ.N. SunQ.Y. ZhouH.H. JinW.L. MaoX.Y. Baicalein exerts neuroprotective effects in FeCl3-induced posttraumatic epileptic seizures via suppressing ferroptosis.Front. Pharmacol.20191063810.3389/fphar.2019.0063831231224
    [Google Scholar]
  31. TuX. YangW. LiangR. ShiS. ChenJ. ChenC. WangC. XieH. ChenY. OuyangL. Effect of baicalin on matrix metalloproteinase-9 expression and blood-brain barrier permeability following focal cerebral ischemia in rats.Neurochem. Res.201136112022202810.1007/s11064‑011‑0526‑y21678122
    [Google Scholar]
  32. ZhangC.Y.Y. ZengM.J. ZhouL.P. LiY.Q. ZhaoF. ShangZ.Y. DengX.Y. MaZ.Q. FuQ. MaS.P. QuR. Baicalin exerts neuroprotective effects via inhibiting activation of GSK3β/NF-κB/NLRP3 signal pathway in a rat model of depression.Int. Immunopharmacol.20186417518210.1016/j.intimp.2018.09.00130195108
    [Google Scholar]
  33. YangJ. JiaZ. XiaoZ. ZhaoJ. LuY. ChuL. ShaoH. PeiL. ZhangS. ChenY. Baicalin rescues cognitive dysfunction, mitigates neurodegeneration, and exerts anti-epileptic effects through activating TLR4/MYD88/Caspase-3 pathway in rats.Drug Des. Devel. Ther.2021153163318010.2147/DDDT.S31407634321866
    [Google Scholar]
  34. XiaoZ. CaoZ. YangJ. JiaZ. DuY. SunG. LuY. PeiL. Baicalin promotes hippocampal neurogenesis via the Wnt/β-catenin pathway in a chronic unpredictable mild stress-induced mouse model of depression.Biochem. Pharmacol.202119011459410.1016/j.bcp.2021.11459433964281
    [Google Scholar]
  35. LiG. ZhangS. ChengY. LuY. JiaZ. YangX. ZhangS. GuoW. PeiL. Baicalin suppresses neuron autophagy and apoptosis by regulating astrocyte polarization in pentylenetetrazol-induced epileptic rats and PC12 cells.Brain Res.2022177414772310.1016/j.brainres.2021.14772334780748
    [Google Scholar]
  36. Yankelevitch-YahavR. FrankoM. HulyA. DoronR. The forced swim test as a model of depressive-like behavior.J. Vis. Exp.2015975258710.3791/5258725867960
    [Google Scholar]
  37. ChenB. LuoM. LiangJ. ZhangC. GaoC. WangJ. WangJ. LiY. XuD. LiuL. ZhangN. ChenH. QinJ. Surface modification of PGP for a neutrophil–nanoparticle co-vehicle to enhance the anti-depressant effect of baicalein.Acta Pharm. Sin. B201881647310.1016/j.apsb.2017.11.01229872623
    [Google Scholar]
  38. KnightP. ChellianR. WilsonR. Behnood-RodA. PanunzioS. BruijnzeelA.W. Sex differences in the elevated plus-maze test and large open field test in adult Wistar rats.Pharmacol. Biochem. Behav.202120417316810.1016/j.pbb.2021.17316833684454
    [Google Scholar]
  39. Blecharz-KlinK. ŚwierczyńskaM. PiechalA. WawerA. Joniec-MaciejakI. PyrzanowskaJ. WojnarE. Zawistowska-DeniziakA. Sulima-CelińskaA. MłocickiD. Mirowska-GuzelD. Infection with intestinal helminth (Hymenolepis diminuta) impacts exploratory behavior and cognitive processes in rats by changing the central level of neurotransmitters.PLoS Pathog.2022183e101033010.1371/journal.ppat.101033035286352
    [Google Scholar]
  40. JiaoY. FanH. WangK. LuS. Sevoflurane impairs short-term memory by affecting PSD-95 and AMPA receptor in the hippocampus of a mouse model.Behav. Neurol.2019201911110.1155/2019/106826031772680
    [Google Scholar]
  41. JinM.H. ChenD.Q. JinY.H. HanY.H. SunH.N. KwonT. Hispidin inhibits LPS‑induced nitric oxide production in BV‑2 microglial cells via ROS‑dependent MAPK signaling.Exp. Ther. Med.202122397010.3892/etm.2021.1040234335912
    [Google Scholar]
  42. ChenX. XieK. SunX. ZhangC. HeH. The mechanism of miR-21-5p/TSP-1-mediating exercise on the function of endothelial progenitor cells in aged rats.Int. J. Environ. Res. Public Health2023202125510.3390/ijerph2002125536674009
    [Google Scholar]
  43. WangH. JiaQ. FengJ. MiaoC. DingY. LiuS. FengC. LvY. HuangJ. HanS. Establishment of angiotensin-converting enzyme 2 and cluster of differentiation 147 dual target cell membrane chromatography based on SNAP-tag technology for screening anti severe acute respiratory syndrome coronavirus 2 active components.J. Chromatogr. A2023169346390310.1016/j.chroma.2023.46390336870232
    [Google Scholar]
  44. Van BibberN.W. HaerleC. KhalifeR. XueB. UverskyV.N. Intrinsic disorder in tetratricopeptide repeat proteins.Int. J. Mol. Sci.20202110370910.3390/ijms2110370932466138
    [Google Scholar]
  45. WangS. XingY. WangR. JinZ. Jianpi Huayu Decoction suppresses cellular senescence in colorectal cancer via p53-p21-Rb pathway: Network pharmacology and in vivo validation.J. Ethnopharmacol.2024319Pt 311734710.1016/j.jep.2023.11734737931831
    [Google Scholar]
  46. MeiQ-Y. HuQ. ZhangJ-S. HouP-P. ShaoS. ManaenkoA. XiaoZ-P. ChenY. ZhaoB. JiaF. ZhangX-H. microRNA-455-5p alleviates neuroinflammation in cerebral ischemia/reperfusion injury.Neural Regen. Res.20221781769177510.4103/1673‑5374.33215435017437
    [Google Scholar]
  47. XuefeiY. DongyanL. TianmingL. HejuanZ. JianhuaF. O-linked N-acetylglucosamine affects mitochondrial homeostasis by regulating Parkin-dependent mitophagy in hyperoxia-injured alveolar type II cells injury.Respir. Res.20232411610.1186/s12931‑022‑02287‑036647045
    [Google Scholar]
  48. HuangY. LiuX. LiaoY. LiaoY. ZouD. WeiX. HuangQ. WuY. Role of miR-34c in the cognitive function of epileptic rats induced by pentylenetetrazol.Mol. Med. Rep.20181734173418010.3892/mmr.2018.844129344671
    [Google Scholar]
  49. PingX. QinS.K. LiuS.N. LuY. ZhaoY.N. CaoY.F. ZhangY.H. ZhangS.D. ChuL. PeiL. Effects of Huazhuo Jiedu Shugan Decoction on cognitive and emotional disorders in a rat model of epilepsy: Possible involvement of AC-cAMP-CREB signaling and NPY expression.Evid. Based Complement. Alternat. Med.2019201911510.1155/2019/435287931915447
    [Google Scholar]
  50. GaitatzisA. TrimbleM.R. SanderJ.W. The psychiatric comorbidity of epilepsy.Acta Neurol. Scand.2004110420722010.1111/j.1600‑0404.2004.00324.x15355484
    [Google Scholar]
  51. FariaA.V. ReisF. DabusG.C. ZanardiV.A. GuerreiroM.M. CendesF. MRI findings in the diagnosis and monitoring of rasmussen’s encephalitis.Arq. Neuropsiquiatr.2009673b79279710.1590/S0004‑282X200900050000219838505
    [Google Scholar]
  52. SantarelliL. SaxeM. GrossC. SurgetA. BattagliaF. DulawaS. WeisstaubN. LeeJ. DumanR. ArancioO. BelzungC. HenR. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants.Science2003301563480580910.1126/science.108332812907793
    [Google Scholar]
  53. MaJ. LiX. YangZ. LiuQ. LiuY. LiuA. Widely targeted metabolomics unveils baicalin-induced hippocampal metabolic alternations in a rat model of chronic unpredictable mild stress.J. Pharm. Biomed. Anal.202423711576610.1016/j.jpba.2023.11576637820491
    [Google Scholar]
  54. Al-RuwailiR. Al-KuraishyH.M. Al-GareebA.I. The possible role of brain-derived neurotrophic factor in epilepsy.Neurochem. Res.202349353354710.1007/s11064‑023‑04064‑x38006577
    [Google Scholar]
  55. UrbanskaM. Kazmierska-GrebowskaP. KowalczykT. CabanB. NaderK. PijetB. KalitaK. GozdzA. DevijverH. LechatB. JaworskiT. GrajkowskaW. SadowskiK. JozwiakS. KotulskaK. KonopackiJ. Van LeuvenF. van VlietE.A. AronicaE. JaworskiJ. GSK3β activity alleviates epileptogenesis and limits GluA1 phosphorylation.EBioMedicine20193937738710.1016/j.ebiom.2018.11.04030502054
    [Google Scholar]
  56. GaraschukO. The role of NLRP3 inflammasome for microglial response to peripheral inflammation.Neural Regen. Res.202116229429510.4103/1673‑5374.29088932859781
    [Google Scholar]
  57. López-CastejónG. PelegrínP. Current status of inflammasome blockers as anti-inflammatory drugs.Expert Opin. Investig. Drugs2012217995100710.1517/13543784.2012.69003222612568
    [Google Scholar]
  58. TavakoliZ. Tahmasebi DehkordiH. LorigooiniZ. Rahimi-MadisehM. KoraniM.S. Amini-KhoeiH. Anticonvulsant effect of quercetin in pentylenetetrazole (PTZ)-induced seizures in male mice: The role of anti-neuroinflammatory and anti-oxidative stress.Int. Immunopharmacol.202311610977210.1016/j.intimp.2023.10977236731152
    [Google Scholar]
  59. SinghG. SanderJ.W. The global burden of epilepsy report: Implications for low- and middle-income countries.Epilepsy Behav.202010510694910.1016/j.yebeh.2020.10694932088583
    [Google Scholar]
  60. HuangP.H. YangT.Y. YehC.W. HuangS.M. ChangH.C. HungY.F. ChuW.C. ChoK.H. LuT.P. KuoP.H. LeeL.J. KuoL.W. LienC.C. ChengH.J. Involvement of a BH3-only apoptosis sensitizer gene Blm-s in hippocampus-mediated mood control.Transl. Psychiatry202212141110.1038/s41398‑022‑02184‑636163151
    [Google Scholar]
  61. KreitlowB.L. LiW. BuchananG.F. Chronobiology of epilepsy and sudden unexpected death in epilepsy.Front. Neurosci.20221693610410.3389/fnins.2022.93610436161152
    [Google Scholar]
  62. PanL. WuY. BaoJ. GuoD. ZhangX. WangJ. DengM. YuP. WeiG. ZhangL. QinX. SongY. Alterations in neural networks during working memory encoding related to cognitive impairment in temporal lobe epilepsy.Front. Hum. Neurosci.20221577067810.3389/fnhum.2021.77067835069151
    [Google Scholar]
  63. Jones-MuhammadM. ShaoQ. WarringtonJ.P. Increased seizure sensitivity in pregnant mice with genetic knockdown of acid sensing ion channel 2a is associated with impaired hippocampal inflammatory response.Front. Physiol.20221398350610.3389/fphys.2022.98350636187797
    [Google Scholar]
  64. TaalabY.M. Fathi MohammedW. HelmyM.A. OthmanA.A.A. DarwishM. HassanI. AbbasM. Cannabis influences the putative cytokines-related pathway of epilepsy among Egyptian epileptic patients.Brain Sci.201991233210.3390/brainsci912033231757102
    [Google Scholar]
  65. LiuY.F. GaoF. LiX.W. JiaR.H. MengX.D. ZhaoR. JingY.Y. WangY. JiangW. The anticonvulsant and neuroprotective effects of baicalin on pilocarpine-induced epileptic model in rats.Neurochem. Res.20123781670168010.1007/s11064‑012‑0771‑822528832
    [Google Scholar]
  66. HuQ. HouS. XiongB. WenY. WangJ. ZengJ. MaX. WangF. Therapeutic effects of baicalin on diseases related to gut–brain axis dysfunctions.Molecules20232818650110.3390/molecules2818650137764277
    [Google Scholar]
  67. JinX. ZhuL. LuS. LiC. BaiM. XuE. ShenJ. LiY. Baicalin ameliorates CUMS-induced depression-like behaviors through activating AMPK/PGC-1α pathway and enhancing NIX-mediated mitophagy in mice.Eur. J. Pharmacol.202393817543510.1016/j.ejphar.2022.17543536463946
    [Google Scholar]
  68. LuY. SunG. YangF. GuanZ. ZhangZ. ZhaoJ. LiuY. ChuL. PeiL. Baicalin regulates depression behavior in mice exposed to chronic mild stress via the Rac/LIMK/cofilin pathway.Biomed. Pharmacother.201911610905410.1016/j.biopha.2019.10905431176122
    [Google Scholar]
  69. WangY. ShenC. ZhangJ. YangQ. LiJ. TanJ. YuH. MeiZ. A protocol for a pooled analysis of cohort studies: The association between depression and anxiety in epileptic disorders.PLoS One20231812e029532810.1371/journal.pone.029532838060471
    [Google Scholar]
  70. YuanS. TomsonT. LarssonS.C. Modifiable risk factors for epilepsy: A two‐sample Mendelian randomization study.Brain Behav.2021115e0209810.1002/brb3.209833655641
    [Google Scholar]
  71. LiG. WangM. ZhengM. LiuX. YuT. RenJ. WangQ. Causal effect of psychiatric disorders on epilepsy: A two‐sample Mendelian randomization study.Brain Behav.2023134e293910.1002/brb3.293936860142
    [Google Scholar]
  72. TempleJ. FisherP. DaviesC. MillarC. Gemma CherryM. Psychosocial factors associated with anxiety and depression in adolescents with epilepsy: A systematic review.Epilepsy Behav.202314910952210.1016/j.yebeh.2023.10952238006843
    [Google Scholar]
  73. CapitaineP. ThomasB. GradelA. FertéT. BranchardO. FrisonE. RenaudeauV. AupyJ. Evaluation of quality of life’s prognostic factors in people with functional seizures.Rev. Neurol. (Paris)2023S0035-37872301114-110.1016/j.neurol.2023.09.00738040548
    [Google Scholar]
  74. JiaZ. YangJ. CaoZ. ZhaoJ. ZhangJ. LuY. ChuL. ZhangS. ChenY. PeiL. Baicalin ameliorates chronic unpredictable mild stress-induced depression through the BDNF/ERK/CREB signaling pathway.Behav. Brain Res.202141411346310.1016/j.bbr.2021.11346334280458
    [Google Scholar]
  75. Lara-EspinosaJ.V. Santana-MartínezR.A. MaldonadoP.D. ZetterM. Becerril-VillanuevaE. Pérez-SánchezG. PavónL. Mata-EspinosaD. Barrios-PayánJ. López-TorresM.O. Marquina-CastilloB. Hernández-PandoR. Experimental pulmonary tuberculosis in the absence of detectable brain infection induces neuroinflammation and behavioural abnormalities in male BALB/c mice.Int. J. Mol. Sci.20202124948310.3390/ijms2124948333322180
    [Google Scholar]
  76. WangX. ZhangW. GeP. YuM. MengH. Parthanatos participates in glutamate‐mediated HT22 cell injury and hippocampal neuronal death in kainic acid‐induced status epilepticus rats.CNS Neurosci. Ther.202228122032204310.1111/cns.1393435909335
    [Google Scholar]
  77. HoweM.L. BarresB.A. A novel role for microglia in minimizing excitotoxicity.BMC Biol.2012101710.1186/1741‑7007‑10‑722293401
    [Google Scholar]
  78. ChenN.C. ChuangY.C. HuangC.W. LuiC.C. LeeC.C. HsuS.W. LinP.H. LuY.T. ChangY.T. HsuC.W. ChangC.C. Interictal serum brain-derived neurotrophic factor level reflects white matter integrity, epilepsy severity, and cognitive dysfunction in chronic temporal lobe epilepsy.Epilepsy Behav.20165914715410.1016/j.yebeh.2016.02.02927152461
    [Google Scholar]
  79. ScharfmanH. GoodmanJ. MacleodA. PhaniS. AntonelliC. CrollS. Increased neurogenesis and the ectopic granule cells after intrahippocampal BDNF infusion in adult rats.Exp. Neurol.2005192234835610.1016/j.expneurol.2004.11.01615755552
    [Google Scholar]
  80. KourdougliN. PellegrinoC. RenkoJ.M. KhirugS. ChazalG. Kukko-LukjanovT.K. LauriS.E. GaiarsaJ.L. ZhouL. PeretA. CastrénE. TuominenR.K. CrépelV. RiveraC. Depolarizing γ‐aminobutyric acid contributes to glutamatergic network rewiring in epilepsy.Ann. Neurol.201781225126510.1002/ana.2487028074534
    [Google Scholar]
  81. RiffaultB. KourdougliN. DumonC. FerrandN. BuhlerE. SchallerF. ChambonC. RiveraC. GaiarsaJ.L. PorcherC. Pro-brain-derived neurotrophic factor (proBDNF)-Mediated p75NTR activation promotes depolarizing actions of GABA and increases susceptibility to epileptic seizures.Cereb. Cortex201828251052710.1093/cercor/bhw38527913431
    [Google Scholar]
  82. LinT.W. HarwardS.C. HuangY.Z. McNamaraJ.O. Targeting BDNF/TrkB pathways for preventing or suppressing epilepsy.Neuropharmacology202016710773410.1016/j.neuropharm.2019.10773431377199
    [Google Scholar]
  83. FalcicchiaC. PaoloneG. EmerichD.F. LovisariF. BellW.J. FradetT. WahlbergL.U. SimonatoM. Seizure-suppressant and neuroprotective effects of encapsulated BDNF-producing cells in a rat model of temporal lobe epilepsy.Mol. Ther. Methods Clin. Dev.2018921122410.1016/j.omtm.2018.03.00129766029
    [Google Scholar]
  84. PorcherC. MedinaI. GaiarsaJ.L. Mechanism of BDNF modulation in GABAergic synaptic transmission in healthy and disease brains.Front. Cell. Neurosci.20181227310.3389/fncel.2018.0027330210299
    [Google Scholar]
  85. WangZ. ChengY. LuY. SunG. PeiL. Baicalin ameliorates corticosterone-induced depression by promoting neurodevelopment of hippocampal via mTOR/GSK3β pathway.Chin. J. Integr. Med.202329540541210.1007/s11655‑022‑3590‑z36607586
    [Google Scholar]
  86. D’AngeloB. AstaritaC. BoffoS. Massaro-GiordanoM. Antonella IanuzziC. CaporasoA. MacalusoM. GiordanoA. LPS-induced inflammatory response triggers cell cycle reactivation in murine neuronal cells through retinoblastoma proteins induction.Cell Cycle201716242330233610.1080/15384101.2017.136394328820328
    [Google Scholar]
  87. BögiE. BelovičováK. MoravčíkováL. CsatlósováK. DremencovE. LacinovaL. DubovickyM. Pre-gestational stress impacts excitability of hippocampal cells in vitro and is associated with neurobehavioral alterations during adulthood.Behav. Brain Res.201937511213110.1016/j.bbr.2019.11213131377253
    [Google Scholar]
  88. Gil-MohapelJ. BrocardoP.S. ChoquetteW. GothardR. SimpsonJ.M. ChristieB.R. Hippocampal neurogenesis levels predict WATERMAZE search strategies in the aging brain.PLoS One201389e7512510.1371/journal.pone.007512524086453
    [Google Scholar]
  89. HanK. WangQ.Y. WangC.X. LuanS.Y. TianW.P. WangY. ZhangR.Y. Ghrelin improves pilocarpine‑induced cerebral cortex inflammation in epileptic rats by inhibiting NF‑κB and TNF‑α.Mol. Med. Rep.20181843563356810.3892/mmr.2018.938130106107
    [Google Scholar]
  90. VezzaniA. GranataT. Brain inflammation in epilepsy: Experimental and clinical evidence.Epilepsia200546111724174310.1111/j.1528‑1167.2005.00298.x16302852
    [Google Scholar]
  91. MonjeM.L. TodaH. PalmerT.D. Inflammatory blockade restores adult hippocampal neurogenesis.Science200330256511760176510.1126/science.108841714615545
    [Google Scholar]
  92. ZhangS. ZhangY. ZhengY. ZhuS. SunJ. DengY. WangQ. ZhaiQ. Dexmedetomidine attenuates sleep deprivation-induced inhibition of hippocampal neurogenesis via VEGF-VEGFR2 signaling and inhibits neuroinflammation.Biomed. Pharmacother.202316511508510.1016/j.biopha.2023.11508537392656
    [Google Scholar]
  93. Oliveira-GiacomelliÁ. PetizL.L. AndrejewR. TurriniN. SilvaJ.B. SackU. UlrichH. Role of P2X7 receptors in immune responses during neurodegeneration.Front. Cell. Neurosci.20211566293510.3389/fncel.2021.66293534122013
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073316021240520110301
Loading
/content/journals/cchts/10.2174/0113862073316021240520110301
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): anxiety; Baicalin; BDNF; depressive-like behaviors; epilepsy; neuroprotective; P2RX7/NLRP3/IL-1β
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test