Skip to content
2000
Volume 28, Issue 16
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

The incidence of depression is increasing year by year, and Zhizichi Decoction(ZZCD)has shown significant efficiency in the clinical treatment of mild depression, but its mechanism of action is still unclear. In this research, network pharmacology and metagenomics combined and metabolomics were used as research methods to explain the scientific connotation of the antidepressant effect of ZZCD from the aspects of the overall effect of organisms and microbial structure and function.

Methods

The rat model of depression was established by chronic unpredictable mild stress (CUMS), and the improvement of depressive symptoms was evaluated by behavioral and histopathological methods. Network pharmacology predicted possible targets and important pathways of ZZCD. Metabolomics revealed its possible related biological pathways. Metagenomics showed the disturbance of ZZCD on intestinal microbial diversity structure and associated biological functions in depressed rats.

Results

ZZCD can improve the behavioral performance of CUMS rats, and can significantly regulate the content of 5-HT, NE and other neurotransmitters in serum and brain tissue, and improve the damaged state of neurons in the hippocampus. Network pharmacology predicts that it mainly acts on biological processes such as inflammatory response and oxidative stress response. Metabolomics found that it affected metabolic pathways such as amino acid metabolism and lipid metabolism. The results of metagenomics showed that it significantly regulated the abundance of Firmicutes and Bacteroidetes. The above results predicted that it may affect signaling pathways such as the nervous system, inflammatory diseases and cell processing.

Conclusion

ZZCD may play an antidepressant role by regulating intestinal probiotics, energy metabolism, and inflammation reduction. This provides a scientific basis for the clinical application of ZZCD in traditional Chinese medicine and also makes it an optional alternative for the treatment of depression.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073312654240918072945
2024-10-03
2025-12-15
Loading full text...

Full text loading...

References

  1. CaiN. ChoiK.W. FriedE.I. Reviewing the genetics of heterogeneity in depression: operationalizations, manifestations and etiologies.Hum. Mol. Genet.202029R1R10R1810.1093/hmg/ddaa115 32568380
    [Google Scholar]
  2. Sharma, B.; Khushboo, ; Siddiqi, N.J. Pathophysiology of SARS-CoV2 Mediated Depression, Therapeutics, and Consequences: A Comprehensive Narrative.Mini Rev. Med. Chem.202323221722910.2174/1381612828666220603150637 35658879
    [Google Scholar]
  3. ZhangY. FangY.C. CuiL.X. JiangY.T. LuoY.S. ZhangW. YuD.X. WenJ. ZhouT.T. Zhi-Zi-Chi decoction reverses depressive behaviors in CUMS rats by reducing oxidative stress injury via regulating GSH/GSSG pathway.Front. Pharmacol.20221388789010.3389/fphar.2022.887890 35462900
    [Google Scholar]
  4. GaoF.Y. ChenX.F. CuiL.X. ZhaiY.J. LiuJ.L. GaoC.C. FangY.C. HuangT.H. WenJ. ZhouT.T. Gut microbiota mediates the pharmacokinetics of Zhi-zi-chi decoction for the personalized treatment of depression.J. Ethnopharmacol.2023302Pt B11593410.1016/j.jep.2022.115934
    [Google Scholar]
  5. ZhengP. ZengB. ZhouC. LiuM. FangZ. XuX. ZengL. ChenJ. FanS. DuX. ZhangX. YangD. YangY. MengH. LiW. MelgiriN.D. LicinioJ. WeiH. XieP. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism.Mol. Psychiatry201621678679610.1038/mp.2016.44 27067014
    [Google Scholar]
  6. BearT.L.K. DalzielJ.E. CoadJ. RoyN.C. ButtsC.A. GopalP.K. The role of the gut microbiota in dietary interventions for depression and anxiety.Adv. Nutr.202011489090710.1093/advances/nmaa016 32149335
    [Google Scholar]
  7. BegumN. MandhareA. TryphenaK.P. SrivastavaS. ShaikhM.F. SinghS.B. KhatriD.K. Epigenetics in depression and gut-brain axis: A molecular crosstalk.Front. Aging Neurosci.202214104833310.3389/fnagi.2022.1048333 36583185
    [Google Scholar]
  8. TianX. WangG. TengF. XueX. PanJ. MaoQ. GuoD. SongX. MaK. Zhi Zi Chi decoction (Gardeniae fructus and semen Sojae Praeparatum) attenuates anxious depression via modulating microbiota-gut-brain axis in corticosterone combined with chronic restraint stress-induced mice.CNS Neurosci. Ther.2023 37905694
    [Google Scholar]
  9. LiuM.Y. YinC.Y. ZhuL.J. ZhuX.H. XuC. LuoC.X. ChenH. ZhuD.Y. ZhouQ.G. Sucrose preference test for measurement of stress-induced anhedonia in mice.Nat. Protoc.20181371686169810.1038/s41596‑018‑0011‑z 29988104
    [Google Scholar]
  10. LinodeoliveiraC. LimaT. CarobrezA. Structure of the rat behaviour in the forced swimming test.Behav. Brain Res.2005158224325010.1016/j.bbr.2004.09.004 15698890
    [Google Scholar]
  11. GaoX.F. WangX.Q. HeC. LuC.L. [Progress of monoaminergic receptor investigation on depression].Sheng Li Ke Xue Jin Zhan20023311720 12001723
    [Google Scholar]
  12. Ye-haoZ. Wei-hongC. Jian-xunL. Effect of crocin on mitochondrial dynamics in SH-SY5Y cells against injury induced by oxygen-glucose deprivation.Zhongguo Yaolixue Tongbao20163207991997
    [Google Scholar]
  13. SimmlerL.D. LiY. HadjasL.C. HiverA. van ZessenR. LüscherC. Dual action of ketamine confines addiction liability.Nature2022608792236837310.1038/s41586‑022‑04993‑7 35896744
    [Google Scholar]
  14. Khushboo; Kumar, A.; Sharma, B. Biomedical Implications of Plant-based Principles as Antidepressants: Prospects for Novel Drug Development.Mini Rev. Med. Chem.202222690492610.2174/1389557521666210415112601 33858313
    [Google Scholar]
  15. LiangS. WuX. HuX. WangT. JinF. Recognizing Depression from the Microbiota–Gut–Brain Axis.Int. J. Mol. Sci.2018196159210.3390/ijms19061592 29843470
    [Google Scholar]
  16. Yan-xiaZ. Gui-qingZ. NingR. MinH. QianZ. Refractory depression: changes of plasma monoamine neurotransmitter metabolite before and after treatment.Xiandai Shengwu Yixue Jinzhan2011110713521354
    [Google Scholar]
  17. ZongyuP. RuiP. ErlongZ. In vitro regulation in signal transduction of central nerve cells.China J. Health Psychol.20132106948953
    [Google Scholar]
  18. LeeA.L. OgleW.O. SapolskyR.M. Stress and depression: possible links to neuron death in the hippocampus.Bipolar Disord.20024211712810.1034/j.1399‑5618.2002.01144.x 12071509
    [Google Scholar]
  19. CanetG. ChevallierN. ZussyC. DesrumauxC. GivaloisL. Central Role of Glucocorticoid Receptors in Alzheimer’s Disease and Depression.Front. Neurosci.20181273910.3389/fnins.2018.00739 30459541
    [Google Scholar]
  20. YangL.M. YuL. JinH.J. ZhaoH. Substance P receptor antagonist in lateral habenula improves rat depression-like behavior.Brain Res. Bull.2014100222810.1016/j.brainresbull.2013.10.007 24157953
    [Google Scholar]
  21. PanH.T. XiZ.Q. WeiX.Q. WangK. A network pharmacology approach to predict potential targets and mechanisms of “ Ramulus Cinnamomi (cassiae) – Paeonia lactiflora ” herb pair in the treatment of chronic pain with comorbid anxiety and depression.Ann. Med.202254141342510.1080/07853890.2022.2031268 35098831
    [Google Scholar]
  22. LiuC. YanL. QianY. SongP. WangT. WeiM. The Extract of Acanthopanacis Cortex Relieves the Depression-Like Behavior and Modulates IL-17 Signaling in Chronic Mild Stress-Induced Depressive Mice.Dose Response202321110.1177/15593258221148817 36865497
    [Google Scholar]
  23. ZhangW. YuM. ZhangQ. YangZ. ZhangT. DFO treatment protects against depression-like behaviors and cognitive impairment in CUMS mice.Brain Res. Bull.2022187758410.1016/j.brainresbull.2022.06.016 35779818
    [Google Scholar]
  24. CalderP.C. n−3 Polyunsaturated fatty acids, inflammation, and inflammatory diseases.Am. J. Clin. Nutr.2006836Suppl.1505S1519S10.1093/ajcn/83.6.1505S 16841861
    [Google Scholar]
  25. BlanchardH. ChangL. RezvaniA.H. RapoportS.I. TahaA.Y. Brain arachidonic acid incorporation and turnover are not altered in the flinders sensitive line rat model of human depression.Neurochem. Res.201540112293230310.1007/s11064‑015‑1719‑6 26404538
    [Google Scholar]
  26. TsuchimineS. SaitoM. KanekoS. Yasui-FurukoriN. Decreased serum levels of polyunsaturated fatty acids and folate, but not brain-derived neurotrophic factor, in childhood and adolescent females with depression.Psychiatry Res.20152251-218719010.1016/j.psychres.2014.11.018 25466229
    [Google Scholar]
  27. MüllerC.P. ReichelM. MühleC. RheinC. GulbinsE. KornhuberJ. Brain membrane lipids in major depression and anxiety disorders.Biochim. Biophys. Acta Mol. Cell Biol. Lipids2015185181052106510.1016/j.bbalip.2014.12.014 25542508
    [Google Scholar]
  28. RybakinaE.G. ShaninS.N. FomichevaE.E. KornevaE.A. [Cellular and molecular mechanisms of interaction between the neuroendocrine and immune systems under chronic fatigue syndrome in experiment].Fiziol. Zh. Im. I M Sechenova2009951213241335 20141043
    [Google Scholar]
  29. WenZ. LiuH. LiM. LiB. GaoW. ShaoQ. FanB. ZhaoF. WangQ. XieQ. YangY. YuJ. QuX. Increased metabolites of 5-lipoxygenase from hypoxic ovarian cancer cells promote tumor-associated macrophage infiltration.Oncogene201534101241125210.1038/onc.2014.85 24662827
    [Google Scholar]
  30. GaoY. XuT. ZhaoY.X. Ling-HuT. LiuS.B. TianJ.S. QinX.M. A novel network pharmacology strategy to decode metabolic biomarkers and targets interactions for depression.Front. Psychiatry20201166710.3389/fpsyt.2020.00667 32760300
    [Google Scholar]
  31. ReaK. DinanT.G. CryanJ.F. The microbiome: A key regulator of stress and neuroinflammation.Neurobiol. Stress20164233310.1016/j.ynstr.2016.03.001 27981187
    [Google Scholar]
  32. MillerA.H. MaleticV. RaisonC.L. Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression.Biol. Psychiatry200965973274110.1016/j.biopsych.2008.11.029 19150053
    [Google Scholar]
  33. TreadwayM.T. CooperJ.A. MillerA.H. Can’t or Won’t? Immunometabolic constraints on dopaminergic drive.Trends Cogn. Sci.201923543544810.1016/j.tics.2019.03.003 30948204
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073312654240918072945
Loading
/content/journals/cchts/10.2174/0113862073312654240918072945
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test