Skip to content
2000
Volume 28, Issue 10
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Sodium-dependent glucose transporter (SGLT2) inhibitors (SGLT2i) have been found to have anti-atherosclerotic effects in clinical treatment.

Objectives

The aim of this study was to explore whether angiotensin II (Ang II) induces changes in the expression of Na+/H+ exchanger of cytoplasmic membrane channel proteins (NHE1) and SGLT2 in macrophages and whether dapagliflozin (DAPA), an SGLT2i, protects against Ang II induced macrophage senescence by inhibiting NHE1 activation to alleviate Atherosclerosis (AS).

Methods

After intervention with DAPA plus gavage or feeding them a high-fat diet, the mice's aortas were dissected, and oil red O staining was performed. Cell proliferation and toxicity detection, western blot, immunofluorescence, and β-galactosidase staining methods were adopted to detect cell activity, expressions of senescence-related genes, and number of senescent cells after different concentrations of Ang II or DAPA or plasmid NHE1 were treated with RAW264.7 cells.

Results

() The formation of AS plaques in ApoE -/- mice showed a downward trend under DAPA. () After the intervention of Ang II, the cell activity of RAW264.7 decreased, and the expression of senescent cells and related genes increased. () Under the Ang II condition, the expression of SGLT2 and NHE1 increased, and SGLT2, NHE1, and senescence-related genes decreased with the addition of DAPA. () The expression of NHE1, senescent cells and related genes decreased in RAW264.7 cells after DAPA treatment with plasmid NHE1 intervention.

Conclusion

SGLT2i alleviates atherosclerosis by inhibiting NHE1 activation to protect against macrophage senescence induced by Ang II.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073310500240514045321
2024-05-27
2025-10-11
Loading full text...

Full text loading...

References

  1. WrightE.M. TurkE. The sodium/glucose cotransport family SLC5.Pflugers Arch.2004447581381510.1007/s00424‑003‑1202‑012748858
    [Google Scholar]
  2. WrightE.M. Glucose transport families SLC5 and SLC50.Mol. Aspects Med.2013342-318319610.1016/j.mam.2012.11.00223506865
    [Google Scholar]
  3. FakihW. MrouehA. AugerC. KindoM.P. MommerotA. MazzucotelliJ.P. PieperM.P. OhlmannP. MorelO. Schini-KerthV. JeselL. Upregulation of SGLT1 and 2 promotes oxidative stress in right atrial appendages of patients with low-grade inflammatory responses: potential role in atrial fibrillation.Eur. Heart J.2022432Suppl. 2ehac544.292510.1093/eurheartj/ehac544.2925
    [Google Scholar]
  4. JadhavA. TiwariS. LeeP. NdisangJ.F. The heme oxygenase system selectively enhances the anti-inflammatory macrophage-M2 phenotype, reduces pericardial adiposity, and ameliorated cardiac injury in diabetic cardiomyopathy in Zucker diabetic fatty rats.J. Pharmacol. Exp. Ther.2013345223924910.1124/jpet.112.20080823442249
    [Google Scholar]
  5. PackerM. AnkerS.D. ButlerJ. FilippatosG. PocockS.J. CarsonP. JanuzziJ. VermaS. TsutsuiH. BrueckmannM. JamalW. KimuraK. SchneeJ. ZellerC. CottonD. BocchiE. BöhmM. ChoiD.J. ChopraV. ChuquiureE. GiannettiN. JanssensS. ZhangJ. Gonzalez JuanateyJ.R. KaulS. Brunner-La RoccaH.P. MerkelyB. NichollsS.J. PerroneS. PinaI. PonikowskiP. SattarN. SenniM. SerondeM.F. SpinarJ. SquireI. TaddeiS. WannerC. ZannadF. EMPEROR-Reduced Trial Investigators Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure.N. Engl. J. Med.2020383151413142410.1056/NEJMoa202219032865377
    [Google Scholar]
  6. ZinmanB. WannerC. LachinJ.M. FitchettD. BluhmkiE. HantelS. MattheusM. DevinsT. JohansenO.E. WoerleH.J. BroedlU.C. InzucchiS.E. EMPA-REG OUTCOME Investigators Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes.N. Engl. J. Med.2015373222117212810.1056/NEJMoa150472026378978
    [Google Scholar]
  7. NealB. PerkovicV. MahaffeyK.W. de ZeeuwD. FulcherG. EronduN. ShawW. LawG. DesaiM. MatthewsD.R. CANVAS Program Collaborative Group Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes.N. Engl. J. Med.2017377764465710.1056/NEJMoa161192528605608
    [Google Scholar]
  8. MudaliarS. AllojuS. HenryR.R. Can a Shift in Fuel Energetics Explain the Beneficial Cardiorenal Outcomes in the EMPA-REG OUTCOME Study? A Unifying Hypothesis.Diabetes Care20163971115112210.2337/dc16‑054227289124
    [Google Scholar]
  9. HeerspinkH.J.L. PerkinsB.A. FitchettD.H. HusainM. CherneyD.Z.I. Sodium Glucose Cotransporter 2 Inhibitors in the Treatment of Diabetes Mellitus.Circulation20161341075277210.1161/CIRCULATIONAHA.116.02188727470878
    [Google Scholar]
  10. ChiltonR. TikkanenI. CannonC.P. CroweS. WoerleH.J. BroedlU.C. JohansenO.E. Effects of empagliflozin on blood pressure and markers of arterial stiffness and vascular resistance in patients with type 2 diabetes.Diabetes Obes. Metab.201517121180119310.1111/dom.1257226343814
    [Google Scholar]
  11. BaartscheerA. SchumacherC.A. WüstR.C.I. FioletJ.W.T. StienenG.J.M. CoronelR. ZuurbierC.J. Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na+/H+ exchanger in rats and rabbits.Diabetologia201760356857310.1007/s00125‑016‑4134‑x27752710
    [Google Scholar]
  12. Santos-GallegoC.G. Requena-IbanezJ.A. San AntonioR. Garcia-RoperoA. IshikawaK. WatanabeS. PicatosteB. Vargas-DelgadoA.P. Flores-UmanzorE.J. SanzJ. FusterV. BadimonJ.J. Empagliflozin Ameliorates Diastolic Dysfunction and Left Ventricular Fibrosis/Stiffness in Nondiabetic Heart Failure.JACC Cardiovasc. Imaging202114239340710.1016/j.jcmg.2020.07.04233129742
    [Google Scholar]
  13. DenkerS.P. BarberD.L. Cell migration requires both ion translocation and cytoskeletal anchoring by the Na-H exchanger NHE1.J. Cell Biol.200215961087109610.1083/jcb.20020805012486114
    [Google Scholar]
  14. SkeltonL.A. BoronW.F. ZhouY. Acid-base transport by the renal proximal tubule.J. Nephrol.201023016Suppl. 16S4S1821170887
    [Google Scholar]
  15. PutneyL.K. BarberD.L. Expression profile of genes regulated by activity of the Na-H exchanger NHE1.BMC Genomics2004514610.1186/1471‑2164‑5‑4615257760
    [Google Scholar]
  16. AvkiranM. HaworthR.S. Regulatory effects of G protein-coupled receptors on cardiac sarcolemmal Na+/H+ exchanger activity: Signalling and significance.Cardiovasc. Res.200357494295210.1016/S0008‑6363(02)00782‑412650872
    [Google Scholar]
  17. KarmazynM. SawyerM. FliegelL. The Na(+)/H(+) exchanger: A target for cardiac therapeutic intervention.Curr. Drug Targets Cardiovasc. Haematol. Disord.20055432333510.2174/156800605455341716101565
    [Google Scholar]
  18. FliegelL. Regulation of the Na + /H + exchanger in the healthy and diseased myocardium.Expert Opin. Ther. Targets2009131556810.1517/1472822080260070719063706
    [Google Scholar]
  19. UthmanL. NederlofR. EerbeekO. BaartscheerA. SchumacherC. BuchholtzN. HollmannM.W. CoronelR. WeberN.C. ZuurbierC.J. Delayed ischaemic contracture onset by empagliflozin associates with NHE1 inhibition and is dependent on insulin in isolated mouse hearts.Cardiovasc. Res.2019115101533154510.1093/cvr/cvz00430649212
    [Google Scholar]
  20. ChungY.J. ParkK.C. TokarS. EykynT.R. FullerW. PavlovicD. SwietachP. ShattockM.J. Off-target effects of sodium-glucose co-transporter 2 blockers: Empagliflozin does not inhibit Na+/H+ exchanger-1 or lower [Na+]i in the heart.Cardiovasc. Res.2021117142794280610.1093/cvr/cvaa32333135077
    [Google Scholar]
  21. KantR. HuZ. MalhotraJ.K. Sodium Hydrogen Exchanger Isoform Switching And Kchip2 Upregulation In Elderly Porcine Atria.Circulat. Res.2013
    [Google Scholar]
  22. KantR. HuZ. MalhotraJ.K. Krogh-MadsenT. ChristiniD.J. HeerdtP.M. AbbottG.W. NHE isoform switching and KChIP2 upregulation in aging porcine atria.PLoS One2013812e8295110.1371/journal.pone.008295124376615
    [Google Scholar]
  23. PackerM. Activation and Inhibition of Sodium-Hydrogen Exchanger Is a Mechanism That Links the Pathophysiology and Treatment of Diabetes Mellitus With That of Heart Failure.Circulation2017136161548155910.1161/CIRCULATIONAHA.117.03041829038209
    [Google Scholar]
  24. GanL. LiuD. LiuJ. ChenE. ChenC. LiuL. HuH. GuanX. MaW. ZhangY. HeY. LiuB. TangS. JiangW. XueJ. XinH. CD38 deficiency alleviates Ang II-induced vascular remodeling by inhibiting small extracellular vesicle-mediated vascular smooth muscle cell senescence in mice.Signal Transduct. Target. Ther.20216122310.1038/s41392‑021‑00625‑034112762
    [Google Scholar]
  25. Camacho-PereiraJ. TarragóM.G. ChiniC.C.S. NinV. EscandeC. WarnerG.M. PuranikA.S. SchoonR.A. ReidJ.M. GalinaA. ChiniE.N. CD38 Dictates Age-Related NAD Decline and Mitochondrial Dysfunction through an SIRT3-Dependent Mechanism.Cell Metab.20162361127113910.1016/j.cmet.2016.05.00627304511
    [Google Scholar]
  26. BrodskyS.V. ZhangF. NasjlettiA. GoligorskyM.S. Endothelium-derived microparticles impair endothelial function in vitro.Am. J. Physiol. Heart Circ. Physiol.20042865H1910H191510.1152/ajpheart.01172.200315072974
    [Google Scholar]
  27. MostefaiH.A. AgouniA. CarusioN. Phosphatidylinositol 3-kinase and xanthine oxidase regulate nitric oxide and reactive oxygen species productions by apoptotic lymphocyte microparticles in endothelial cells.J. Immunol.20081807502850352008
    [Google Scholar]
  28. AbbasM. JeselL. AugerC. AmouraL. MessasN. ManinG. RumigC. León-GonzálezA.J. RibeiroT.P. SilvaG.C. Abou-MerhiR. HamadeE. HeckerM. GeorgY. ChakfeN. OhlmannP. Schini-KerthV.B. TotiF. MorelO. Endothelial Microparticles From Acute Coronary Syndrome Patients Induce Premature Coronary Artery Endothelial Cell Aging and Thrombogenicity.Circulation2017135328029610.1161/CIRCULATIONAHA.116.01751327821539
    [Google Scholar]
  29. ParkS.H. BelcastroE. HasanH. MatsushitaK. MarchandotB. AbbasM. TotiF. AugerC. JeselL. OhlmannP. MorelO. Schini-KerthV.B. Angiotensin II-induced upregulation of SGLT1 and 2 contributes to human microparticle‐stimulated endothelial senescence and dysfunction: Protective effect of gliflozins.Cardiovasc. Diabetol.20212016510.1186/s12933‑021‑01252‑333726768
    [Google Scholar]
  30. JiaG. HabibiJ. BostickB.P. Uric acid promotes left ventricular diastolic dysfunction in mice fed a Western dietHypertension 2015653531539
    [Google Scholar]
  31. RamkhelawonB. VilarJ. RivasD. MeesB. de CromR. TedguiA. LehouxS. Shear stress regulates angiotensin type 1 receptor expression in endothelial cells.Circ. Res.2009105986987510.1161/CIRCRESAHA.109.20404019762680
    [Google Scholar]
  32. PengH YangX P CarreteroO A Angiotensin II-induced dilated cardiomyopathy in Balb/c but not C57BL/6J mice.Exp Physiol2011968756764
    [Google Scholar]
  33. SadoshimaJ. XuY. SlayterH.S. IzumoS. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro.Cell199375597798410.1016/0092‑8674(93)90541‑W8252633
    [Google Scholar]
  34. LiuY. BubolzA.H. ShiY. NewmanP.J. NewmanD.K. GuttermanD.D. Peroxynitrite reduces the endothelium-derived hyperpolarizing factor component of coronary flow-mediated dilation in PECAM-1-knockout mice.Am. J. Physiol. Regul. Integr. Comp. Physiol.20062901R57R6510.1152/ajpregu.00424.200516166207
    [Google Scholar]
  35. ParkY. CapobiancoS. GaoX. FalckJ.R. DellspergerK.C. ZhangC. Role of EDHF in type 2 diabetes-induced endothelial dysfunction.Am. J. Physiol. Heart Circ. Physiol.20082955H1982H198810.1152/ajpheart.01261.200718790831
    [Google Scholar]
  36. PackerM. Role of the sodium‐hydrogen exchanger in mediating the renal effects of drugs commonly used in the treatment of type 2 diabetes.Diabetes Obes. Metab.201820480081110.1111/dom.1319129227582
    [Google Scholar]
  37. LiuD. LiuJ. ZhangD. Advances in relationship between cell senescence and atherosclerosis[J]. Zhejiang da xue xue bao. Yi xue ban = J. Zhejiang Uni.Med. Sci.202251195101
    [Google Scholar]
  38. СавицкийД.В. ЛиньковаН.С. ДятловаА.С. КветнаяТ.В. Senescence-associated secretory phenotype and inflammaging: The role in cardiovascular diseases.Usp. Gerontol.202235573774610.34922/AE.2022.35.5.01036617329
    [Google Scholar]
  39. Machado-OliveiraG. RamosC. MarquesA.R.A. VieiraO.V. Cell Senescence, Multiple Organelle Dysfunction and Atherosclerosis.Cells2020910214610.3390/cells910214632977446
    [Google Scholar]
  40. LibbyP. RidkerP.M. HanssonG.K. Progress and challenges in translating the biology of atherosclerosis.Nature2011473734731732510.1038/nature1014621593864
    [Google Scholar]
  41. SeltzerA.M. NgJ. AeschbachW. KipferR. KulongoskiJ.T. SeveringhausJ.P. StuteM. Widespread six degrees Celsius cooling on land during the Last Glacial Maximum.Nature2021593785822823210.1038/s41586‑021‑03467‑633981051
    [Google Scholar]
  42. TierneyJ.E. ZhuJ. KingJ. MalevichS.B. HakimG.J. PoulsenC.J. Glacial cooling and climate sensitivity revisited.Nature2020584782256957310.1038/s41586‑020‑2617‑x32848226
    [Google Scholar]
  43. CannonC.P. BlazingM.A. GiuglianoR.P. McCaggA. WhiteJ.A. TherouxP. DariusH. LewisB.S. OphuisT.O. JukemaJ.W. De FerrariG.M. RuzylloW. De LuccaP. ImK. BohulaE.A. ReistC. WiviottS.D. TershakovecA.M. MuslinerT.A. BraunwaldE. CaliffR.M. IMPROVE-IT Investigators Ezetimibe Added to Statin Therapy after Acute Coronary Syndromes.N. Engl. J. Med.2015372252387239710.1056/NEJMoa141048926039521
    [Google Scholar]
  44. WangY. WangG.Z. RabinovitchP.S. TabasI. Macrophage mitochondrial oxidative stress promotes atherosclerosis and nuclear factor-κB-mediated inflammation in macrophages.Circ. Res.2014114342143310.1161/CIRCRESAHA.114.30215324297735
    [Google Scholar]
  45. ManciniS.J. BoydD. KatwanO.J. StrembitskaA. AlmabroukT.A. KennedyS. PalmerT.M. SaltI.P. Canagliflozin inhibits interleukin-1β-stimulated cytokine and chemokine secretion in vascular endothelial cells by AMP-activated protein kinase-dependent and -independent mechanisms.Sci. Rep.201881527610.1038/s41598‑018‑23420‑429588466
    [Google Scholar]
  46. UthmanL. KuschmaM. RömerG. BoomsmaM. KesslerJ. HermanidesJ. HollmannM.W. PreckelB. ZuurbierC.J. WeberN.C. Novel Anti-inflammatory Effects of Canagliflozin Involving Hexokinase II in Lipopolysaccharide-Stimulated Human Coronary Artery Endothelial Cells.Cardiovasc. Drugs Ther.20213561083109410.1007/s10557‑020‑07083‑w33048256
    [Google Scholar]
  47. RahmouneH. ThompsonP.W. WardJ.M. SmithC.D. HongG. BrownJ. Glucose transporters in human renal proximal tubular cells isolated from the urine of patients with non-insulin-dependent diabetes.Diabetes200554123427343410.2337/diabetes.54.12.342716306358
    [Google Scholar]
  48. VallonV. PlattK.A. CunardR. SchrothJ. WhaleyJ. ThomsonS.C. KoepsellH. RiegT. SGLT2 mediates glucose reabsorption in the early proximal tubule.J. Am. Soc. Nephrol.201122110411210.1681/ASN.201003024620616166
    [Google Scholar]
  49. FuY. BreljakD. OnishiA. BatzF. PatelR. HuangW. SongP. FreemanB. MayouxE. KoepsellH. AnzaiN. NigamS.K. SabolicI. VallonV. Organic anion transporter OAT3 enhances the glucosuric effect of the SGLT2 inhibitor empagliflozin.Am. J. Physiol. Renal Physiol.20183152F386F39410.1152/ajprenal.00503.201729412698
    [Google Scholar]
  50. BobulescuI.A. Di SoleF. MoeO.W. Na+/H+ exchangers: Physiology and link to hypertension and organ ischemia.Curr. Opin. Nephrol. Hypertens.200514548549410.1097/01.mnh.0000174146.52915.5d16046909
    [Google Scholar]
  51. FromyB. LegrandM.S. AbrahamP. LeftheriotisG. CalesP. SaumetJ.L. Effects of positive pressure on both femoral venous and arterial blood velocities and the cutaneous microcirculation of the forefoot.Cardiovasc. Res.199736337237610.1016/S0008‑6363(97)00181‑89534858
    [Google Scholar]
  52. RusynV.I. PavukF.M. FedusyakV.Y. Influence of the amount of compression on venous and arterial blood flow velocity and skin microcirculation of the lower extremity.Wiad Lek2023768178317892023
    [Google Scholar]
  53. HendersonL.M. ChappellJ.B. JonesO.T.G. Internal pH changes associated with the activity of NADPH oxidase of human neutrophils. Further evidence for the presence of an H+ conducting channel.Biochem. J.1988251256356710.1042/bj25105632456757
    [Google Scholar]
  54. AmithS.R. FliegelL. Regulation of the Na+/H+ Exchanger (NHE1) in Breast Cancer Metastasis.Cancer Res.20137341259126410.1158/0008‑5472.CAN‑12‑403123393197
    [Google Scholar]
  55. AmithS.R. FongS. BakshS. FliegelL. Na+/H+ exchange in the tumour microenvironment: Does NHE1 drive breast cancer carcinogenesis?Int. J. Dev. Biol.2015597-8-936737710.1387/ijdb.140336lf26679950
    [Google Scholar]
  56. GoldbergI. AurielE. RussellD. KorczynA.D. Microembolism, silent brain infarcts and dementia.J. Neurol. Sci.20123221-225025310.1016/j.jns.2012.02.02122429666
    [Google Scholar]
  57. MohringF. RahbariM. ZechmannB. RahlfsS. PrzyborskiJ.M. MeyerA.J. BeckerK. Determination of glutathione redox potential and pH value in subcellular compartments of malaria parasites.Free Radic. Biol. Med.201710410411710.1016/j.freeradbiomed.2017.01.00128062360
    [Google Scholar]
  58. SchuhA.K. RahbariM. HeimschK.C. MohringF. GabryszewskiS.J. WederS. BuchholzK. RahlfsS. FidockD.A. BeckerK. Stable Integration and Comparison of hGrx1-roGFP2 and sfroGFP2 Redox Probes in the Malaria Parasite Plasmodium falciparum.ACS Infect. Dis.20184111601161210.1021/acsinfecdis.8b0014030129748
    [Google Scholar]
  59. SarafidisP.A. TsapasA. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes.N. Engl. J. Med.2016374111092109410.1056/NEJMc160082726981941
    [Google Scholar]
  60. McGuireD.K. ZinmanB. InzucchiS.E. WannerC. FitchettD. AnkerS.D. PocockS. KaspersS. GeorgeJ.T. von EynattenM. JohansenO.E. JamalW. MattheusM. ElsasserU. HantelS. LundS.S. Effects of empagliflozin on first and recurrent clinical events in patients with type 2 diabetes and atherosclerotic cardiovascular disease: A secondary analysis of the EMPA-REG OUTCOME trial.Lancet Diabetes Endocrinol.202081294995910.1016/S2213‑8587(20)30344‑233217335
    [Google Scholar]
  61. Vaughan-JonesR.D. SpitzerK.W. SwietachP.J. Intracellular pH regulation in heart.J Mol Cell Cardiol2009463318331
    [Google Scholar]
  62. BengtsonL.G. LutseyP.L. ChenL.Y. Comparative effectiveness of dabigatran and rivaroxaban versus warfarin for the treatment of non-valvular atrial fibrillation.2017696868876
    [Google Scholar]
  63. LiC. ZhangJ. XueM. SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart.201918113
    [Google Scholar]
  64. ChenJ. WilliamsS. HoS. LoraineH. HaganD. WhaleyJ.M. FederJ.N. Quantitative PCR tissue expression profiling of the human SGLT2 gene and related family members.Diabetes Ther.201012579210.1007/s13300‑010‑0006‑422127746
    [Google Scholar]
  65. ReshkinS.J. BellizziA. CaldeiraS. AlbaraniV. MalanchiI. PoigneeM. Alunni-FabbroniM. CasavolaV. TommasinoM. Na + /H + exchanger‐dependent intracellular alkalinization is an early event in malignant transformation and plays an essential role in the development of subsequent transformation‐associated phenotypes.FASEB J.200014142185219710.1096/fj.00‑0029com11053239
    [Google Scholar]
  66. PutneyL.K. BarberD.L. Na-H exchange-dependent increase in intracellular pH times G2/M entry and transition.J. Biol. Chem.200327845446454464910.1074/jbc.M30809920012947095
    [Google Scholar]
  67. ZhangY. XuX. RenJ. MTOR overactivation and interrupted autophagy flux in obese hearts.Autophagy20139693994110.4161/auto.2439823529215
    [Google Scholar]
  68. ObinataH. HlaT. Sphingosine 1-phosphate in coagulation and inflammation.Semin. Immunopathol.2012341739110.1007/s00281‑011‑0287‑321805322
    [Google Scholar]
  69. HerringtonW.G. StaplinN. WannerC. GreenJ.B. HauskeS.J. EmbersonJ.R. PreissD. JudgeP. MayneK.J. NgS.Y.A. SammonsE. ZhuD. HillM. StevensW. WallendszusK. BrennerS. CheungA.K. LiuZ.H. LiJ. HooiL.S. LiuW. KadowakiT. NangakuM. LevinA. CherneyD. MaggioniA.P. PontremoliR. DeoR. GotoS. RosselloX. TuttleK.R. SteublD. PetriniM. MasseyD. EilbrachtJ. BrueckmannM. LandrayM.J. BaigentC. HaynesR. The EMPA-KIDNEY Collaborative Group Empagliflozin in Patients with Chronic Kidney Disease.N. Engl. J. Med.2023388211712710.1056/NEJMoa220423336331190
    [Google Scholar]
  70. MatsutaniD. SakamotoM. KayamaY. TakedaN. HoriuchiR. UtsunomiyaK. Effect of canagliflozin on left ventricular diastolic function in patients with type 2 diabetes.Cardiovasc. Diabetol.20181717310.1186/s12933‑018‑0717‑929788955
    [Google Scholar]
  71. KawanamiD. MatobaK. SangoK. UtsunomiyaK. Incretin-Based Therapies for Diabetic Complications: Basic Mechanisms and Clinical Evidence.Int. J. Mol. Sci.2016178122310.3390/ijms1708122327483245
    [Google Scholar]
  72. VermaS. McMurrayJ.J.V. SGLT2 inhibitors and mechanisms of cardiovascular benefit: A state-of-the-art review.Diabetologia201861102108211710.1007/s00125‑018‑4670‑730132036
    [Google Scholar]
  73. Iborra-EgeaO. Santiago-VacasE. YuristaS.R. Unraveling the molecular mechanism of action of empagliflozin in heart failure with reduced ejection fraction with or without diabetes.201947831840
    [Google Scholar]
  74. GrootaertM.O.J. RothL. SchrijversD.M. De MeyerG.R.Y. MartinetW. Defective Autophagy in Atherosclerosis: To Die or to Senesce?Oxid. Med. Cell. Longev.2018201811210.1155/2018/768708329682164
    [Google Scholar]
  75. GrootaertM.O.J. MoulisM. RothL. MartinetW. VindisC. BennettM.R. De MeyerG.R.Y. Vascular smooth muscle cell death, autophagy and senescence in atherosclerosis.Cardiovasc. Res.2018114462263410.1093/cvr/cvy00729360955
    [Google Scholar]
  76. CochainC. VafadarnejadE. ArampatziP. PelisekJ. WinkelsH. LeyK. WolfD. SalibaA.E. ZerneckeA. Single-Cell RNA-Seq Reveals the Transcriptional Landscape and Heterogeneity of Aortic Macrophages in Murine Atherosclerosis.Circ. Res.2018122121661167410.1161/CIRCRESAHA.117.31250929545365
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073310500240514045321
Loading
/content/journals/cchts/10.2174/0113862073310500240514045321
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): AS; atherosclerosis; macrophage; NHE1; senescence; SGLT2i
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test