Skip to content
2000
Volume 28, Issue 5
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

In the domain of functional gastrointestinal disorders, Functional Dyspepsia (FD) stands out due to its widespread occurrence internationally. Historically, electroacupuncture (EA) has been employed as a therapeutic modality for FD, demonstrating notable clinical efficacy.

Objectives

This research aimed to delve into the impact of EA on stress responses, minor duodenal inflammatory processes, and the integrity of the intestinal barrier within FD-affected rodent models while also elucidating the underlying mechanisms.

Methods

Thirty-six male Wistar rats were evenly distributed into three cohorts: a normal, a modeled FD, and an EA treatment group. The FD condition in the rats, barring those in the normal, was induced through a series of multifactorial procedures. For the EA cohort, the rats received electroacupuncture at the acupoints RN12 (Zhongwan) and ST36 (Zusanli) for 20 minutes daily over a span of one week. The gastric residue rate (GRR), intestinal propulsion rate (IPR), and changes in emotional state were measured in each group of rats. Additionally, serum levels of corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and corticosterone (CORT) were detected, and the duodenal inflammatory condition and intestinal mucosal barrier status were observed through staining and fluorescence. The expression levels of Claudin-1, Junctional Adhesion Molecule 1 (JAM-1), Corticotropin-Releasing Factor (CRF), and Corticotropin-Releasing Factor Receptor 1 (CRF-R1) were also detected.

Results

The study demonstrated that EA had a positive effect on body weight and food intake, GRR, and IPR in FD rats. Additionally, the EA group showed a decrease in serum levels of CRH, ACTH, and CORT, as well as a decrease in the number of duodenal mast cells and tryptase content. Furthermore, the expression of tight junction proteins Claudin-1 and JAM-1 was increased in the EA group compared to the model group. EA also reduced the levels of CRF and CRF-R1 in the hypothalamus and duodenum.

Conclusion

EA has been shown to improve the stress state of FD rats, inhibit the activation of mast cells in the duodenum, and reduce low-grade inflammatory response and damage to the intestinal mucosal barrier. It is believed that EA achieves these effects by modulating the expression of CRF and its receptors in the brain-gut interaction pathway through the CRF signaling pathway. This provides a new approach to treating FD.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073306526240403063736
2024-04-08
2025-09-18
Loading full text...

Full text loading...

References

  1. TackJ. CarboneF. Functional dyspepsia and gastroparesis.Curr. Opin. Gastroenterol.201733644645410.1097/MOG.0000000000000393 28832359
    [Google Scholar]
  2. CaldasM. FarfanS. SaucaP. OrtegaR. Prevalence of functional dyspepsia in medical students: protocol for a systematic review and meta-analysis.medRxiv2020
    [Google Scholar]
  3. OudenhoveV.L. AzizQ. The role of psychosocial factors and psychiatric disorders in functional dyspepsia.Nat. Rev. Gastroenterol. Hepatol.201310315816710.1038/nrgastro.2013.10 23358396
    [Google Scholar]
  4. OustamanolakisP. TackJ. Dyspepsia.J. Clin. Gastroenterol.201246317519010.1097/MCG.0b013e318241b335 22327302
    [Google Scholar]
  5. MoreiraM.C.S. PintoI.S.J. MourãoA.A. FajemiroyeJ.O. ColombariE. ReisÂ.A.S. OliveiraF.A.H. NetoF.M.L. PedrinoG.R. Does the sympathetic nervous system contribute to the pathophysiology of metabolic syndrome?Front. Physiol.2015623410.3389/fphys.2015.00234 26379553
    [Google Scholar]
  6. WautersL. TalleyN.J. WalkerM.M. TackJ. VanuytselT. Novel concepts in the pathophysiology and treatment of functional dyspepsia.Gut202069359160010.1136/gutjnl‑2019‑318536 31784469
    [Google Scholar]
  7. DedicN. ChenA. DeussingJ.M. The CRF family of neuropeptides and their receptors - mediators of the central stress response.Curr. Mol. Pharmacol.2018111431 28260504
    [Google Scholar]
  8. QinH.Y. ChengC-W. TangX-D. BianZ-X. Impact of psychological stress on irritable bowel syndrome.World J. Gastroenterol.20142039141261413110.3748/wjg.v20.i39.14126 25339801
    [Google Scholar]
  9. TacheY. LaraucheM. YuanP.Q. MillionM. Brain and gut CRF signaling: Biological actions and role in the gastrointestinal tract.Curr. Mol. Pharmacol.20181115171 28240194
    [Google Scholar]
  10. WeiP. KellerC. LiL. Neuropeptides in gut-brain axis and their influence on host immunity and stress.Comput. Struct. Biotechnol. J.20201884385110.1016/j.csbj.2020.02.018 32322366
    [Google Scholar]
  11. GuoY. WeiW. ChenJ.D.Z. Effects and mechanisms of acupuncture and electroacupuncture for functional dyspepsia: A systematic review.World J. Gastroenterol.202026192440245710.3748/wjg.v26.i19.2440 32476804
    [Google Scholar]
  12. ChenX. ChenX. ChenB. DuL. WangY. HuangZ. DaiN. ChenJ.D.Z. CaoQ. Electroacupuncture enhances gastric accommodation via the autonomic and cytokine mechanisms in functional dyspepsia.Dig. Dis. Sci.20236819810510.1007/s10620‑022‑07495‑8 35503488
    [Google Scholar]
  13. LiangF. ChenJ. YinS. ChenY. LeiD. SunR. MaT. FengP. HeZ. SuoX. MaP. QuY. QiuK. JingM. GongQ. ZengF. Cerebral mechanism of puncturing at He-Mu point combination for functional dyspepsia: Study protocol for a randomized controlled parallel trial.Neural Regen. Res.201712583184010.4103/1673‑5374.206655 28616042
    [Google Scholar]
  14. LiY-J. YangN-N. HuangJ. LinL-L. QiL-Y. MaS-M. Effects of electroacupuncture at different acupoints on functional dyspepsia rats.Evid. Based Complement. Alternat. Med.20222022654862310.1155/2022/6548623
    [Google Scholar]
  15. WangD. ZhangJ. YangD. WangJ. LiJ. HanY. Electroacupuncture restores intestinal mucosal barrier through TLR4/NF-κB p65 pathway in functional dyspepsia-like rats(sic)(sic)(sic).Anat. Rec. 20213061229272938
    [Google Scholar]
  16. EnckP. AzpirozF. BoeckxstaensG. ElsenbruchS. BissetF.C. HoltmannG. LacknerJ.M. RonkainenJ. SchemannM. StengelA. TackJ. ZipfelS. TalleyN.J. Functional dyspepsia.Nat. Rev. Dis. Primers2017311708110.1038/nrdp.2017.81 29099093
    [Google Scholar]
  17. SayukG.S. GyawaliC.P. Functional dyspepsia: Diagnostic and therapeutic approaches.Drugs202080131319133610.1007/s40265‑020‑01362‑4 32691294
    [Google Scholar]
  18. AgirmanG. YuK.B. HsiaoE.Y. Signaling inflammation across the gut-brain axis.Science202137465711087109210.1126/science.abi6087 34822299
    [Google Scholar]
  19. MargolisK.G. CryanJ.F. MayerE.A. The microbiota-gut-brain axis: From motility to mood.Gastroenterology202116051486150110.1053/j.gastro.2020.10.066 33493503
    [Google Scholar]
  20. GeL. LiuS. LiS. YangJ. HuG. XuC. SongW. Psychological stress in inflammatory bowel disease: Psychoneuroimmunological insights into bidirectional gut–brain communications.Front. Immunol.202213101657810.3389/fimmu.2022.1016578 36275694
    [Google Scholar]
  21. LabanskiA. LanghorstJ. EnglerH. ElsenbruchS. Stress and the brain-gut axis in functional and chronic-inflammatory gastrointestinal diseases: A transdisciplinary challenge.Psychoneuroendocrinology202011110450110.1016/j.psyneuen.2019.104501 31715444
    [Google Scholar]
  22. JuruenaM.F. ErorF. CleareA.J. YoungA.H. The role of early life stress in HPA axis and anxiety.Adv. Exp. Med. Biol.2020119114115310.1007/978‑981‑32‑9705‑0_9
    [Google Scholar]
  23. BruceJ.K. BurnsG.L. Sinn SohW. NairP.M. SherwinS. FanK. DowlingL.R. GogginsB.J. KoloskiN. PotterM. BollipoS. FosterR. GanL.T. VeyseyM. PhilpottD.J. GirardinS.E. HoltmannG. KaikoG.E. WalkerM.M. TalleyN.J. KeelyS. Defects in NLRP6, autophagy and goblet cell homeostasis are associated with reduced duodenal CRH receptor 2 expression in patients with functional dyspepsia.Brain Behav. Immun.202210133534510.1016/j.bbi.2022.01.019 35093492
    [Google Scholar]
  24. TalleyN.J. WalkerM.M. AroP. RonkainenJ. StorskrubbT. HindleyL.A. HarmsenW.S. ZinsmeisterA.R. AgréusL. Non-ulcer dyspepsia and duodenal eosinophilia: an adult endoscopic population-based case-control study.Clin. Gastroenterol. Hepatol.20075101175118310.1016/j.cgh.2007.05.015 17686660
    [Google Scholar]
  25. JungH. TalleyN.J. Role of the duodenum in the pathogenesis of functional dyspepsia: A paradigm shift.J. Neurogastroenterol. Motil.201824334535410.5056/jnm18060 29791992
    [Google Scholar]
  26. JiS. YouY. PengB. ZhongT. KuangY. LiS. DuL. ChenL. SunX. DaiJ. HuangS. WuY. LiuY. Multi-omics analysis reveals the metabolic regulators of duodenal low-grade inflammation in a functional dyspepsia model.Front. Immunol.20221394459110.3389/fimmu.2022.944591 36091013
    [Google Scholar]
  27. PowellN. WalkerM.M. TalleyN.J. The mucosal immune system: Master regulator of bidirectional gut–brain communications.Nat. Rev. Gastroenterol. Hepatol.201714314315910.1038/nrgastro.2016.191 28096541
    [Google Scholar]
  28. WautersL. BurnsG. CeulemansM. WalkerM.M. VanuytselT. KeelyS. TalleyN.J. Duodenal inflammation: An emerging target for functional dyspepsia?Expert Opin. Ther. Targets202024651152310.1080/14728222.2020.1752181 32249629
    [Google Scholar]
  29. PotterM.D.E. WalkerM.M. JonesM.P. KoloskiN.A. KeelyS. TalleyN.J. Wheat intolerance and chronic gastrointestinal symptoms in an Australian population-based study: Association between wheat sensitivity, celiac disease and functional gastrointestinal disorders.Am. J. Gastroenterol.201811371036104410.1038/s41395‑018‑0095‑7 29915405
    [Google Scholar]
  30. AnnaháziA. FerrierL. BézirardV. LévêqueM. EutamèneH. BelgnaouiA.A. CoëffierM. DucrottéP. RókaR. InczefiO. GecseK. RosztóczyA. MolnárT. KulkaR.T. RingelY. PicheT. TheodorouV. WittmannT. BuenoL. Luminal cysteine-proteases degrade colonic tight junction structure and are responsible for abdominal pain in constipation-predominant IBS.Am. J. Gastroenterol.201310881322133110.1038/ajg.2013.152 23711626
    [Google Scholar]
  31. ChangX. ZhaoL. WangJ. LuX. ZhangS. Sini-san improves duodenal tight junction integrity in a rat model of functional dyspepsia.BMC Complement. Altern. Med.201717143210.1186/s12906‑017‑1938‑2 28854971
    [Google Scholar]
  32. ZhuC. ZhaoL. ZhaoJ. ZhangS. Sini San ameliorates duodenal mucosal barrier injury and low grade inflammation via the CRF pathway in a rat model of functional dyspepsia.Int. J. Mol. Med.20204515360 31746413
    [Google Scholar]
  33. KeckM.E. OhlF. HolsboerF. MüllerM.B. Listening to mutant mice: A spotlight on the role of CRF/CRF receptor systems in affective disorders.Neurosci. Biobehav. Rev.2005294-586788910.1016/j.neubiorev.2005.03.003 15899517
    [Google Scholar]
  34. AddulaM. WilsonV.E.D. ReddymasuS. AgrawalD.K. Immunopathological and molecular basis of functional dyspepsia and current therapeutic approaches.Expert Rev. Clin. Immunol.2018141083184010.1080/1744666X.2018.1524756 30235962
    [Google Scholar]
  35. TominagaK. FujikawaY. TanakaF. KamataN. YamagamiH. TanigawaT. WatanabeT. FujiwaraY. ArakawaT. Structural changes in gastric glial cells and delayed gastric emptying as responses to early life stress and acute adulthood stress in rats.Life Sci.201614825425910.1016/j.lfs.2016.02.025 26874028
    [Google Scholar]
  36. CeulemansM. JacobsI. WautersL. VanuytselT. Immune activation in functional dyspepsia: Bystander becoming the suspect.Front. Neurosci.20221683176110.3389/fnins.2022.831761 35557605
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073306526240403063736
Loading
/content/journals/cchts/10.2174/0113862073306526240403063736
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test