Skip to content
2000
Volume 28, Issue 11
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Aim

The purpose of this study was to analyze the relationship between serum indicators and high-throughput drug screening () results, aiming to achieve specific therapy for hepatocellular carcinoma (HCC).

Methods

This study recruited patients with HCC who underwent surgical resection at the Hepatobiliary Surgery Center of the First Affiliated Hospital of Chongqing Medical University from December 2019 to December 2021. HCC tissues were obtained from patients during surgery and subjected to cell culture, and then testing was performed on the cultured tissue samples. We used Spearman's correlation analysis to examine the relationships between drug sensitivity results for anti-hepatocellular carcinoma drugs, other antitumor drugs, and serological indicators, the Neutrophil Lymphocyte Ratio (NLR), Platelet Lymphocyte Ratio (PLR), Systemic Immune Inflammatory Index (SII), Systemic Inflammatory Response Index (SIRI), Prognostic Nutritional Index (PNI), and Lymphocyte Monocyte Ratio (LMR). A significant correlation was considered when P<0.05 and |r|>0.40. Furthermore, linear regression analysis was conducted to elucidate the relationship between serological indicators and drug susceptibility, with significant results indicated by P<0.05 and R2≥0.50.

Results

In this study, 82 patients with HCC who had undergone hepatectomy and completed cell culture and testing were evaluated. Using Spearman's correlation with a significance threshold of P<0.05 and |r|>0.40, we identified significant associations between serological indicators and specific drug regimens: NLR correlated with 5-Fluorouracil, 5-Fluorouracil+Calcium folinate (FOLFOX4), and Capecitabine + Cisplatin (XP); PLR with FOLFOX4; SII with XP, FOLFOX4, Doxorubicin + Oxaliplatin (ADM+L-OHP); and SIRI with XP and FOLFOX4. No correlations were found between PNI or LMR and any drug inhibition rates. A comprehensive evaluation using linear regression analysis—which included variables such as sex, age, hepatitis B virus and liver cirrhosis status, size and number of lesions, alpha-fetoprotein, total bilirubin, albumin, alanine aminotransferase, aspartate aminotransferase, and prothrombin time, alongside NLR, PLR, SII, and SIRI was conducted in relation to drug regimens. This analysis revealed that NLR, SII, and SIRI are significant predictors of FOLFOX4 inhibition rate, while NLR predicts the inhibition rate of XP effectively. However, no significant links were established between molecular targeted drugs, other antitumor drugs, and serological indicators.

Conclusions

NLR, SII, and SIRI were correlated with FOLFOX4, and the higher the values of NLR, SII, and SIRI, the higher the inhibition of FOLFOX. Also, NLR was correlated with XP, and the higher the value of NLR, the higher the inhibition of XP.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073305230240611091708
2024-06-26
2025-10-15
Loading full text...

Full text loading...

References

  1. KocarnikJ.M. ComptonK. DeanF.E. FuW. GawB.L. HarveyJ.D. HenriksonH.J. LuD. PenniniA. XuR. AbabnehE. Abbasi-KangevariM. AbbastabarH. Abd-ElsalamS.M. AbdoliA. AbediA. AbidiH. AbolhassaniH. AdedejiI.A. AdnaniQ.E.S. AdvaniS.M. AfzalM.S. AghaaliM. AhinkorahB.O. AhmadS. AhmadT. AhmadiA. AhmadiS. Ahmed RashidT. Ahmed SalihY. AkaluG.T. AkliluA. AkramT. AkunnaC.J. Al HamadH. AlahdabF. Al-AlyZ. AliS. AlimohamadiY. AlipourV. AljunidS.M. AlkhayyatM. Almasi-HashianiA. AlmasriN.A. Al-MaweriS.A.A. AlmustanyirS. AlonsoN. Alvis-GuzmanN. AmuH. AnbesuE.W. AncuceanuR. AnsariF. Ansari-MoghaddamA. AntwiM.H. AnvariD. AnyasodorA.E. AqeelM. ArablooJ. Arab-ZozaniM. AremuO. AriffinH. AripovT. ArshadM. ArtamanA. ArulappanJ. AsemiZ. Asghari JafarabadiM. AshrafT. AtorkeyP. AujayebA. AusloosM. AwedewA.F. Ayala QuintanillaB.P. AyenewT. AzabM.A. AzadnajafabadS. Azari JafariA. AzarianG. AzzamA.Y. BadiyeA.D. BahadoryS. BaigA.A. BakerJ.L. BalakrishnanS. BanachM. BärnighausenT.W. Barone-AdesiF. BarraF. BarrowA. BehzadifarM. BelgaumiU.I. BezabheW.M.M. BezabihY.M. BhagatD.S. BhagavathulaA.S. BhardwajN. BhardwajP. BhaskarS. BhattacharyyaK. BhojarajaV.S. BibiS. BijaniA. BiondiA. BisignanoC. BjørgeT. BleyerA. BlyussO. BolarinwaO.A. BollaS.R. BraithwaiteD. BrarA. BrennerH. Bustamante-TeixeiraM.T. ButtN.S. ButtZ.A. Caetano dos SantosF.L. CaoY. CarrerasG. Catalá-LópezF. CembranelF. CerinE. CernigliaroA. ChakinalaR.C. ChattuS.K. ChattuV.K. ChaturvediP. Chimed-OchirO. ChoD.Y. ChristopherD.J. ChuD.T. ChungM.T. CondeJ. CortésS. CortesiP.A. CostaV.M. CunhaA.R. DadrasO. DagnewA.B. DahlawiS.M.A. DaiX. DandonaL. DandonaR. DarweshA.M. das Neves, J.; De la Hoz, F.P.; Demis, A.B.; Denova-Gutiérrez, E.; Dhamnetiya, D.; Dhimal, M.L.; Dhimal, M.; Dianatinasab, M.; Diaz, D.; Djalalinia, S.; Do, H.P.; Doaei, S.; Dorostkar, F.; dos Santos Figueiredo, F.W.; Driscoll, T.R.; Ebrahimi, H.; Eftekharzadeh, S.; El Tantawi, M.; El-Abid, H.; Elbarazi, I.; Elhabashy, H.R.; Elhadi, M.; El-Jaafary, S.I.; Eshrati, B.; Eskandarieh, S.; Esmaeilzadeh, F.; Etemadi, A.; Ezzikouri, S.; Faisaluddin, M.; Faraon, E.J.A.; Fares, J.; Farzadfar, F.; Feroze, A.H.; Ferrero, S.; Ferro Desideri, L.; Filip, I.; Fischer, F.; Fisher, J.L.; Foroutan, M.; Fukumoto, T.; Gaal, P.A.; Gad, M.M.; Gadanya, M.A.; Gallus, S.; Gaspar Fonseca, M.; Getachew Obsa, A.; Ghafourifard, M.; Ghashghaee, A.; Ghith, N.; Gholamalizadeh, M.; Gilani, S.A.; Ginindza, T.G.; Gizaw, A.T.T.; Glasbey, J.C.; Golechha, M.; Goleij, P.; Gomez, R.S.; Gopalani, S.V.; Gorini, G.; Goudarzi, H.; Grosso, G.; Gubari, M.I.M.; Guerra, M.R.; Guha, A.; Gunasekera, D.S.; Gupta, B.; Gupta, V.B.; Gupta, V.K.; Gutiérrez, R.A.; Hafezi-Nejad, N.; Haider, M.R.; Haj-Mirzaian, A.; Halwani, R.; Hamadeh, R.R.; Hameed, S.; Hamidi, S.; Hanif, A.; Haque, S.; Harlianto, N.I.; Haro, J.M.; Hasaballah, A.I.; Hassanipour, S.; Hay, R.J.; Hay, S.I.; Hayat, K.; Heidari, G.; Heidari, M.; Herrera-Serna, B.Y.; Herteliu, C.; Hezam, K.; Holla, R.; Hossain, M.M.; Hossain, M.B.H.; Hosseini, M.S.; Hosseini, M.; Hosseinzadeh, M.; Hostiuc, M.; Hostiuc, S.; Househ, M.; Hsairi, M.; Huang, J.; Hugo, F.N.; Hussain, R.; Hussein, N.R.; Hwang, B.F.; Iavicoli, I.; Ibitoye, S.E.; Ida, F.; Ikuta, K.S.; Ilesanmi, O.S.; Ilic, I.M.; Ilic, M.D.; Irham, L.M.; Islam, J.Y.; Islam, R.M.; Islam, S.M.S.; Ismail, N.E.; Isola, G.; Iwagami, M.; Jacob, L.; Jain, V.; Jakovljevic, M.B.; Javaheri, T.; Jayaram, S.; Jazayeri, S.B.; Jha, R.P.; Jonas, J.B.; Joo, T.; Joseph, N.; Joukar, F.; Jürisson, M.; Kabir, A.; Kahrizi, D.; Kalankesh, L.R.; Kalhor, R.; Kaliyadan, F.; Kalkonde, Y.; Kamath, A.; Kameran Al-Salihi, N.; Kandel, H.; Kapoor, N.; Karch, A.; Kasa, A.S.; Katikireddi, S.V.; Kauppila, J.H.; Kavetskyy, T.; Kebede, S.A.; Keshavarz, P.; Keykhaei, M.; Khader, Y.S.; Khalilov, R.; Khan, G.; Khan, M.; Khan, M.N.; Khan, M.A.B.; Khang, Y.H.; Khater, A.M.; Khayamzadeh, M.; Kim, G.R.; Kim, Y.J.; Kisa, A.; Kisa, S.; Kissimova-Skarbek, K.; Kopec, J.A.; Koteeswaran, R.; Koul, P.A.; Koulmane Laxminarayana, S.L.; Koyanagi, A.; Kucuk Bicer, B.; Kugbey, N.; Kumar, G.A.; Kumar, N.; Kumar, N.; Kurmi, O.P.; Kutluk, T.; La Vecchia, C.; Lami, F.H.; Landires, I.; Lauriola, P.; Lee, S.; Lee, S.W.H.; Lee, W.C.; Lee, Y.H.; Leigh, J.; Leong, E.; Li, J.; Li, M.C.; Liu, X.; Loureiro, J.A.; Lunevicius, R.; Magdy Abd El Razek, M.; Majeed, A.; Makki, A.; Male, S.; Malik, A.A.; Mansournia, M.A.; Martini, S.; Masoumi, S.Z.; Mathur, P.; McKee, M.; Mehrotra, R.; Mendoza, W.; Menezes, R.G.; Mengesha, E.W.; Mesregah, M.K.; Mestrovic, T.; Miao Jonasson, J.; Miazgowski, B.; Miazgowski, T.; Michalek, I.M.; Miller, T.R.; Mirzaei, H.; Mirzaei, H.R.; Misra, S.; Mithra, P.; Moghadaszadeh, M.; Mohammad, K.A.; Mohammad, Y.; Mohammadi, M.; Mohammadi, S.M.; Mohammadian-Hafshejani, A.; Mohammed, S.; Moka, N.; Mokdad, A.H.; Molokhia, M.; Monasta, L.; Moni, M.A.; Moosavi, M.A.; Moradi, Y.; Moraga, P.; Morgado-da-Costa, J.; Morrison, S.D.; Mosapour, A.; Mubarik, S.; Mwanri, L.; Nagarajan, A.J.; Nagaraju, S.P.; Nagata, C.; Naimzada, M.D.; Nangia, V.; Naqvi, A.A.; Narasimha Swamy, S.; Ndejjo, R.; Nduaguba, S.O.; Negoi, I.; Negru, S.M.; Neupane Kandel, S.; Nguyen, C.T.; Nguyen, H.L.T.; Niazi, R.K.; Nnaji, C.A.; Noor, N.M.; Nuñez-Samudio, V.; Nzoputam, C.I.; Oancea, B.; Ochir, C.; Odukoya, O.O.; Ogbo, F.A.; Olagunju, A.T.; Olakunde, B.O.; Omar, E.; Omar Bali, A.; Omonisi, A.E.E.; Ong, S.; Onwujekwe, O.E.; Orru, H.; Ortega-Altamirano, D.V.; Otstavnov, N.; Otstavnov, S.S.; Owolabi, M.O.; P A, M.; Padubidri, J.R.; Pakshir, K.; Pana, A.; Panagiotakos, D.; Panda-Jonas, S.; Pardhan, S.; Park, E.C.; Park, E.K.; Pashazadeh Kan, F.; Patel, H.K.; Patel, J.R.; Pati, S.; Pattanshetty, S.M.; Paudel, U.; Pereira, D.M.; Pereira, R.B.; Perianayagam, A.; Pillay, J.D.; Pirouzpanah, S.; Pishgar, F.; Podder, I.; Postma, M.J.; Pourjafar, H.; Prashant, A.; Preotescu, L.; Rabiee, M.; Rabiee, N.; Radfar, A.; Radhakrishnan, R.A.; Radhakrishnan, V.; Rafiee, A.; Rahim, F.; Rahimzadeh, S.; Rahman, M.; Rahman, M.A.; Rahmani, A.M.; Rajai, N.; Rajesh, A.; Rakovac, I.; Ram, P.; Ramezanzadeh, K.; Ranabhat, K.; Ranasinghe, P.; Rao, C.R.; Rao, S.J.; Rawassizadeh, R.; Razeghinia, M.S.; Renzaho, A.M.N.; Rezaei, N.; Rezaei, N.; Rezapour, A.; Roberts, T.J.; Rodriguez, J.A.B.; Rohloff, P.; Romoli, M.; Ronfani, L.; Roshandel, G.; Rwegerera, G.M.; S, M.; Sabour, S.; Saddik, B.; Saeed, U.; Sahebkar, A.; Sahoo, H.; Salehi, S.; Salem, M.R.; Salimzadeh, H.; Samaei, M.; Samy, A.M.; Sanabria, J.; Sankararaman, S.; Santric-Milicevic, M.M.; Sardiwalla, Y.; Sarveazad, A.; Sathian, B.; Sawhney, M.; Saylan, M.; Schneider, I.J.C.; Sekerija, M.; Seylani, A.; Shafaat, O.; Shaghaghi, Z.; Shaikh, M.A.; Shamsoddin, E.; Shannawaz, M.; Sharma, R.; Sheikh, A.; Sheikhbahaei, S.; Shetty, A.; Shetty, J.K.; Shetty, P.H.; Shibuya, K.; Shirkoohi, R.; Shivakumar, K.M.; Shivarov, V.; Siabani, S.; Siddappa Malleshappa, S.K.; Silva, D.A.S.; Singh, J.A.; Sintayehu, Y.; Skryabin, V.Y.; Skryabina, A.A.; Soeberg, M.J.; Sofi-Mahmudi, A.; Sotoudeh, H.; Steiropoulos, P.; Straif, K.; Subedi, R.; Sufiyan, M.B.; Sultan, I.; Sultana, S.; Sur, D.; Szerencsés, V.; Szócska, M.; Tabarés-Seisdedos, R.; Tabuchi, T.; Tadbiri, H.; Taherkhani, A.; Takahashi, K.; Talaat, I.M.; Tan, K.K.; Tat, V.Y.; Tedla, B.A.A.; Tefera, Y.G.; Tehrani-Banihashemi, A.; Temsah, M.H.; Tesfay, F.H.; Tessema, G.A.; Thapar, R.; Thavamani, A.; Thoguluva Chandrasekar, V.; Thomas, N.; Tohidinik, H.R.; Touvier, M.; Tovani-Palone, M.R.; Traini, E.; Tran, B.X.; Tran, K.B.; Tran, M.T.N.; Tripathy, J.P.; Tusa, B.S.; Ullah, I.; Ullah, S.; Umapathi, K.K.; Unnikrishnan, B.; Upadhyay, E.; Vacante, M.; Vaezi, M.; Valadan Tahbaz, S.; Velazquez, D.Z.; Veroux, M.; Violante, F.S.; Vlassov, V.; Vo, B.; Volovici, V.; Vu, G.T.; Waheed, Y.; Wamai, R.G.; Ward, P.; Wen, Y.F.; Westerman, R.; Winkler, A.S.; Yadav, L.; Yahyazadeh Jabbari, S.H.; Yang, L.; Yaya, S.; Yazie, T.S.Y.; Yeshaw, Y.; Yonemoto, N.; Younis, M.Z.; Yousefi, Z.; Yu, C.; Yuce, D.; Yunusa, I.; Zadnik, V.; Zare, F.; Zastrozhin, M.S.; Zastrozhina, A.; Zhang, J.; Zhong, C.; Zhou, L.; Zhu, C.; Ziapour, A.; Zimmermann, I.R.; Fitzmaurice, C.; Murray, C.J.L.; Force, L.M. Cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life years for 29 cancer groups from 2010 to 2019.JAMA Oncol.20228342044410.1001/jamaoncol.2021.6987 34967848
    [Google Scholar]
  2. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.21492 30207593
    [Google Scholar]
  3. ZhengS. ChanS.W. LiuF. LiuJ. ChowP.K.H. TohH.C. HongW. Hepatocellular carcinoma: Current drug therapeutic status, advances and challenges.Cancers2024168158210.3390/cancers16081582 38672664
    [Google Scholar]
  4. BensonA.B. D’AngelicaM.I. AbbottD.E. AnayaD.A. AndersR. AreC. BachiniM. BoradM. BrownD. BurgoyneA. ChahalP. ChangD.T. CloydJ. CoveyA.M. GlazerE.S. GoyalL. HawkinsW.G. IyerR. JacobR. KelleyR.K. KimR. LevineM. PaltaM. ParkJ.O. RamanS. ReddyS. SahaiV. SchefterT. SinghG. SteinS. VautheyJ.N. VenookA.P. YoppA. McMillianN.R. HochstetlerC. DarlowS.D. Hepatobiliary cancers, version 2.2021, NCCN clinical practice guidelines in oncology.J. Natl. Compr. Canc. Netw.202119554156510.6004/jnccn.2021.0022 34030131
    [Google Scholar]
  5. SunY. ZhangW. BiX. YangZ. TangY. JiangL. BiF. ChenM. ChengS. ChiY. HanY. HuangJ. HuangZ. JiY. JiaL. JiangZ. JinJ. JinZ. LiX. LiZ. LiangJ. LiuL. LiuY. LuY. LuS. MengQ. NiuZ. PanH. QinS. QuW. ShaoG. ShenF. SongT. SongY. TaoK. TianA. WangJ. WangW. WangZ. WuL. XiaF. XingB. XuJ. XueH. YanD. YangL. YingJ. YunJ. ZengZ. ZhangX. ZhangY. ZhangY. ZhaoJ. ZhouJ. ZhuX. ZouY. DongJ. FanJ. LauW.Y. SunY. YuJ. ZhaoH. ZhouA. CaiJ. Systemic therapy for hepatocellular carcinoma: Chinese consensus-based interdisciplinary expert statements.Liver Cancer202211319220810.1159/000521596 35949289
    [Google Scholar]
  6. GalleP.R. FornerA. LlovetJ.M. MazzaferroV. PiscagliaF. RaoulJ-L. SchirmacherP. VilgrainV. Management of hepatocellular carcinoma.J. Hepatol.201869118223610.1016/j.jhep.2018.03.019 29628281
    [Google Scholar]
  7. ReigM. FornerA. RimolaJ. Ferrer-FàbregaJ. BurrelM. Garcia-CriadoÁ. KelleyR.K. GalleP.R. MazzaferroV. SalemR. SangroB. SingalA.G. VogelA. FusterJ. AyusoC. BruixJ. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update.J. Hepatol.202276368169310.1016/j.jhep.2021.11.018 34801630
    [Google Scholar]
  8. LinS. HoffmannK. SchemmerP. Treatment of hepatocellular carcinoma: A systematic review.Liver Cancer201213-414415810.1159/000343828 24159579
    [Google Scholar]
  9. XingR. GaoJ. CuiQ. WangQ. Strategies to improve the antitumor effect of immunotherapy for hepatocellular carcinoma.Front. Immunol.20211278323610.3389/fimmu.2021.783236 34899747
    [Google Scholar]
  10. RizzoA. RicciA.D. BrandiG. Immune-based combinations for advanced hepatocellular carcinoma: Shaping the direction of first-line therapy.Future Oncol.202117775575710.2217/fon‑2020‑0986 33508960
    [Google Scholar]
  11. SunH.C. ZhouJ. WangZ. LiuX. XieQ. JiaW. ZhaoM. BiX. LiG. BaiX. JiY. XuL. ZhuX.D. BaiD. ChenY. ChenY. DaiC. GuoR. GuoW. HaoC. HuangT. HuangZ. LiD. LiG. LiT. LiX. LiG. LiangX. LiuJ. LiuF. LuS. LuZ. LvW. MaoY. ShaoG. ShiY. SongT. TanG. TangY. TaoK. WanC. WangG. WangL. WangS. WenT. XingB. XiangB. YanS. YangD. YinG. YinT. YinZ. YuZ. ZhangB. ZhangJ. ZhangS. ZhangT. ZhangY. ZhangY. ZhangA. ZhaoH. ZhouL. ZhangW. ZhuZ. QinS. ShenF. CaiX. TengG. CaiJ. ChenM. LiQ. LiuL. WangW. LiangT. DongJ. ChenX. WangX. ZhengS. FanJ. Chinese expert consensus on conversion therapy for hepatocellular carcinoma (2021 edition).Hepatobiliary Surg. Nutr.202211222725210.21037/hbsn‑21‑328 35464283
    [Google Scholar]
  12. ChenJ.J. JinZ.C. ZhongB.Y. FanW. ZhangW.H. LuoB. WangY.Q. TengG.J. ZhuH.D. Locoregional therapies for hepatocellular carcinoma: The current status and future perspectives.United European Gastroenterol. J.202412222623910.1002/ueg2.12554 38372444
    [Google Scholar]
  13. RizzoA. MollicaV. TateoV. TassinariE. MarchettiA. RoselliniM. De LucaR. SantoniM. MassariF. Hypertransaminasemia in cancer patients receiving immunotherapy and immune-based combinations: the MOUSEION-05 study.Cancer Immunol. Immunother.20237261381139410.1007/s00262‑023‑03366‑x 36695827
    [Google Scholar]
  14. FaivreS. RimassaL. FinnR.S. Molecular therapies for HCC: Looking outside the box.J. Hepatol.202072234235210.1016/j.jhep.2019.09.010 31954496
    [Google Scholar]
  15. JiangY. ChenP. HuK. DaiG. LiJ. ZhengD. YuanH. HeL. XieP. TuM. PengS. QuC. LinW. ChungR.T. HongJ. Inflammatory microenvironment of fibrotic liver promotes hepatocellular carcinoma growth, metastasis and sorafenib resistance through STAT3 activation.J. Cell. Mol. Med.20212531568158210.1111/jcmm.16256 33410581
    [Google Scholar]
  16. FengH. ZhuoY. ZhangX. LiY. LiY. DuanX. ShiJ. XuC. GaoY. YuZ. Tumor microenvironment in hepatocellular carcinoma: key players for immunotherapy.J. Hepatocell. Carcinoma202291109112510.2147/JHC.S381764 36320666
    [Google Scholar]
  17. FengW. ChenJ. HuangW. WangG. ChenX. DuanL. YinY. ChenX. ZhangB. SunM. LuoX. NieY. FanD. WuK. XiaL. HMGB1-mediated elevation of KLF7 facilitates hepatocellular carcinoma progression and metastasis through upregulating TLR4 and PTK2.Theranostics202313124042405810.7150/thno.84388 37554278
    [Google Scholar]
  18. ZhangQ. BaiX. ChenW. MaT. HuQ. LiangC. XieS. ChenC. HuL. XuS. LiangT. Wnt/β-catenin signaling enhances hypoxia-induced epithelial–mesenchymal transition in hepatocellular carcinoma via crosstalk with hif-1α signaling.Carcinogenesis201334596297310.1093/carcin/bgt027 23358852
    [Google Scholar]
  19. FengG.Y. ChengY. ChenK. ShiZ.R. Correlation between immunohistochemical markers in hepatocellular carcinoma cells and In Vitro high-throughput drug sensitivity screening.Cancer J. Gastroenterol. Hepatol.2022202211210.1155/2022/5969716 35127582
    [Google Scholar]
  20. FengG-Y. ChenK. YangX. Correlation of immune function and inflammatory factor levels with in vitro high-throughput drug sensitivity in patients with hepatocellular carcinoma.Chin. J.Bas. Clin. Surg.20222906748755
    [Google Scholar]
  21. BruixJ. TakayamaT. MazzaferroV. ChauG.Y. YangJ. KudoM. CaiJ. PoonR.T. HanK.H. TakW.Y. LeeH.C. SongT. RoayaieS. BolondiL. LeeK.S. MakuuchiM. SouzaF. BerreM.A.L. MeinhardtG. LlovetJ.M. Adjuvant sorafenib for hepatocellular carcinoma after resection or ablation (STORM): A phase 3, randomised, double-blind, placebo-controlled trial.Lancet Oncol.201516131344135410.1016/S1470‑2045(15)00198‑9 26361969
    [Google Scholar]
  22. RizzoA. RicciA.D. BrandiG. Systemic adjuvant treatment in hepatocellular carcinoma: tempted to do something rather than nothing.Future Oncol.202016322587258910.2217/fon‑2020‑0669 32772560
    [Google Scholar]
  23. LiJ. XiongX. WangZ. ZhaoY. ShiZ. ZhaoM. RenT. In vitro high-throughput drug sensitivity screening with patient-derived primary cells as a guide for clinical practice in hepatocellular carcinoma: A retrospective evaluation.Clin. Res. Hepatol. Gastroenterol.202044569971010.1016/j.clinre.2020.01.003 32014387
    [Google Scholar]
  24. ChenW. ZhangM. ChenC. PangX. Prognostic nutritional index and neutrophil/lymphocyte ratio can serve as independent predictors of the prognosis of hepatocellular carcinoma patients receiving targeted therapy.J. Oncol.202220221910.1155/2022/1389049 35990994
    [Google Scholar]
  25. LiD. ZhaoX. PiX. WangK. SongD. Systemic immune-inflammation index and the survival of hepatocellular carcinoma patients after transarterial chemoembolization: A meta-analysis.Clin. Exp. Med.20222362105211410.1007/s10238‑022‑00889‑y 36287310
    [Google Scholar]
  26. ZhaoM. DuanX. HanX. WangJ. HanG. MiL. ShiJ. LiN. YinX. HouJ. YinF. Sarcopenia and systemic inflammation response index predict response to systemic therapy for hepatocellular carcinoma and are associated with immune cells.Front. Oncol.20221285409610.3389/fonc.2022.854096 35463384
    [Google Scholar]
  27. GuvenD.C. SahinT.K. ErulE. RizzoA. RicciA.D. AksoyS. YalcinS. The association between albumin levels and survival in patients treated with immune checkpoint inhibitors: A systematic review and meta-analysis.Front. Mol. Biosci.20229103912110.3389/fmolb.2022.1039121 36533070
    [Google Scholar]
  28. MiniciR. SicilianoM.A. AmmendolaM. SantoroR.C. BarbieriV. RanieriG. LaganàD. Prognostic Role of Neutrophil-to-Lymphocyte Ratio (NLR), Lymphocyte-to-Monocyte Ratio (LMR), Platelet-to-Lymphocyte Ratio (PLR) and Lymphocyte-to-C Reactive Protein Ratio (LCR) in Patients with Hepatocellular Carcinoma (HCC) undergoing Chemoembolizations (TACE) of the Liver: The Unexplored Corner Linking Tumor Microenvironment, Biomarkers and Interventional Radiology.Cancers (Basel)202215125710.3390/cancers15010257 36612251
    [Google Scholar]
  29. ZhaoC. YanH. XiangZ. WangH. LiM. HuangM. Idarubicin versus epirubicin in drug-eluting beads-transarterial chemoembolization for treating hepatocellular carcinoma: A real-world retrospective study.Invest. New Drugs202341461762610.1007/s10637‑023‑01377‑0 37434023
    [Google Scholar]
  30. QinS. ChengY. LiangJ. ShenL. BaiY. LiJ. FanJ. LiangL. ZhangY. WuG. RauK.M. YangT.S. JianZ. LiangH. SunY. Efficacy and safety of the FOLFOX4 regimen versus doxorubicin in Chinese patients with advanced hepatocellular carcinoma: A subgroup analysis of the EACH study.Oncologist201419111169117810.1634/theoncologist.2014‑0190 25223462
    [Google Scholar]
  31. OranratnachaiS. RattanasiriS. PooprasertA. TansawetA. ReungwetwattanaT. AttiaJ. ThakkinstianA. Efficacy of first line systemic chemotherapy and multikinase inhibitors in advanced hepatocellular carcinoma: A systematic review and network meta-analysis.Front. Oncol.20211165402010.3389/fonc.2021.654020 33869060
    [Google Scholar]
  32. HouJ. HongZ. FengF. ChaiY. ZhangY. JiangQ. HuY. WuS. WuY. GaoX. ChenQ. WanY. BiJ. ZhangZ. A novel chemotherapeutic sensitivity-testing system based on collagen gel droplet embedded 3D–culture methods for hepatocellular carcinoma.BMC Cancer201717172910.1186/s12885‑017‑3706‑6 29117859
    [Google Scholar]
  33. ZaananA. WillietN. HebbarM. DabakuyoT.S. FartouxL. MansourbakhtT. DubreuilO. RosmorducO. CattanS. BonnetainF. BoigeV. TaïebJ. Gemcitabine plus oxaliplatin in advanced hepatocellular carcinoma: A large multicenter AGEO study.J. Hepatol.2013581818810.1016/j.jhep.2012.09.006 22989572
    [Google Scholar]
  34. XuL. ZhuY. ShaoJ. ChenM. YanH. LiG. ZhuY. XuZ. YangB. LuoP. HeQ. Dasatinib synergises with irinotecan to suppress hepatocellular carcinoma via inhibiting the protein synthesis of PLK1.Br. J. Cancer201711681027103610.1038/bjc.2017.55 28267710
    [Google Scholar]
  35. BoigeV. RaoulJ-L. PignonJ-P. BouchéO. BlancJ-F. DahanL. JouveJ-L. DupouyN. DucreuxM. Multicentre phase II trial of capecitabine plus oxaliplatin (XELOX) in patients with advanced hepatocellular carcinoma: FFCD 03-03 trial.Br. J. Cancer200797786286710.1038/sj.bjc.6603956 17876335
    [Google Scholar]
  36. ChengA.L. KangY.K. ChenZ. TsaoC.J. QinS. KimJ.S. LuoR. FengJ. YeS. YangT.S. XuJ. SunY. LiangH. LiuJ. WangJ. TakW.Y. PanH. BurockK. ZouJ. VoliotisD. GuanZ. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma:] A phase III randomised, double-blind, placebo-controlled trial.Lancet Oncol.2009101253410.1016/S1470‑2045(08)70285‑7 19095497
    [Google Scholar]
  37. VogelA. QinS. KudoM. SuY. HudgensS. YamashitaT. YoonJ.H. FartouxL. SimonK. LópezC. SungM. ModyK. OhtsukaT. TamaiT. BennettL. MeierG. BrederV. Lenvatinib versus sorafenib for first-line treatment of unresectable hepatocellular carcinoma: patient-reported outcomes from a randomised, open-label, non-inferiority, phase 3 trial.Lancet Gastroenterol. Hepatol.20216864965810.1016/S2468‑1253(21)00110‑2 34087115
    [Google Scholar]
  38. QinS. LiQ. GuS. ChenX. LinL. WangZ. XuA. ChenX. ZhouC. RenZ. YangL. XuL. BaiY. ChenL. LiJ. PanH. CaoB. FangW. WuW. WangG. ChengY. YuZ. ZhuX. JiangD. LuY. WangH. XuJ. BaiL. LiuY. LinH. WuC. ZhangY. YanP. JinC. ZouJ. Apatinib as second-line or later therapy in patients with advanced hepatocellular carcinoma (AHELP): A multicentre, double-blind, randomised, placebo-controlled, phase 3 trial.Lancet Gastroenterol. Hepatol.20216755956810.1016/S2468‑1253(21)00109‑6 33971141
    [Google Scholar]
  39. Abou-AlfaG.K. MeyerT. ChengA.L. El-KhoueiryA.B. RimassaL. RyooB.Y. CicinI. MerleP. ChenY. ParkJ.W. BlancJ.F. BolondiL. KlümpenH.J. ChanS.L. ZagonelV. PressianiT. RyuM.H. VenookA.P. HesselC. Borgman-HageyA.E. SchwabG. KelleyR.K. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma.N. Engl. J. Med.20183791546310.1056/NEJMoa1717002 29972759
    [Google Scholar]
  40. BruixJ. QinS. MerleP. GranitoA. HuangY.H. BodokyG. PrachtM. YokosukaO. RosmorducO. BrederV. GerolamiR. MasiG. RossP.J. SongT. BronowickiJ.P. Ollivier-HourmandI. KudoM. ChengA.L. LlovetJ.M. FinnR.S. LeBerreM.A. BaumhauerA. MeinhardtG. HanG. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): A randomised, double-blind, placebo-controlled, phase 3 trial.Lancet201738910064566610.1016/S0140‑6736(16)32453‑9 27932229
    [Google Scholar]
  41. MorseM.A. SunW. KimR. HeA.R. AbadaP.B. MynderseM. FinnR.S. The role of angiogenesis in hepatocellular carcinoma.Clin. Cancer Res.201925391292010.1158/1078‑0432.CCR‑18‑1254 30274981
    [Google Scholar]
  42. DemoulinJ.B. EssaghirA. PDGF receptor signaling networks in normal and cancer cells.Cytokine Growth Factor Rev.201425327328310.1016/j.cytogfr.2014.03.003 24703957
    [Google Scholar]
  43. QingX. XuW. ZongJ. DuX. PengH. ZhangY. Emerging treatment modalities for systemic therapy in hepatocellular carcinoma.Biomark. Res.2021916410.1186/s40364‑021‑00319‑3 34419152
    [Google Scholar]
  44. YuL.X. LingY. WangH.Y. Role of nonresolving inflammation in hepatocellular carcinoma development and progression.NPJ Precis. Oncol.201821610.1038/s41698‑018‑0048‑z 29872724
    [Google Scholar]
  45. ZhangD.Y. FriedmanS.L. Fibrosis-dependent mechanisms of hepatocarcinogenesis.Hepatology201256276977510.1002/hep.25670 22378017
    [Google Scholar]
  46. TianX. YanT. LiuF. LiuQ. ZhaoJ. XiongH. JiangS. Link of sorafenib resistance with the tumor microenvironment in hepatocellular carcinoma: Mechanistic insights.Front. Pharmacol.20221399105210.3389/fphar.2022.991052 36071839
    [Google Scholar]
  47. ShaulM.E. FridlenderZ.G. Cancer‐related circulating and tumor‐associated neutrophils subtypes, sources and function.FEBS J.2018285234316434210.1111/febs.14524 29851227
    [Google Scholar]
  48. ShaulM.E. LevyL. SunJ. MishalianI. SinghalS. KapoorV. HorngW. FridlenderG. AlbeldaS.M. FridlenderZ.G. Tumor-associated neutrophils display a distinct N1 profile following TGFβ modulation: A transcriptomics analysis of pro- vs. antitumor TANs.OncoImmunology2016511e123222110.1080/2162402X.2016.1232221 27999744
    [Google Scholar]
  49. TangJ. YanZ. FengQ. YuL. WangH. The roles of neutrophils in the pathogenesis of liver diseases.Front. Immunol.20211262547210.3389/fimmu.2021.625472 33763069
    [Google Scholar]
  50. ChenH. ZhouX.H. LiJ.R. ZhengT.H. YaoF.B. GaoB. XueT.C. Neutrophils: Driving inflammation during the development of hepatocellular carcinoma.Cancer Lett.2021522223110.1016/j.canlet.2021.09.011 34517084
    [Google Scholar]
  51. ZhouS.L. YinD. HuZ.Q. LuoC.B. ZhouZ.J. XinH.Y. YangX.R. ShiY.H. WangZ. HuangX.W. CaoY. FanJ. ZhouJ. A positive feedback loop between cancer stem‐like cells and tumor‐associated neutrophils controls hepatocellular carcinoma progression.Hepatology20197041214123010.1002/hep.30630 30933361
    [Google Scholar]
  52. LecotP. SarabiM. Pereira AbrantesM. MussardJ. KoendermanL. CauxC. Bendriss-VermareN. MichalletM.C. Neutrophil heterogeneity in cancer: From biology to therapies.Front. Immunol.201910215510.3389/fimmu.2019.02155 31616408
    [Google Scholar]
  53. ZhouS.L. ZhouZ.J. HuZ.Q. HuangX.W. WangZ. ChenE.B. FanJ. CaoY. DaiZ. ZhouJ. Tumor-associated neutrophils recruit macrophages and T-regulatory cells to promote progression of hepatocellular carcinoma and resistance to sorafenib.Gastroenterology2016150716461658.e1710.1053/j.gastro.2016.02.040 26924089
    [Google Scholar]
  54. ZhangL.J. HuangR. ShenY.W. LiuJ. WuY. JinJ.M. ZhangH. SunY. ChenH.Z. LuanX. Enhanced anti-tumor efficacy by inhibiting HIF-1α to reprogram TAMs via core-satellite upconverting nanoparticles with curcumin mediated photodynamic therapy.Biomater. Sci.20219196403641510.1039/D1BM00675D 34259235
    [Google Scholar]
  55. VucurM. GhallabA. SchneiderA.T. AdiliA. ChengM. CastoldiM. SingerM.T. BüttnerV. KeysbergL.S. KüsgensL. KohlheppM. GörgB. GallageS. Barragan AvilaJ.E. UngerK. KordesC. LeblondA.L. AlbrechtW. LoosenS.H. LohrC. JördensM.S. BablerA. HayatS. SchumacherD. KoenenM.T. GovaereO. BoekschotenM.V. JörsS. Villacorta-MartinC. MazzaferroV. LlovetJ.M. WeiskirchenR. KatherJ.N. StarlingerP. TraunerM. LueddeM. HeijL.R. NeumannU.P. KeitelV. BodeJ.G. SchneiderR.K. TackeF. LevkauB. LammersT. FluegenG. AlexandrovT. CollinsA.L. NelsonG. OakleyF. MannD.A. RoderburgC. LongerichT. WeberA. VillanuevaA. SamsonA.L. MurphyJ.M. KramannR. GeislerF. CostaI.G. HengstlerJ.G. HeikenwalderM. LueddeT. Sublethal necroptosis signaling promotes inflammation and liver cancer.Immunity202356715781595.e810.1016/j.immuni.2023.05.017 37329888
    [Google Scholar]
  56. ArvanitakisK. KoletsaT. MitroulisI. GermanidisG. Tumor-associated macrophages in hepatocellular carcinoma pathogenesis, prognosis and therapy.Cancers202214122610.3390/cancers14010226 35008390
    [Google Scholar]
  57. SungP.S. Crosstalk between tumor-associated macrophages and neighboring cells in hepatocellular carcinoma.Clin. Mol. Hepatol.202228333335010.3350/cmh.2021.0308 34665953
    [Google Scholar]
  58. PavlovicN. RaniB. GerwinsP. HeindryckxF. Platelets as key factors in hepatocellular carcinoma.Cancers2019117102210.3390/cancers11071022 31330817
    [Google Scholar]
  59. XuX. TanY. QianY. XueW. WangY. DuJ. JinL. DingW. Clinicopathologic and prognostic significance of tumor-infiltrating CD8+ T cells in patients with hepatocellular carcinoma.Medicine2019982e1392310.1097/MD.0000000000013923 30633166
    [Google Scholar]
  60. BertuzziC. GerminarioG. RighiS. RavaioliM. AgostinelliC. PessionA. D’ErricoA. SabattiniE. VasuriF. The role of peritumoral CD8 +/TIA1 + lymphocytes in hepatocellular carcinoma aggressiveness and recurrence after surgical resection.Pathol. Res. Pract.202223715401610.1016/j.prp.2022.154016 35872367
    [Google Scholar]
  61. QinM. WangD. FangY. ZhengZ. LiuX. WuF. WangL. LiX. HuiB. MaS. TangW. PanX. Current perspectives on B lymphocytes in the immunobiology of hepatocellular carcinoma.Front. Oncol.20211164785410.3389/fonc.2021.647854 34235074
    [Google Scholar]
  62. AjithA. MerimiM. ArkiM.K. Hossein-khannazerN. NajarM. VosoughM. SokalE.M. NajimiM. Immune regulation and therapeutic application of T regulatory cells in liver diseases.Front. Immunol.202415137108910.3389/fimmu.2024.1371089 38571964
    [Google Scholar]
  63. ZhangC.Y. LiuS. YangM. Regulatory T cells and their associated factors in hepatocellular carcinoma development and therapy.World J. Gastroenterol.202228273346335810.3748/wjg.v28.i27.3346 36158267
    [Google Scholar]
  64. ChoraA.F. PedrosoD. KyriakouE. PejanovicN. ColaçoH. GozzelinoR. BarrosA. WillmannK. VelhoT. MoitaC.F. SantosI. PereiraP. CarvalhoS. MartinsF.B. FerreiraJ.A. de AlmeidaS.F. BenesV. AnratherJ. WeisS. SoaresM.P. GeerlofA. NeefjesJ. SattlerM. MessiasA.C. Neves-CostaA. MoitaL.F. DNA damage independent inhibition of NF-κB transcription by anthracyclines.eLife202211e7744310.7554/eLife.77443 36476511
    [Google Scholar]
  65. van der ZandenS.Y. QiaoX. NeefjesJ. New insights into the activities and toxicities of the old anticancer drug doxorubicin.FEBS J.2021288216095611110.1111/febs.15583 33022843
    [Google Scholar]
  66. MattioliR. IlariA. ColottiB. MoscaL. FaziF. ColottiG. Doxorubicin and other anthracyclines in cancers: Activity, chemoresistance and its overcoming.Mol. Aspects Med.20239310120510.1016/j.mam.2023.101205 37515939
    [Google Scholar]
  67. WangZ. ZhouJ. FanJ. QiuS.J. YuY. HuangX.W. SunJ. TanC.J. DaiZ. Oxaliplatin induces apoptosis in hepatocellular carcinoma cells and inhibits tumor growth.Expert Opin. Investig. Drugs200918111595160410.1517/13543780903292626 19780708
    [Google Scholar]
  68. ZhangN. YinY. XuS.J. ChenW.S. 5-Fluorouracil: mechanisms of resistance and reversal strategies.Molecules20081381551156910.3390/molecules13081551 18794772
    [Google Scholar]
  69. SethyC. KunduC.N. 5-Fluorouracil (5-FU) resistance and the new strategy to enhance the sensitivity against cancer: Implication of DNA repair inhibition.Biomed. Pharmacother.202113711128510.1016/j.biopha.2021.111285 33485118
    [Google Scholar]
  70. GongY. FanZ. LuoG. YangC. HuangQ. FanK. ChengH. JinK. NiQ. YuX. LiuC. The role of necroptosis in cancer biology and therapy.Mol. Cancer201918110010.1186/s12943‑019‑1029‑8 31122251
    [Google Scholar]
  71. JohnstoneR.W. RuefliA.A. LoweS.W. Apoptosis.Cell2002108215316410.1016/S0092‑8674(02)00625‑6 11832206
    [Google Scholar]
  72. NewtonK. RIPK1 and RIPK3: Critical regulators of inflammation and cell death.Trends Cell Biol.201525634735310.1016/j.tcb.2015.01.001 25662614
    [Google Scholar]
  73. ZhuK. LiangW. MaZ. XuD. CaoS. LuX. LiuN. ShanB. QianL. YuanJ. Necroptosis promotes cell-autonomous activation of proinflammatory cytokine gene expression.Cell Death Dis.20189550010.1038/s41419‑018‑0524‑y 29703889
    [Google Scholar]
  74. NewtonK. ManningG. Necroptosis and Inflammation.Annu. Rev. Biochem.201685174376310.1146/annurev‑biochem‑060815‑014830 26865533
    [Google Scholar]
  75. MengM.B. WangH.H. CuiY.L. WuZ.Q. ShiY.Y. ZaorskyN.G. DengL. YuanZ.Y. LuY. WangP. Necroptosis in tumorigenesis, activation of anti-tumor immunity, and cancer therapy.Oncotarget2016735573915741310.18632/oncotarget.10548 27429198
    [Google Scholar]
  76. BiswasS.K. MantovaniA. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm.Nat. Immunol.2010111088989610.1038/ni.1937 20856220
    [Google Scholar]
  77. SteinmanR.M. Dendritic cells: Understanding immunogenicity.Eur. J. Immunol.200737S1Suppl. 1S53S6010.1002/eji.200737400 17972346
    [Google Scholar]
  78. De FordC. UlloaJ.L. CatalánC.A.N. GrauA. MartinoV.S. MuschiettiL.V. MerfortI. The sesquiterpene lactone polymatin B from Smallanthus sonchifolius induces different cell death mechanisms in three cancer cell lines.Phytochemistry201511733233910.1016/j.phytochem.2015.06.020 26125943
    [Google Scholar]
  79. YanC. OhJ.S. YooS.H. LeeJ.S. YoonY.G. OhY.J. JangM.S. LeeS.Y. YangJ. LeeS.H. KimH.Y. YooY.H. The targeted inhibition of mitochondrial Hsp90 overcomes the apoptosis resistance conferred by Bcl-2 in Hep3B cells via necroptosis.Toxicol. Appl. Pharmacol.2013266191810.1016/j.taap.2012.11.001 23147571
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073305230240611091708
Loading
/content/journals/cchts/10.2174/0113862073305230240611091708
Loading

Data & Media loading...

Supplements

Supplementary material, along with the published article, is available on the publisher's website.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test