Skip to content
2000
Volume 28, Issue 11
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Excessive vascular smooth muscle cell (VSMC) proliferation and migration are the main contributors to the symptoms of lower-extremity arteriosclerosis obliterans (ASO). Previous studies suggested that microRNAs (miRNAs) regulate VSMC activity. Nevertheless, the molecular mechanisms by which they do so are unclear.

Objective

The present study aimed to identify the biological processes accounting for the effects of miR-140-3p on VSMCs in ASO.

Methods

The expression levels of miR-140-3p in clinical samples were analyzed by real-time polymerase chain reaction. An ASO cell model was established to investigate the expression of miR-140-3p on VSMCs. The transwell® assays and MTT assays were used to assess migration and proliferation. The interaction between RhoA and miR-140-3p was verified using the Dual-luciferase reporter assay. Western blot technique was used to identify RhoA, RhoA-associated protein kinase 1 (ROCK1), and ROCK2.

Results

We discovered that miR-140-3p inhibited the proliferation, migration, and invasion but promoted the apoptosis of VSMCs, and RhoA was its downstream target gene. RhoA, ROCK1, and ROCK2 were upregulated in vascular tissues damaged by ASO compared to normal, healthy arteries. MiR-140-3p also decreased RhoA, ROCK1, and ROCK2 mRNA and protein expression.

Conclusion

Overall, the present work partially elucidated the mechanism by which miR-140-3p regulates VSMC function and offered novel insights into potential therapeutic approaches for patients with lower-extremity arteriosclerosis obliterans.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073295224240529141030
2024-06-14
2025-10-15
Loading full text...

Full text loading...

References

  1. LeeY.T. LinH.Y. ChanY.W.F. LiK.H.C. ToO.T.L. YanB.P. LiuT. LiG. WongW.T. KeungW. TseG. Mouse models of atherosclerosis: A historical perspective and recent advances.Lipids Health Dis.20171611210.1186/s12944‑016‑0402‑5 28095860
    [Google Scholar]
  2. WolfM.P. HunzikerP. Atherosclerosis: Insights into vascular pathobiology and outlook to novel treatments.J. Cardiovasc. Transl. Res.202013574475710.1007/s12265‑020‑09961‑y 32072564
    [Google Scholar]
  3. JakicB. CarlssonM. BuszkoM. CappellanoG. PlonerC. OnestingelE. FotiM. HacklH. DemetzE. DietrichH. WickC. WickG. The effects of endurance exercise and diet on atherosclerosis in young and aged apoE-/- and wild-type mice.Gerontology2019651455610.1159/000492571 30165362
    [Google Scholar]
  4. HermanG.M.D. GornikH.L. BarrettC. BarshesN.R. CorriereM.A. DrachmanD.E. FleisherL.A. FowkesF.G.R. HamburgN.M. KinlayS. LooksteinR. MisraS. MureebeL. OlinJ.W. PatelR.A.G. RegensteinerJ.G. SchanzerA. ShishehborM.H. StewartK.J. JacobsonT.D. WalshM.E. 2016 AHA/ACC guideline on the management of patients with lower extremity peripheral artery disease: Executive summary.J. Am. Coll. Cardiol.201769111465150810.1016/j.jacc.2016.11.008 27851991
    [Google Scholar]
  5. ConteM.S. PomposelliF.B. ClairD.G. GeraghtyP.J. McKinseyJ.F. MillsJ.L. MonetaG.L. MuradM.H. PowellR.J. ReedA.B. SchanzerA. SidawyA.N. Society for vascular surgery practice guidelines for atherosclerotic occlusive disease of the lower extremities: Management of asymptomatic disease and claudication.J. Vasc. Surg.201561S32S-41S, 41S.e1.10.1016/j.jvs.2014.12.009 25638515
    [Google Scholar]
  6. GaoY. ChenS. YuC. NieZ. Endovascular treatment of multilevel arteriosclerosis obliterans of lower extremities.Chin. J. Reparat. Reconstruct.201024910331036 20939467
    [Google Scholar]
  7. HorieT. KimuraT. OnoK. Emerging novel biomarkers for arteriosclerosis obliterans.J. Atheroscler. Thromb.201623217117210.5551/jat.ED028 26632166
    [Google Scholar]
  8. SongX.T. LiuB. LiuC.W. NiL. ZengR. YeW. ZhengY.H. LiY.J. Prevalence of asymptomatic carotid artery stenosis in patients with arteriosclerosis obliterans of lower extremities and risk factor analysis.Chin. Med. J.2016962126128 26792696
    [Google Scholar]
  9. LiuJ. LiW. WangS. WuY. LiZ. WangW. LiuR. OuJ. ZhangC. WangS. MiR-142-3p attenuates the migration of CD4+ T cells through regulating actin cytoskeleton via RAC1 and ROCK2 in arteriosclerosis obliterans.PLoS One201494e9551410.1371/journal.pone.0095514 24743945
    [Google Scholar]
  10. LiuH.L. WeiY.J. JinZ.G. ZhangJ. DingP. YangS.L. LuoJ.P. MaD.X. LiuY. HanW. Design and rationale of the APELOT trial.Medicine20169522e375610.1097/MD.0000000000003756 27258504
    [Google Scholar]
  11. BennettM.R. SinhaS. OwensG.K. Vascular smooth muscle cells in atherosclerosis.Circ. Res.2016118469270210.1161/CIRCRESAHA.115.306361 26892967
    [Google Scholar]
  12. PaudelK.R. KarkiR. KimD.W. Cepharanthine inhibits in vitro VSMC proliferation and migration and vascular inflammatory responses mediated by RAW264.7.Toxicol. In Vitro201634162510.1016/j.tiv.2016.03.010 27021874
    [Google Scholar]
  13. SaliminejadK. Khorshidk.H.R. FardS.S. GhaffariS.H. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods.J. Cell. Physiol.201923455451546510.1002/jcp.27486 30471116
    [Google Scholar]
  14. HeB. ZhaoZ. CaiQ. ZhangY. ZhangP. ShiS. XieH. PengX. YinW. TaoY. WangX. miRNA-based biomarkers, therapies, and resistance in Cancer.Int. J. Biol. Sci.202016142628264710.7150/ijbs.47203 32792861
    [Google Scholar]
  15. SuW.Z. RenL.F. MiRNA-199 inhibits malignant progression of lung cancer through mediating RGS17.Eur. Rev. Med. Pharmacol. Sci.201923833903400 31081094
    [Google Scholar]
  16. PalmaG.B.H. KaurM. miRNA‐128 and miRNA‐223 regulate cholesterol‐mediated drug resistance in breast cancer.IUBMB Life202375974376410.1002/iub.2726 37070323
    [Google Scholar]
  17. KoleśnikM. MalmM. DropB. DworzańskiJ. DacewiczP.M. MiRNA-21–5p as a biomarker in EBV-associated oropharyngeal cancer.Ann. Agric. Environ. Med.2023301778210.26444/aaem/156852 36999859
    [Google Scholar]
  18. HeX. ZhengY. LiuS. LiuY. HeY. ZhouX. Altered plasma microRNAs as novel biomarkers for arteriosclerosis obliterans.J. Atheroscler. Thromb.201623219620610.5551/jat.30775 26370316
    [Google Scholar]
  19. BarwariT. JoshiA. MayrM. MicroRNAs in cardiovascular disease.J. Am. Coll. Cardiol.201668232577258410.1016/j.jacc.2016.09.945 27931616
    [Google Scholar]
  20. LiX. YaoN. ZhangJ. LiuZ. MicroRNA-125b is involved in atherosclerosis obliterans in vitro by targeting podocalyxin.Mol. Med. Rep.201512156156810.3892/mmr.2015.3384 25738314
    [Google Scholar]
  21. BakerA.H. MicroRNA 21 “shapes” vascular smooth muscle behavior through regulating tropomyosin 1.Arterioscler. Thromb. Vasc. Biol.20113191941194210.1161/ATVBAHA.111.231985 21849698
    [Google Scholar]
  22. WangM. LiW. ChangG.Q. YeC.S. OuJ.S. LiX.X. LiuY. CheangT.Y. HuangX.L. WangS.M. MicroRNA-21 regulates vascular smooth muscle cell function via targeting tropomyosin 1 in arteriosclerosis obliterans of lower extremities.Arterioscler. Thromb. Vasc. Biol.20113192044205310.1161/ATVBAHA.111.229559 21817107
    [Google Scholar]
  23. WangX. DuC. HeX. DengX. HeY. ZhouX. MiR-4463 inhibits the migration of human aortic smooth muscle cells by AMOT.Biosci. Rep.2018385BSR2018015010.1042/BSR20180150 29752344
    [Google Scholar]
  24. BaldánÁ. de VallimA.T.Q. miRNAs and high-density lipoprotein metabolism.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20161861122053206110.1016/j.bbalip.2016.01.021 26869447
    [Google Scholar]
  25. DiehmC. AllenbergJ.R. PittrowD. MahnM. TepohlG. HaberlR.L. DariusH. BurghausI. TrampischH.J. Mortality and vascular morbidity in older adults with asymptomatic versus symptomatic peripheral artery disease.Circulation2009120212053206110.1161/CIRCULATIONAHA.109.865600 19901192
    [Google Scholar]
  26. ReineckeH. UnrathM. FreisingerE. BunzemeierH. MeyborgM. LüdersF. GebauerK. RoederN. BergerK. MalyarN.M. Peripheral arterial disease and critical limb ischaemia: still poor outcomes and lack of guideline adherence.Eur. Heart J.2015361593293810.1093/eurheartj/ehv006 25650396
    [Google Scholar]
  27. CuiC. WangX. ShangX.M. LiL. MaY. ZhaoG.Y. SongY.X. GengX.B. ZhaoB.Q. TianM.R. WangH.L. lncRNA 430945 promotes the proliferation and migration of vascular smooth muscle cells via the ROR2/RhoA signaling pathway in atherosclerosis.Mol. Med. Rep.20191964663467210.3892/mmr.2019.10137 30957191
    [Google Scholar]
  28. HeX. DuC. ZouY. LongY. HuangC. ChenF. HeY. ZhouX. Downregulation of MicroRNA-4463 attenuates high-glucose- and hypoxia-induced endothelial cell injury by targeting PNUTS.Cell. Physiol. Biochem.20184952073208710.1159/000493717 30244253
    [Google Scholar]
  29. ZhangW.F. ZhuT.T. XiongY.W. XiongA.Z. GeX.Y. HuC.P. ZhangZ. Negative feedback regulation between microRNA let-7g and LOX-1 mediated hypoxia-induced PASMCs proliferation.Biochem. Biophys. Res. Commun.2017488465566310.1016/j.bbrc.2017.01.073 28108289
    [Google Scholar]
  30. YangM. FanZ. WangF. TianZ. MaB. DongB. LiZ. ZhangM. ZhaoW. BMP-2 enhances the migration and proliferation of hypoxia-induced VSMCs via actin cytoskeleton, CD44 and matrix metalloproteinase linkage.Exp. Cell Res.2018368224825710.1016/j.yexcr.2018.05.004 29750899
    [Google Scholar]
  31. ZhouX. ZhengY. Cell type-specific signaling function of RhoA GTPase: lessons from mouse gene targeting.J. Biol. Chem.201328851361793618810.1074/jbc.R113.515486 24202176
    [Google Scholar]
  32. SunZ. WuX. LiW. PengH. ShenX. MaL. LiuH. LiH. RhoA/rock signaling mediates peroxynitrite-induced functional impairment of Rat coronary vessels.BMC Cardiovasc. Disord.201616119310.1186/s12872‑016‑0372‑6 27724862
    [Google Scholar]
  33. TkachV. BockE. BerezinV. The role of RhoA in the regulation of cell morphology and motility.Cell Motil. Cytoskeleton2005611213310.1002/cm.20062 15776463
    [Google Scholar]
  34. ZhouH. LiY. Rho kinase inhibitors: Potential treatments for diabetes and diabetic complications.Curr. Pharm. Des.201218202964297310.2174/138161212800672688 22571664
    [Google Scholar]
  35. LoirandG. GuérinP. PacaudP. Rho kinases in cardiovascular physiology and pathophysiology.Circ. Res.200698332233410.1161/01.RES.0000201960.04223.3c 16484628
    [Google Scholar]
  36. MorishigeK. ShimokawaH. EtoY. KandabashiT. MiyataK. MatsumotoY. HoshijimaM. KaibuchiK. TakeshitaA. Adenovirus-mediated transfer of dominant-negative rho-kinase induces a regression of coronary arteriosclerosis in pigs in vivo.Arterioscler. Thromb. Vasc. Biol.200121454855410.1161/01.ATV.21.4.548 11304471
    [Google Scholar]
  37. LiY. OuyangM. ShanZ. MaJ. LiJ. YaoC. ZhuZ. ZhangL. ChenL. ChangG. WangS. WangW. Involvement of MicroRNA-133a in the development of arteriosclerosis obliterans of the lower extremities via RhoA targeting.J. Atheroscler. Thromb.201522442443210.5551/jat.27839 25445891
    [Google Scholar]
  38. DerkinderenR.M. ToumaniantzG. PacaudP. LoirandG. RhoA phosphorylation induces Rac1 release from guanine dissociation inhibitor alpha and stimulation of vascular smooth muscle cell migration.Mol. Cell. Biol.201030204786479610.1128/MCB.00381‑10 20696841
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073295224240529141030
Loading
/content/journals/cchts/10.2174/0113862073295224240529141030
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test