Skip to content
2000
Volume 28, Issue 13
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Non-coding RNAs are mainly divided into two categories: small non-coding RNA represented by miRNA, and the other is long non-coding RNA longer than 200 bp. Further studies on non-coding RNAs have revealed that long non-coding RNAs not only have carcinogenic effects but also have potential links with miRNAs. Antisense non-coding RNA in the INK4 locus (ANRIL/CDKN2B-AS1), one of the five subtypes of long non-coding RNA, has been proven to play the role of an oncogene in many cancers, such as gastric cancer, cervical cancer, prostate cancer, and non-small cell lung cancer. Knockdown ANRIL can significantly inhibit the proliferation and migration of cancer cells while also negatively regulating the expression of related miRNAs. This suggests that ANRIL may serve as a potential target for the development of drugs that provide new strategies to improve the effectiveness of cancer treatment. In our review, we summarize the current association between ANRIL and miRNAs in various cancers.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073294838240523035706
2024-06-07
2025-10-26
Loading full text...

Full text loading...

References

  1. LiJ. TianH. YangJ. GongZ. Long Noncoding RNAs Regulate Cell Growth, Proliferation, and Apoptosis.DNA Cell Biol.201635945947010.1089/dna.2015.3187 27213978
    [Google Scholar]
  2. HuarteM. GuttmanM. FeldserD. GarberM. KoziolM.J. Kenzelmann-BrozD. KhalilA.M. ZukO. AmitI. RabaniM. AttardiL.D. RegevA. LanderE.S. JacksT. RinnJ.L. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response.Cell2010142340941910.1016/j.cell.2010.06.040 20673990
    [Google Scholar]
  3. GuptaR.A. ShahN. WangK.C. KimJ. HorlingsH.M. WongD.J. TsaiM.C. HungT. ArganiP. RinnJ.L. WangY. BrzoskaP. KongB. LiR. WestR.B. van de VijverM.J. SukumarS. ChangH.Y. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis.Nature201046472911071107610.1038/nature08975 20393566
    [Google Scholar]
  4. JacobF. MonodJ. Genetic regulatory mechanisms in the synthesis of proteins.J. Mol. Biol.19613331835610.1016/S0022‑2836(61)80072‑7 13718526
    [Google Scholar]
  5. XuJ. ZhangJ. ZhangW. Antisense RNA: The new favorite in genetic research.J. Zhejiang Univ. Sci. B2018191073974910.1631/jzus.B1700594 30269442
    [Google Scholar]
  6. YangK. ZhangW. ZhongL. XiaoY. SahooS. FassanM. ZengK. MageeP. GarofaloM. ShiL. Long non-coding RNA HIF1A-As2 and MYC form a double-positive feedback loop to promote cell proliferation and metastasis in KRAS-driven non-small cell lung cancer.Cell Death Differ.20233061533154910.1038/s41418‑023‑01160‑x 37041291
    [Google Scholar]
  7. Di CresceC. KoropatnickJ. Antisense treatment in human prostate cancer and melanoma.Curr. Cancer Drug Targets201010655556510.2174/156800910791859452 20482488
    [Google Scholar]
  8. CulbertsonB. GarciaK. MarkettD. AsgharianH. ChenL. FishL. NavickasA. YuJ. WooB. NandaA.S. ChoiB. ZhouS. RabinowitzJ. GoodarziH. A sense-antisense RNA interaction promotes breast cancer metastasis via regulation of NQO1 expression.Nat. Cancer20234568269810.1038/s43018‑023‑00554‑7 37169843
    [Google Scholar]
  9. HanG. YangG. HaoD. LuY. TheinK. SimpsonB.S. ChenJ. SunR. AlhalabiO. WangR. DangM. DaiE. ZhangS. NieF. ZhaoS. GuoC. HamzaA. CzerniakB. ChengC. Siefker-RadtkeA. BhatK. FutrealA. PengG. WargoJ. PengW. KadaraH. AjaniJ. SwantonC. LitchfieldK. AhnertJ.R. GaoJ. WangL. 9p21 loss confers a cold tumor immune microenvironment and primary resistance to immune checkpoint therapy.Nat. Commun.2021121560610.1038/s41467‑021‑25894‑9 34556668
    [Google Scholar]
  10. SanchezA. LhuillierJ. GrosjeanG. AyadiL. MaennerS. The long non-coding RNA ANRIL in cancers.Cancers (Basel)20231516416010.3390/cancers15164160 37627188
    [Google Scholar]
  11. LiQ. JiangB. GuoJ. ShaoH. Del PrioreI.S. ChangQ. KudoR. LiZ. RazaviP. LiuB. BoghossianA.S. ReesM.G. RonanM.M. RothJ.A. DonovanK.A. PalafoxM. Reis-FilhoJ.S. de StanchinaE. FischerE.S. RosenN. SerraV. KoffA. ChoderaJ.D. GrayN.S. ChandarlapatyS. INK4 tumor suppressor proteins mediate resistance to CDK4/6 kinase inhibitors.Cancer Discov.202212235637110.1158/2159‑8290.CD‑20‑1726 34544752
    [Google Scholar]
  12. FarooqU. NotaniD. Transcriptional regulation of INK4/ARF locus by cis and trans mechanisms.Front. Cell Dev. Biol.20221094835110.3389/fcell.2022.948351 36158211
    [Google Scholar]
  13. LópezF. SampedroT. LlorenteJ.L. HermsenM. Álvarez-MarcosC. Alterations of p14 ARF, p15 INK4b, and p16 INK4a genes in primary laryngeal squamous cell carcinoma.Pathol. Oncol. Res.2017231637110.1007/s12253‑016‑0083‑4 27377733
    [Google Scholar]
  14. RomagosaC. SimonettiS. López-VicenteL. MazoA. LleonartM.E. CastellviJ. Ramon y CajalS. p16Ink4a overexpression in cancer: A tumor suppressor gene associated with senescence and high-grade tumors.Oncogene201130182087209710.1038/onc.2010.614 21297668
    [Google Scholar]
  15. KentL.N. LeoneG. The broken cycle: E2F dysfunction in cancer.Nat. Rev. Cancer201919632633810.1038/s41568‑019‑0143‑7 31053804
    [Google Scholar]
  16. MäkeläJ.A. ToppariJ. Retinoblastoma-E2F transcription factor interplay is essential for testicular development and male fertility.Front. Endocrinol. (Lausanne)20221390368410.3389/fendo.2022.903684 35663332
    [Google Scholar]
  17. SimboeckE. RibeiroJ.D. TeichmannS. Di CroceL. Epigenetics and senescence: Learning from the INK4-ARF locus.Biochem. Pharmacol.201182101361137010.1016/j.bcp.2011.07.084 21806975
    [Google Scholar]
  18. PoyurovskyM.V. KatzC. LaptenkoO. BeckermanR. LokshinM. AhnJ. ByeonI.J.L. GabizonR. MattiaM. ZupnickA. BrownL.M. FriedlerA. PrivesC. The C terminus of p53 binds the N-terminal domain of MDM2.Nat. Struct. Mol. Biol.201017898298910.1038/nsmb.1872 20639885
    [Google Scholar]
  19. KowalczykD. NakasoneM.A. SmithB.O. HuangD.T. Bivalent binding of p14ARF to MDM2 RING and acidic domains inhibits E3 ligase function.Life Sci. Alliance2022512e20220147210.26508/lsa.202201472 35944929
    [Google Scholar]
  20. SherrC.J. Ink4‐Arf locus in cancer and aging.Wiley Interdiscip. Rev. Dev. Biol.20121573174110.1002/wdev.40 22960768
    [Google Scholar]
  21. PasmantE. LaurendeauI. HéronD. VidaudM. VidaudD. BiècheI. Characterization of a germ-line deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor family: Identification of ANRIL, an antisense noncoding RNA whose expression coclusters with ARF.Cancer Res.20076783963396910.1158/0008‑5472.CAN‑06‑2004 17440112
    [Google Scholar]
  22. HeY. VogelsteinB. VelculescuV.E. PapadopoulosN. KinzlerK.W. The antisense transcriptomes of human cells.Science200832259091855185710.1126/science.1163853 19056939
    [Google Scholar]
  23. PontingC.P. OliverP.L. ReikW. Evolution and functions of long noncoding RNAs.Cell2009136462964110.1016/j.cell.2009.02.006 19239885
    [Google Scholar]
  24. WutzA. GribnauJ. X inactivation Xplained.Curr. Opin. Genet. Dev.200717538739310.1016/j.gde.2007.08.001 17869504
    [Google Scholar]
  25. TanoK. AkimitsuN. Long non-coding RNAs in cancer progression.Front. Genet.2012321910.3389/fgene.2012.00219 23109937
    [Google Scholar]
  26. KiaS.K. GorskiM.M. GiannakopoulosS. VerrijzerC.P. SWI/SNF mediates polycomb eviction and epigenetic reprogramming of the INK4b-ARF-INK4a locus.Mol. Cell. Biol.200828103457346410.1128/MCB.02019‑07 18332116
    [Google Scholar]
  27. GilJ. PetersG. Regulation of the INK4b–ARF–INK4a tumour suppressor locus: All for one or one for all.Nat. Rev. Mol. Cell Biol.20067966767710.1038/nrm1987 16921403
    [Google Scholar]
  28. OzenneP. EyminB. BrambillaE. GazzeriS. The ARF tumor suppressor: Structure, functions and status in cancer.Int. J. Cancer2010127102239224710.1002/ijc.25511 20549699
    [Google Scholar]
  29. KotakeY. NakagawaT. KitagawaK. SuzukiS. LiuN. KitagawaM. XiongY. Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15INK4B tumor suppressor gene.Oncogene201130161956196210.1038/onc.2010.568 21151178
    [Google Scholar]
  30. YapK.L. LiS. Muñoz-CabelloA.M. RaguzS. ZengL. MujtabaS. GilJ. WalshM.J. ZhouM.M. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a.Mol. Cell201038566267410.1016/j.molcel.2010.03.021 20541999
    [Google Scholar]
  31. PasmantE. SabbaghA. VidaudM. BiècheI. ANRIL, a long, noncoding RNA, is an unexpected major hotspot in GWAS.FASEB J.201125244444810.1096/fj.10‑172452 20956613
    [Google Scholar]
  32. GibbE.A. BrownC.J. LamW.L. The functional role of long non-coding RNA in human carcinomas.Mol. Cancer20111013810.1186/1476‑4598‑10‑38 21489289
    [Google Scholar]
  33. AguiloF. ZhouM.M. WalshM.J. Long noncoding RNA, polycomb, and the ghosts haunting INK4b-ARF-INK4a expression.Cancer Res.201171165365536910.1158/0008‑5472.CAN‑10‑4379 21828241
    [Google Scholar]
  34. RodriguezC. BorgelJ. CourtF. CathalaG. FornéT. PietteJ. CTCF is a DNA methylation-sensitive positive regulator of the INK/ARF locus.Biochem. Biophys. Res. Commun.2010392212913410.1016/j.bbrc.2009.12.159 20051228
    [Google Scholar]
  35. FarooqU. SaravananB. IslamZ. WalavalkarK. SinghA.K. JayaniR.S. MeelS. SwaminathanS. NotaniD. An interdependent network of functional enhancers regulates transcription and EZH2 loading at the INK4a/ARF locus.Cell Rep.2021341210889810.1016/j.celrep.2021.108898 33761351
    [Google Scholar]
  36. ZhangE. KongR. YinD. YouL. SunM. HanL. XuT. XiaR. YangJ. DeW. ChenJ. Long noncoding RNA ANRIL indicates a poor prognosis of gastric cancer and promotes tumor growth by epigenetically silencing of miR-99a/miR-449a.Oncotarget2014582276229210.18632/oncotarget.1902 24810364
    [Google Scholar]
  37. NieF. SunM. YangJ. XieM. XuT. XiaR. LiuY. LiuX. ZhangE. LuK. ShuY. Long noncoding RNA ANRIL promotes non-small cell lung cancer cell proliferation and inhibits apoptosis by silencing KLF2 and P21 expression.Mol. Cancer Ther.201514126827710.1158/1535‑7163.MCT‑14‑0492 25504755
    [Google Scholar]
  38. HuangM. ChenW. QiF. XiaR. SunM. XuT. YinL. ZhangE. DeW. ShuY. Long non-coding RNA ANRIL is upregulated in hepatocellular carcinoma and regulates cell proliferation by epigenetic silencing of KLF2.J. Hematol. Oncol.2015815710.1186/s13045‑015‑0153‑1 25966845
    [Google Scholar]
  39. NaemuraM. MurasakiC. InoueY. OkamotoH. KotakeY. Long noncoding RNA ANRIL regulates proliferation of non-small cell lung cancer and cervical cancer cells.Anticancer Res.2015351053775382 26408699
    [Google Scholar]
  40. ZhuH. LiX. SongY. ZhangP. XiaoY. XingY. Long non-coding RNA ANRIL is up-regulated in bladder cancer and regulates bladder cancer cell proliferation and apoptosis through the intrinsic pathway.Biochem. Biophys. Res. Commun.2015467222322810.1016/j.bbrc.2015.10.002 26449463
    [Google Scholar]
  41. QiuJ.J. LinY.Y. DingJ.X. FengW.W. JinH.Y. HuaK.Q. Long non-coding RNA ANRIL predicts poor prognosis and promotes invasion/metastasis in serous ovarian cancer.Int. J. Oncol.20154662497250510.3892/ijo.2015.2943 25845387
    [Google Scholar]
  42. ChengS. HuangT. LiP. ZhangW. WangZ. ChenY. Long non coding RNA ANRIL promotes the proliferation, migration and invasion of human osteosarcoma cells.Exp. Ther. Med.20171455121512510.3892/etm.2017.5123 29201225
    [Google Scholar]
  43. YuG. LiuG. YuanD. DaiJ. CuiY. TangX. Long non-coding RNA ANRIL is associated with a poor prognosis of osteosarcoma and promotes tumorigenesis via PI3K/Akt pathway.J. Bone Oncol.201811515510.1016/j.jbo.2018.02.002 29520337
    [Google Scholar]
  44. WangY. LvF. HuangL. ZhangH. LiB. ZhouW. LiX. DuY. PanY. WangR. Human amnion-derived mesenchymal stem cells promote osteogenic differentiation of lipopolysaccharide-induced human bone marrow mesenchymal stem cells via ANRIL/miR-125a/APC axis.Stem Cell Res. Ther.20211213510.1186/s13287‑020‑02105‑8 33413674
    [Google Scholar]
  45. LeeA.M. FerdjallahA. MooreE. KimD.C. NathA. GreengardE. HuangR.S. Long non-coding RNA ANRIL as a potential biomarker of chemosensitivity and clinical outcomes in osteosarcoma.Int. J. Mol. Sci.202122201116810.3390/ijms222011168 34681828
    [Google Scholar]
  46. Martens-UzunovaE.S. BöttcherR. CroceC.M. JensterG. VisakorpiT. CalinG.A. Long noncoding RNA in prostate, bladder, and kidney cancer.Eur. Urol.20146561140115110.1016/j.eururo.2013.12.003 24373479
    [Google Scholar]
  47. DjebaliS. DavisC.A. MerkelA. DobinA. LassmannT. MortazaviA. TanzerA. LagardeJ. LinW. SchlesingerF. XueC. MarinovG.K. KhatunJ. WilliamsB.A. ZaleskiC. RozowskyJ. RöderM. KokocinskiF. AbdelhamidR.F. AliotoT. AntoshechkinI. BaerM.T. BarN.S. BatutP. BellK. BellI. ChakraborttyS. ChenX. ChrastJ. CuradoJ. DerrienT. DrenkowJ. DumaisE. DumaisJ. DuttaguptaR. FalconnetE. FastucaM. Fejes-TothK. FerreiraP. FoissacS. FullwoodM.J. GaoH. GonzalezD. GordonA. GunawardenaH. HowaldC. JhaS. JohnsonR. KapranovP. KingB. KingswoodC. LuoO.J. ParkE. PersaudK. PreallJ.B. RibecaP. RiskB. RobyrD. SammethM. SchafferL. SeeL.H. ShahabA. SkanckeJ. SuzukiA.M. TakahashiH. TilgnerH. TroutD. WaltersN. WangH. WrobelJ. YuY. RuanX. HayashizakiY. HarrowJ. GersteinM. HubbardT. ReymondA. AntonarakisS.E. HannonG. GiddingsM.C. RuanY. WoldB. CarninciP. GuigóR. GingerasT.R. Landscape of transcription in human cells.Nature2012489741410110810.1038/nature11233 22955620
    [Google Scholar]
  48. WanX. DingX. ChenS. SongH. JiangH. FangY. LiP. GuoJ. The functional sites of miRNAs and lncRNAs in gastric carcinogenesis.Tumour Biol.201536252153210.1007/s13277‑015‑3136‑5 25636450
    [Google Scholar]
  49. YuX. LiZ. Micro RNA expression and its implications for diagnosis and therapy of tongue squamous cell carcinoma.J. Cell. Mol. Med.2016201101610.1111/jcmm.12650 26498914
    [Google Scholar]
  50. LiZ. YuX. ShenJ. JiangY. MicroRNA dysregulation in uveal melanoma: A new player enters the game.Oncotarget2015674562456810.18632/oncotarget.2923 25682876
    [Google Scholar]
  51. LeeR.C. FeinbaumR.L. AmbrosV. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14.Cell199375584385410.1016/0092‑8674(93)90529‑Y 8252621
    [Google Scholar]
  52. LauN.C. LimL.P. WeinsteinE.G. BartelD.P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans.Science2001294554385886210.1126/science.1065062 11679671
    [Google Scholar]
  53. CalinG.A. DumitruC.D. ShimizuM. BichiR. ZupoS. NochE. AldlerH. RattanS. KeatingM. RaiK. RassentiL. KippsT. NegriniM. BullrichF. CroceC.M. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia.Proc. Natl. Acad. Sci. USA20029924155241552910.1073/pnas.242606799 12434020
    [Google Scholar]
  54. YuX. LiZ. The role of mi RNA s in cutaneous squamous cell carcinoma.J. Cell. Mol. Med.20162013910.1111/jcmm.12649 26508273
    [Google Scholar]
  55. LiZ. YuX. ShenJ. The role of miRNAs in the pheochromocytomas.Tumour Biol.20163744235423910.1007/s13277‑015‑4199‑z 26462836
    [Google Scholar]
  56. DengK. WangH. GuoX. XiaJ. The cross talk between long, non-coding RNAs and microRNAs in gastric cancer.Acta Biochim. Biophys. Sin. (Shanghai)201648211111610.1093/abbs/gmv120 26621794
    [Google Scholar]
  57. YoonJ.H. AbdelmohsenK. GorospeM. Functional interactions among microRNAs and long noncoding RNAs.Semin. Cell Dev. Biol.20143491410.1016/j.semcdb.2014.05.015 24965208
    [Google Scholar]
  58. YoonJ.H. AbdelmohsenK. SrikantanS. YangX. MartindaleJ.L. DeS. HuarteM. ZhanM. BeckerK.G. GorospeM. LincRNA-p21 suppresses target mRNA translation.Mol. Cell201247464865510.1016/j.molcel.2012.06.027 22841487
    [Google Scholar]
  59. FranklinJ.L. RankinC.R. LevyS. SnoddyJ.R. ZhangB. WashingtonM.K. ThomsonJ.M. WhiteheadR.H. CoffeyR.J. Malignant transformation of colonic epithelial cells by a colon-derived long noncoding RNA.Biochem. Biophys. Res. Commun.201344019910410.1016/j.bbrc.2013.09.040 24045012
    [Google Scholar]
  60. FaghihiM.A. ZhangM. HuangJ. ModarresiF. Van der BrugM.P. NallsM.A. CooksonM.R. St-LaurentG.III WahlestedtC. Evidence for natural antisense transcript-mediated inhibition of microRNA function.Genome Biol.2010115R5610.1186/gb‑2010‑11‑5‑r56 20507594
    [Google Scholar]
  61. SalmenaL. PolisenoL. TayY. KatsL. PandolfiP.P. A ceRNA hypothesis: The Rosetta Stone of a hidden RNA language?Cell2011146335335810.1016/j.cell.2011.07.014 21802130
    [Google Scholar]
  62. TangL. ChenH.Y. HaoN.B. TangB. GuoH. YongX. DongH. YangS.M. microRNA inhibitors: Natural and artificial sequestration of microRNA.Cancer Lett.201740713914710.1016/j.canlet.2017.05.025 28602827
    [Google Scholar]
  63. EbertM.S. NeilsonJ.R. SharpP.A. MicroRNA sponges: Competitive inhibitors of small RNAs in mammalian cells.Nat. Methods20074972172610.1038/nmeth1079 17694064
    [Google Scholar]
  64. CesanaM. CacchiarelliD. LegniniI. SantiniT. SthandierO. ChinappiM. TramontanoA. BozzoniI. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA.Cell2011147235836910.1016/j.cell.2011.09.028 22000014
    [Google Scholar]
  65. AmbrosV. The functions of animal microRNAs.Nature2004431700635035510.1038/nature02871 15372042
    [Google Scholar]
  66. ArcherK. BroskovaZ. BayoumiA. TeohJ. DavilaA. TangY. SuH. KimI. Long non-coding RNAs as master regulators in cardiovascular diseases.Int. J. Mol. Sci.20151610236512366710.3390/ijms161023651 26445043
    [Google Scholar]
  67. BalasM.M. JohnsonA.M. Exploring the mechanisms behind long noncoding RNAs and cancer.Noncoding RNA Res.20183310811710.1016/j.ncrna.2018.03.001 30175284
    [Google Scholar]
  68. BhanA. SoleimaniM. MandalS.S. Long noncoding RNA and cancer: A new paradigm.Cancer Res.201777153965398110.1158/0008‑5472.CAN‑16‑2634 28701486
    [Google Scholar]
  69. ChenL.L. Linking long noncoding RNA localization and function.Trends Biochem. Sci.201641976177210.1016/j.tibs.2016.07.003 27499234
    [Google Scholar]
  70. JohnssonP. LipovichL. GrandérD. MorrisK.V. Evolutionary conservation of long non-coding RNAs; sequence, structure, function.Biochim. Biophys. Acta, Gen. Subj.2014184031063107110.1016/j.bbagen.2013.10.035 24184936
    [Google Scholar]
  71. PolisenoL. SalmenaL. ZhangJ. CarverB. HavemanW.J. PandolfiP.P. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology.Nature201046573011033103810.1038/nature09144 20577206
    [Google Scholar]
  72. EbertM.S. SharpP.A. Emerging roles for natural microRNA sponges.Curr. Biol.20102019R858R86110.1016/j.cub.2010.08.052 20937476
    [Google Scholar]
  73. ThomsonD.W. DingerM.E. Endogenous microRNA sponges: Evidence and controversy.Nat. Rev. Genet.201617527228310.1038/nrg.2016.20 27040487
    [Google Scholar]
  74. LiuP. ZhangM. NiuQ. ZhangF. YangY. JiangX. Knockdown of long non-coding RNA ANRIL inhibits tumorigenesis in human gastric cancer cells via microRNA-99a-mediated down-regulation of BMI1.Braz. J. Med. Biol. Res.20185110e683910.1590/1414‑431x20186839 30156609
    [Google Scholar]
  75. HuX. LouT. YuanC. WangY. TuX. WangY. ZhangT. Effects of lncRNA ANRIL knockdown on the proliferation, apoptosis and cell cycle of gastric cancer cells.Oncol. Lett.202122262110.3892/ol.2021.12882 34267814
    [Google Scholar]
  76. MaJ. LiT. HanX. YuanH. Knockdown of LncRNA ANRIL suppresses cell proliferation, metastasis, and invasion via regulating miR-122-5p expression in hepatocellular carcinoma.J. Cancer Res. Clin. Oncol.2018144220521410.1007/s00432‑017‑2543‑y 29127494
    [Google Scholar]
  77. HuangD. BiC. ZhaoQ. DingX. BianC. WangH. WangT. LiuH. RETRACTED ARTICLE: Knockdown long non-coding RNA ANRIL inhibits proliferation, migration and invasion of HepG2 cells by down-regulation of miR-191.BMC Cancer201818191910.1186/s12885‑018‑4831‑6 30249208
    [Google Scholar]
  78. LiK. ZhaoB. WeiD. CuiY. QianL. WangW. LiuG. Long non‐coding RNA ANRIL enhances mitochondrial function of hepatocellular carcinoma by regulating the MiR‐199a‐5p/ARL2 axis.Environ. Toxicol.202035331332110.1002/tox.22867 31670868
    [Google Scholar]
  79. MaY. ZhangH. LiG. HuJ. LiuX. LinL. LncRNA ANRIL promotes cell growth, migration and invasion of hepatocellular carcinoma cells via sponging miR-144.Anticancer Drugs201930101013102110.1097/CAD.0000000000000807 31609763
    [Google Scholar]
  80. Ghafouri-FardS. GholipourM. HussenB.M. TaheriM. The impact of long non-coding RNAs in the pathogenesis of hepatocellular carcinoma.Front. Oncol.20211164910710.3389/fonc.2021.649107 33968749
    [Google Scholar]
  81. ZhangJ.J. WangD.D. DuC.X. WangY. Long noncoding RNA ANRIL promotes cervical cancer development by acting as a sponge of miR-186.Oncol. Res.201826334535210.3727/096504017X14953948675449 28550682
    [Google Scholar]
  82. Cáceres-DuránM.Á. Ribeiro-dos-SantosÂ. VidalA.F. Roles and mechanisms of the long noncoding RNAs in cervical cancer.Int. J. Mol. Sci.20202124974210.3390/ijms21249742 33371204
    [Google Scholar]
  83. LiG. ZhuY. Effect of lncRNA ANRIL knockdown on proliferation and cisplatin chemoresistance of osteosarcoma cells in vitro .Pathol. Res. Pract.2019215593193810.1016/j.prp.2019.01.042 30777616
    [Google Scholar]
  84. ReimannE. KõksS. HoX.D. MaasaluK. MärtsonA. Whole exome sequencing of a single osteosarcoma case--integrative analysis with whole transcriptome RNA-seq data.Hum. Genomics20148120 25496518
    [Google Scholar]
  85. HoX.D. PhungP. LeQ. V.; H Nguyen, V.; Reimann, E.; Prans, E.; Kõks, G.; Maasalu, K.; Le, N.T.N.; H Trinh, L.; G Nguyen, H.; Märtson, A.; Kõks, S. Whole transcriptome analysis identifies differentially regulated networks between osteosarcoma and normal bone samples.Exp. Biol. Med. (Maywood)2017242181802181110.1177/1535370217736512 29050494
    [Google Scholar]
  86. HoX.D. NguyenH.G. TrinhL.H. ReimannE. PransE. KõksG. MaasaluK. LeV.Q. NguyenV.H. LeN.T.N. PhungP. MärtsonA. LattekiviF. KõksS. Analysis of the expression of repetitive DNA elements in osteosarcoma.Front. Genet.2017819310.3389/fgene.2017.00193 29250102
    [Google Scholar]
  87. RothzergE. HoX.D. XuJ. WoodD. MärtsonA. KõksS. Upregulation of 15 antisense long non-coding RNAs in Osteosarcoma.Genes (Basel)2021128113210.3390/genes12081132 34440306
    [Google Scholar]
  88. ZhangH. WangX. ChenX. Retracted: Potential role of long non‐coding RNA ANRIL in pediatric medulloblastoma through promotion on proliferation and migration by targeting miR‐323.J. Cell. Biochem.2017118124735474410.1002/jcb.26141 28513871
    [Google Scholar]
  89. DongX. JinZ. ChenY. XuH. MaC. HongX. LiY. ZhaoG. Retracted: Knockdown of long non‐coding RNA ANRIL inhibits proliferation, migration, and invasion but promotes apoptosis of human glioma cells by upregulation of miR‐34a.J. Cell. Biochem.201811932708271810.1002/jcb.26437 29057547
    [Google Scholar]
  90. ZhaoB. LuY.L. YangY. HuL.B. BaiY. LiR.Q. ZhangG.Y. LiJ. BiC.W. YangL.B. HuC. LeiY.H. WangQ.L. LiuZ.M. Overexpression of lncRNA ANRIL promoted the proliferation and migration of prostate cancer cells via regulating let-7a/TGF-β1/Smad signaling pathway.Cancer Biomark.201821361362010.3233/CBM‑170683 29278879
    [Google Scholar]
  91. ZhangL.M. JuH.Y. WuY.T. GuoW. MaoL. MaH.L. XiaW.Y. HuJ.Z. RenG.X. Long non-coding RNA ANRIL promotes tumorgenesis through regulation of FGFR1 expression by sponging miR-125a-3p in head and neck squamous cell carcinoma.Am. J. Cancer Res.201881122962310 30555745
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073294838240523035706
Loading
/content/journals/cchts/10.2174/0113862073294838240523035706
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): ANRIL; cancers; lncRNA; miRNAs; molecular sponge; treatment
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test