Skip to content
2000
Volume 28, Issue 14
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

The establishment and validation of methods for testing biological samples are crucial steps in pharmacokinetic studies. Currently, several methodological reports have been published on the detection of rapamycin plasma concentrations.

Objective

The objective of this study was to explore an effective method for detecting rapamycin in rat whole blood biological samples.

Methods

In this study, we designed a rapid, sensitive, and specific liquid chromatograph-mass spectrometer/mass spectrometer (LC-MS/MS) methodology for detecting rapamycin in rat whole blood biological samples. We comprehensively validated the specificity, linear range, lower limit of quantification (LLOQ), precision, accuracy, recovery, and stability of this method.

Results

The findings of this study confirmed the successful implementation of LC-MS/MS for the detection of rapamycin, demonstrating its sensitivity, specificity, and reliability in quantitative analysis. This method ensures the accuracy and reliability of subsequent study data through our validated LC-MS/MS approach.

Conclusion

The results demonstrated the successful implementation of an LC-MS/MS method for sensitive, specific, and reliable quantitative analysis of rapamycin in rat whole blood samples. This method ensures the accuracy and reliability of subsequent study data.

Significance

The importance of this study lies in the successful establishment of a rapid, sensitive, and specific LC-MS/MS method for detecting rapamycin concentration in rat whole blood, ensuring the accuracy and reliability of subsequent research data. This provides a crucial tool and foundation for further understanding the metabolism and pharmacological effects of rapamycin , aiding in the advancement of drug research and clinical applications in related fields.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073291189240819115228
2024-09-03
2025-11-06
Loading full text...

Full text loading...

References

  1. GyamfiE. NarhC.A. QuayeC. AbbassA. DzudzorB. MosiL. Microbiology of secondary infections in Buruli ulcer lesions; implications for therapeutic interventions.BMC Microbiol.2021211410.1186/s12866‑020‑02070‑5 33402095
    [Google Scholar]
  2. KahanB.D. The potential role of rapamycin in pediatric transplantation as observed from adult studies.Pediatr. Transplant.19993317518010.1034/j.1399‑3046.1999.00036.x 10487276
    [Google Scholar]
  3. AustinD. OldroydK.G. HolmesD.R.Jr RihalC.S. GalbraithP.D. GhaliW.A. LegrandV. TaeymansY. McConnachieA. PellJ.P. Drug-eluting stents: A study of international practice.Am. Heart J.2009158457658410.1016/j.ahj.2009.07.033 19781417
    [Google Scholar]
  4. KellyP.A. GruberS.A. BehbodF. KahanB.D. Sirolimus, a new, potent immunosuppressive agent.Pharmacotherapy19971761148115610.1002/j.1875‑9114.1997.tb03080.x 9399599
    [Google Scholar]
  5. BurkeJ.A. ZhangX. BobbalaS. FreyM.A. Bohorquez FuentesC. Freire HaddadH. AllenS.D. RichardsonR.A.K. AmeerG.A. ScottE.A. Subcutaneous nanotherapy repurposes the immunosuppressive mechanism of rapamycin to enhance allogeneic islet graft viability.Nat. Nanotechnol.202217331933010.1038/s41565‑021‑01048‑2 35039683
    [Google Scholar]
  6. NizziF. ReesM. SalzbergD. NgwubeA. Successful management of sirolimus toxicity in a hematopoietic stem cell transplant patient using automated red blood cell exchange.Transfusion202060123060306310.1111/trf.16064 32888326
    [Google Scholar]
  7. BuscaA. LocatelliF. MoscatoD. FaldaM. Sirolimus-related toxicity in stem cell transplantation.Biol. Blood Marrow Transplant.200511864764910.1016/j.bbmt.2005.04.006 16041315
    [Google Scholar]
  8. SaleemiS. AlothmanB. AlbaizF. AlrasheediS. ShahY.Z. SaleemiA. Role of fluorodeoxyglucose positron emission tomogram scan in sirolimus-induced lung toxicity: A rare case report.Exp. Clin. Transplant.202018784785010.6002/ect.2020.0306 33349211
    [Google Scholar]
  9. MohantaM. ThirugnanamA. Sequential immobilization of sirolimus and polyethylene glycol on ultrafine-grained commercial pure titanium for cardiovascular stent application.J. Mater. Res.202237213559357410.1557/s43578‑022‑00724‑w
    [Google Scholar]
  10. GarciaB.A. ShabanowitzJ. HuntD.F. Analysis of protein phosphorylation by mass spectrometry.Methods200535325626410.1016/j.ymeth.2004.08.017 15722222
    [Google Scholar]
  11. MinicZ. DahmsT.E.S. BabuM. Chromatographic separation strategies for precision mass spectrometry to study protein-protein interactions and protein phosphorylation.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20181102-11039610810.1016/j.jchromb.2018.10.022 30380468
    [Google Scholar]
  12. MessnerC.B. DemichevV. WangZ. HartlJ. KustatscherG. MüllederM. RalserM. Mass spectrometry-based high-throughput proteomics and its role in biomedical studies and systems biology.Proteomics2023237-8220001310.1002/pmic.202200013 36349817
    [Google Scholar]
  13. DingX. LiF. McKnightJ. SchmidtC. StrooismaK. ShimizuH. FaberK. WareJ.A. DeanB. A supported liquid extraction-LC–MS/MS method for determination of GDC-0980 (Apitolisib), a dual small-molecule inhibitor of class 1A phosphoinositide 3-kinase and mammalian target of rapamycin, in human plasma.J. Pharm. Biomed. Anal.201410015015610.1016/j.jpba.2014.08.001 25165011
    [Google Scholar]
  14. EarlaR. CholkarK. GundaS. EarlaR.L. MitraA.K. Bioanalytical method validation of rapamycin in ocular matrix by QTRAP LC–MS/MS: Application to rabbit anterior tissue distribution by topical administration of rapamycin nanomicellar formulation.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20129081768610.1016/j.jchromb.2012.09.014 23122404
    [Google Scholar]
  15. McCarthyJ.S. RückleT. DjeriouE. CantalloubeC. Ter-MinassianD. BakerM. O’RourkeP. GriffinP. MarquartL. Hooft van HuijsduijnenR. MöhrleJ.J. A Phase II pilot trial to evaluate safety and efficacy of ferroquine against early Plasmodium falciparum in an induced blood-stage malaria infection study.Malar. J.201615146910.1186/s12936‑016‑1511‑3 27624471
    [Google Scholar]
  16. MatuszewskiB.K. ConstanzerM.L. Chavez-EngC.M. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS.Anal. Chem.200375133019303010.1021/ac020361s 12964746
    [Google Scholar]
  17. AntonaccioM.J. CotéD. Centrally mediated antihypertensive and bradycardic effects of methysergide in spontaneously hypertensive rats.Eur. J. Pharmacol.197636245145410.1016/0014‑2999(76)90101‑1 1278233
    [Google Scholar]
  18. LesnakM. JursaD. MiskayM. RiedlovaH. BarcovaK. AdamekM. The determination of cystatin C in biological samples via the surface plasmon resonance method.Biotechniques202170526327010.2144/btn‑2020‑0151 33998838
    [Google Scholar]
  19. QassimB.B. HamedL.L. A new green method for indirect determination of ferric ions in biological samples using Ascorbic acid as reducing agent via the development of CFIA system.J. Phys. Conf. Ser.20211999101214510.1088/1742‑6596/1999/1/012145
    [Google Scholar]
  20. IsikY.E. GormezY. AydinZ. Bakir-GungorB. The determination of distinctive single nucleotide polymorphism sets for the] diagnosis of behçet’s disease. IEEE/ACM Trans.Comput. Biol. Bioinform.202219319091918
    [Google Scholar]
  21. MoeinM.M. El BeqqaliA. Abdel-RehimM. Bioanalytical method development and validation: Critical concepts and strategies.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20171043131110.1016/j.jchromb.2016.09.028 27720355
    [Google Scholar]
  22. KlafkiH.W. RieperP. MatzenA. ZamparS. WirthsO. VogelgsangJ. OsterlohD. RohdenburgL. ObersteinT.J. JahnO. BeyerI. LachmannI. KnölkerH.J. WiltfangJ. Development and Technical Validation of an Immunoassay for the Detection of APP669–711 (Aβ−3–40) in Biological Samples.Int. J. Mol. Sci.20202118656410.3390/ijms21186564 32911706
    [Google Scholar]
  23. HussainA. ZakriaM. TariqS.A. SirajS. KhanA. KhattakB.G. SiddiquiF. KakarM. Simultaneous analysis of atorvastatin and rosuvastatin by LC-MS: Development, validation, and application of the proposed method to analysis of atorvastatin pharmacokinetics in pakistani population.Pharm. Chem. J.20225681149115610.1007/s11094‑022‑02766‑0
    [Google Scholar]
  24. ShenY.H. QinY. Cross validation in analytical method validation of biological samples.China Pharmacy2012232166168
    [Google Scholar]
  25. AlekseevaA.I. On the methodological substantiation of theory and practice of business analysis.Probl. Upr20091147480
    [Google Scholar]
  26. TrianaP.J. DoreM. NuezV.C. JimenezJ.G. MiguelM.F. Pancreatic kaposiform hemangioendothelioma not responding to rapamycin.European J. Pediatr. Surg. Rep.20170501e32e35 28761800
    [Google Scholar]
  27. FortichS. RitchieC. ShaikhM.E. ToskichB. RiveraC.E. ErbenY. Deep vein thrombosis in the setting of Klippel-Trenaunay syndrome and sirolimus treatment.J. Vasc. Surg. Cases Innov. Tech.20217352452810.1016/j.jvscit.2021.06.014 34401617
    [Google Scholar]
  28. WahlP.R. SerraA.L. Le HirM. MolleK.D. HallM.N. WüthrichR.P. Inhibition of mTOR with sirolimus slows disease progression in Han:SPRD rats with autosomal dominant polycystic kidney disease (ADPKD).Nephrol. Dial. Transplant.200621359860410.1093/ndt/gfi181 16221708
    [Google Scholar]
  29. McAlisterV. PeltekianK.M. MalatjalianD.A. ColohanS. MacDonaldS. Bitter-SuermannH. MacDonaldA.S. Orthotopic liver transplantation using low-dose tacrolimus and sirolimus.Liver Transpl.20017870170810.1053/jlts.2001.26510 11510015
    [Google Scholar]
  30. Basa-DénesO. AngiR. KárpátiB. JordánT. ÖtvösZ. ErdősiN. UjhelyiA. OrdasiB. MolnárL. McDermottJ. RoeC. McKenzieL. SolymosiT. HeltovicsG. GlavinasH. Dose escalation study to assess the pharmacokinetic parameters of a nano-amorphous oral sirolimus formulation in healthy volunteers.Eur. J. Drug Metab. Pharmacokinet.201944677778510.1007/s13318‑019‑00562‑y 31089971
    [Google Scholar]
  31. FangZ. ZhangH. GuoJ. GuoJ. Overview of therapeutic drug monitoring and clinical practice.Talanta2024266Pt 112499610.1016/j.talanta.2023.124996 37562225
    [Google Scholar]
  32. NapoliK.L. A practical guide to the analysis of sirolimus using high-performance liquid chromatography with ultraviolet detection.Clin. Ther.200022Suppl. BB14B2410.1016/S0149‑2918(00)89019‑0 10823370
    [Google Scholar]
  33. DavisD.L. SoldinS.J. An immunophilin-binding assay for sirolimus.Clin. Ther.200022Suppl. BB62B7010.1016/S0149‑2918(00)89023‑2 10823374
    [Google Scholar]
  34. BouzasL. HermidaJ. TutorJ.C. Determination of blood sirolimus concentrations in liver and kidney transplant recipients using the Innofluor® fluorescence polarization immunoassay: Comparison with the microparticle enzyme immunoassay and high-performance liquid chromatography-ultraviolet method.Ups. J. Med. Sci.20091141556110.1080/03009730802608254 19242874
    [Google Scholar]
  35. ŻochowskaD. BartłomiejczykI. KamińskaA. SenatorskiG. PączekL. High-performance liquid chromatography versus immunoassay for the measurement of sirolimus: Comparison of two methods.Transplant. Proc.2006381788010.1016/j.transproceed.2005.12.008 16504669
    [Google Scholar]
  36. VicenteF.B. SmithF.A. PengY. WangS. Evaluation of an immunoassay of whole blood sirolimus in pediatric transplant patients in comparison with high-performance liquid chromatography/tandem mass spectrometry.Clin. Chem. Lab. Med.200644449749910.1515/CCLM.2006.080 16599847
    [Google Scholar]
  37. SalmP. TaylorP.J. PillansP. The quantification of sirolimus by high-performance liquid chromatography-tandem mass spectrometry and microparticle enzyme immunoassay in renal transplant recipients.Clin. Ther.200022Suppl. BB71B85
    [Google Scholar]
  38. ArmendR.Y. DastisM. LopezR.M. PouL. Comparison Of Hplc/uv vs Meia Assay For rapamycin Determination In Clinical Transplantation: 3.Ther. Drug Monit.200527221110.1097/00007691‑200504000‑00019
    [Google Scholar]
  39. MorrisR.G. TaylorP.J. WicksF.A. TheodossiA. SalmP. Comparison Of The Re-introduced MEIA?? Sirolimus Assay With HPLC-MSMS In Renal Transplant Recipients.Ther. Drug Monit.200527223623710.1097/00007691‑200504000‑00116
    [Google Scholar]
  40. Alberto PiniL. GallesiD. BroviaD. BertoliniA. PinettiD. RuggieriV. PisaS. PoppiB. Nives CastellanaC. Switching from HPLC/UV to MEIA for whole blood sirolimus quantitation: Comparison of methods.J. Clin. Lab. Anal.200620623924410.1002/jcla.20148 17115421
    [Google Scholar]
  41. ZhangY. CaoC. YangZ. JiaG. LiuX. LiX. CuiZ. LiA. Simultaneous determination of 20 phenolic compounds in propolis by HPLC-UV and HPLC-MS/MS.J. Food Compos. Anal.202311510487710.1016/j.jfca.2022.104877
    [Google Scholar]
  42. CalvigioniM. BertoliniA. CodiniS. MazzantiniD. PanattoniA. MassiminoM. CelandroniF. ZucchiR. SabaA. GhelardiE. HPLC-MS-MS quantification of short-chain fatty acids actively secreted by probiotic strains.Front. Microbiol.202314112414410.3389/fmicb.2023.1124144 36937254
    [Google Scholar]
  43. ChawlaG. ChaudharyK.K. A review of HPLC technique covering its pharmaceutical, environmental, forensic, clinical and other applications.Int. J. Pharm. Chem. Anal.201962273910.18231/j.ijpca.2019.006
    [Google Scholar]
  44. KhalilovR. BakishzadeA. NasibovaA. Future prospects of biomaterials in nanomedicine.Adv Biol Earth Sci20238510
    [Google Scholar]
  45. RosicG. SelakovicD. OmarovaS. Cancer signaling, cell/gene therapy, diagnosis and role of nanobiomaterials.Adv. Biol. Earth Sci.20249Special Issue113410.62476/abes9s11
    [Google Scholar]
  46. HuseynovE. KhalilovR. MohamedA.J. Novel nanomaterials for hepatobiliary diseases treatment and future perspectives.Adv. Biol. Earth Sci.20249Special Issue819110.62476/abes9s81
    [Google Scholar]
  47. GallonL. TraitanonO. Sustento-ReodicaN. LeventhalJ. Javeed AnsariM. GehrauR.C. AriyamuthuV. De SerresS.A. AlvaradoA. ChhabraD. MathewJ.M. NajafianN. MasV. Cellular and molecular immune profiles in renal transplant recipients after conversion from tacrolimus to sirolimus.Kidney Int.201587482883810.1038/ki.2014.350 25354238
    [Google Scholar]
  48. RigolM. SolanesN. SionisA. GálvezC. MartorellJ. RojoI. BrunetM. RamírezJ. RoquéM. RoigE. Pérez-VillaF. BarquínL. PomarJ.L. SanzG. HerasM. Effects of cyclosporine, tacrolimus and sirolimus on vascular changes related to immune response.J. Heart Lung Transplant.200827441642210.1016/j.healun.2008.01.006 18374878
    [Google Scholar]
  49. MillnerL. RodriguezC. JortaniS.A. A clinical approach to solving discrepancies in therapeutic drug monitoring results for patients on sirolimus or tacrolimus: Towards personalized medicine, immunosuppression and pharmacogenomics.Clin. Chim. Acta2015450151810.1016/j.cca.2015.07.022 26232156
    [Google Scholar]
  50. TumlinJ.A. MillerD. NearM. SelvarajS. HennigarR. GuaschA. A prospective, open-label trial of sirolimus in the treatment of focal segmental glomerulosclerosis.Clin. J. Am. Soc. Nephrol.20061110911610.2215/CJN.00120605 17699197
    [Google Scholar]
  51. LiY. LinZ.X. PengX.F. ChenW.H. WenC.C. SongH.C. TongS.H. WangS.H. Determination and pharmacokinetic study of avicularin in rat plasma by UPLC-MS/MS after intravenous administration.Lat. Am. J. Pharm.2016351023092313
    [Google Scholar]
  52. ZhangW. LiR. SunM. HuD. QiuJ. YanY. UPLC–MS/MS method for determination of avicularin in rat plasma and its application to a pharmacokinetic study.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.201496510711110.1016/j.jchromb.2014.06.015 25010713
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073291189240819115228
Loading
/content/journals/cchts/10.2174/0113862073291189240819115228
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): concentration; LC-MS/MS; methodology; pharmacological effects; rapamycin; rat whole blood
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test