Skip to content
2000
Volume 28, Issue 13
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Oral cancer poses a significant threat to public health worldwide. In addition, because many chemotherapy treatments have negative side effects, natural herbs may be beneficial for oral cancer therapy. (AA), a potential medicinal herb, exerts various pharmacological and biochemical activities.

Objective

The present study aimed to predict the anti-oral cancer potential of AA using tools and cell death by testing.

Methods

A total of fourteen bioactive constituents from AA herb were selected using phytochemical databases. The toxicity of AA herb extract was analysed through MTT assay against oral carcinoma A253 cell line. The binding activities of the phytocomponents against serine/threonine-specific protein kinases isoforms, namely Akt1 (PDB ID: 3qkk) and Akt2 (PDB ID: 2jdo) proteins, were analysed using Discovery Studio 2021 and PyRx docking software.

Results

Cell viability data revealed that AA extract decreased the viability and reduced the number of live cells of the oral carcinoma A253 cell line in a dose-dependent manner. The half-maximal concentration (IC) value of AA was assessed as 204.74 µg/ml. Based on binding affinity, saponin C (-CDOCKER energy = -77.9862 Kcal/mol), oleanolic acid (-CDOCKER energy = -49.4349 Kcal/mol), spinasterol (-CDOCKER energy = -38.1246 Kcal/mol), 36,47-dihydroxyhenpentacontan-4-one (-CDOCKER energy = -32.4386 Kcal/mol), and 20-hydroxyecdysone (-CDOCKER energy = -31.9138 Kcal/mol) were identified as the best compounds against Akt1, while, compounds saponin C (-CDOCKER energy = -134.412 Kcal/mol), oleanolic acid (-CDOCKER energy = -90.0846 Kcal/mol), spinasterol (-CDOCKER energy = -78.3213 Kcal/mol), 20-hydroxyecdysone (-CDOCKER energy = -80.1049 Kcal/mol), and ecdysone (-CDOCKER energy = -73.3885 Kcal/mol) were identified as Akt2 inhibitors. These top compounds fulfilled drug score values, pharmacokinetic and physicochemical characteristics, and drug-likeness parameters.

Conclusion

The present findings reveal that the lead phytomolecules of AA could be effective and developed as a prospective drug against oral cancer.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073289916240503051643
2024-07-11
2025-10-27
Loading full text...

Full text loading...

References

  1. KumarM. NanavatiR. ModiT. DobariyaC. Oral cancer: Etiology and risk factors: A review.J. Cancer Res. Ther.201612245846310.4103/0973‑1482.186696 27461593
    [Google Scholar]
  2. D’souzaS. AddepalliV. Preventive measures in oral cancer: An overview.Biomed. Pharmacother.2018107728010.1016/j.biopha.2018.07.114 30081204
    [Google Scholar]
  3. ValdezJ.A. BrennanM.T. Impact of oral cancer on quality of life.Dent. Clin. North Am.201862114315410.1016/j.cden.2017.09.001 29126491
    [Google Scholar]
  4. AbatiS. BramatiC. BondiS. LissoniA. TrimarchiM. Oral Cancer and Precancer: A Narrative Review on the Relevance of Early Diagnosis.Int. J. Environ. Res. Public Health20201724916010.3390/ijerph17249160 33302498
    [Google Scholar]
  5. FathimaJ.H.S. SelvarajJ. SivabalanV. RekhaU.V. PonnulakshmiR. VishnupriyaV. KullappanM. SreekandanR.N. MohanS.K. VijayalakshmiP. Molecular docking of potential inhibitors with the mTOR protein.Bioinformation202117121221710.6026/97320630017212 34393439
    [Google Scholar]
  6. SelvarajJ. JhS.F. SivabalanV. RekhaU.V. PonnulakshmiR. VishnupriyaV. KullappanM. SreekandanR.N. MohanS.K. VijayalakshmiP. Molecular modeling of cornulin (CRNN) for docking with phytocompounds from Justicia adhatoda L.Bioinformation202117120020510.6026/97320630017200 34393437
    [Google Scholar]
  7. ParéA. JolyA. Cancers de la cavité buccale: Facteurs de risque et prise en charge.Presse Med.201746332033010.1016/j.lpm.2017.01.004 28233703
    [Google Scholar]
  8. ShibaharaT. [Oral cancer -diagnosis and therapy-.Clin. Calcium2017271014271433 28947694
    [Google Scholar]
  9. RoyN.K. MonishaJ. PadmavathiG. LalhruaitluangaH. KumarN.S. SinghA.K. BordoloiD. BaruahM.N. AhmedG.N. LongkumarI. ArfusoF. KumarA.P. KunnumakkaraA.B. Isoform-Specific Role of Akt in Oral Squamous Cell Carcinoma.Biomolecules20199725310.3390/biom9070253 31252679
    [Google Scholar]
  10. NeastaJ. HamidaB.S. YowellQ.V. CarnicellaS. RonD. AKT signaling pathway in the nucleus accumbens mediates excessive alcohol drinking behaviors.Biol. Psychiatry201170657558210.1016/j.biopsych.2011.03.019 21549353
    [Google Scholar]
  11. HaraS. NakashiroK. GodaH. HamakawaH. Role of Akt isoforms in HGF-induced invasive growth of human salivary gland cancer cells.Biochem. Biophys. Res. Commun.2008370112312810.1016/j.bbrc.2008.03.042 18355439
    [Google Scholar]
  12. JiM. WangW. YanW. ChenD. DingX. WangA. Dysregulation of AKT 1, a miR‐138 target gene, is involved in the migration and invasion of tongue squamous cell carcinoma.J. Oral Pathol. Med.201746973173710.1111/jop.12551 28122142
    [Google Scholar]
  13. RoyN. BordoloiD. MonishaJ. PadmavathiG. KotokyJ. GollaR. KunnumakkaraA. Specific Targeting of Akt Kinase Isoforms: Taking the Precise Path for Prevention and Treatment of Cancer.Curr. Drug Targets201718442143510.2174/1389450117666160307145236 26953242
    [Google Scholar]
  14. SophiaJ. KowshikJ. DwivediA. BhutiaS.K. ManavathiB. MishraR. NaginiS. Nimbolide, a neem limonoid inhibits cytoprotective autophagy to activate apoptosis via modulation of the PI3K/Akt/GSK-3β signalling pathway in oral cancer.Cell Death Dis.2018911108710.1038/s41419‑018‑1126‑4 30352996
    [Google Scholar]
  15. BeltránC.D. MuñozJ.P. VásquezG.N. BlancoR. LeónO. Linod.S.V. TapiaJ.C. MaldonadoE. CamachoD.K. HermosoM.A. CorvalánA.H. CalafG.M. BoccardoE. AguayoF. Human Papillomavirus 16 E7 Promotes EGFR/PI3K/AKT1/NRF2 Signaling Pathway Contributing to PIR/NF-κB Activation in Oral Cancer Cells.Cancers2020127190410.3390/cancers12071904 32679705
    [Google Scholar]
  16. IamaroonA. KrisanaprakornkitS. Overexpression and activation of Akt2 protein in oral squamous cell carcinoma.Oral Oncol.20094510e175e17910.1016/j.oraloncology.2009.06.003 19628421
    [Google Scholar]
  17. TomitaR. SasabeE. TomomuraA. YamamotoT. Macrophage derived exosomes attenuate the susceptibility of oral squamous cell carcinoma cells to chemotherapeutic drugs through the AKT/GSK 3β pathway.Oncol. Rep.20204451905191610.3892/or.2020.7748 32901850
    [Google Scholar]
  18. SenT. SamantaS.K. Medicinal plants, human health and biodiversity: A broad review.Adv. Biochem. Eng. Biotechnol.20141475911010.1007/10_2014_273 25001990
    [Google Scholar]
  19. KootiW. ServatyariK. BehzadifarM. SamaniA.M. SadeghiF. NouriB. MarzouniZ.H. Effective Medicinal Plant in Cancer Treatment, Part 2: Review Study. J.Evid. Based Complement. Alternat. Med.201722498299510.1177/2156587217696927 28359161
    [Google Scholar]
  20. SinghR.K. VermaP.K. KumarA. KumarS. AcharyaA. Achyranthes aspera L. leaf extract induced anticancer effects on Dalton’s Lymphoma via regulation of PKCα signaling pathway and mitochondrial apoptosis.J. Ethnopharmacol.202127411406010.1016/j.jep.2021.114060 33771640
    [Google Scholar]
  21. SubbarayanP.R. SarkarM. ImpellizzeriS. RaymoF. LokeshwarB.L. KumarP. AgarwalR.P. ArdalanB. Anti-proliferative and anti-cancer properties of Achyranthes aspera: Specific inhibitory activity against pancreatic cancer cells.J. Ethnopharmacol.20101311788210.1016/j.jep.2010.06.002 20541002
    [Google Scholar]
  22. ParkS.B. JungW. KimH. YuH.Y. KimY. KimJ. Esculetin has therapeutic potential via the proapoptotic signaling pathway in A253 human submandibular salivary gland tumor cells.Exp. Ther. Med.202224253310.3892/etm.2022.11460 35837055
    [Google Scholar]
  23. SiddiquiS. AhmadR. KhanM.A. UpadhyayS. HusainI. SrivastavaA.N. Cytostatic and Anti-tumor Potential of Ajwa Date Pulp against Human Hepatocellular Carcinoma HepG2 Cells.Sci. Rep.20199124510.1038/s41598‑018‑36475‑0 30664656
    [Google Scholar]
  24. SrivastavaP.K. Achyranthes aspera: A potent immunostimulating plant for traditional medicine.Int. J. Pharm. Sci. Res.20145516011611
    [Google Scholar]
  25. YangW. ChenX. LiY. GuoS. WangZ. YuX. Advances in pharmacological activities of terpenoids.Nat. Prod. Commun.20201531934578X2090355510.1177/1934578X20903555
    [Google Scholar]
  26. MasyitaA. SariM.R. AstutiD.A. YasirB. RumataR.N. EmranT.B. NainuF. GandaraS.J. Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives.Food Chem. X20221310021710.1016/j.fochx.2022.100217 35498985
    [Google Scholar]
  27. OpreaT.I. DavisA.M. TeagueS.J. LeesonP.D. Is there a difference between leads and drugs? A historical perspective.J. Chem. Inf. Comput. Sci.20014151308131510.1021/ci010366a 11604031
    [Google Scholar]
  28. SanderT. FreyssJ. von KorffM. RufenerC. DataWarrior: An open-source program for chemistry aware data visualization and analysis.J. Chem. Inf. Model.201555246047310.1021/ci500588j 25558886
    [Google Scholar]
  29. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep42717 28256516
    [Google Scholar]
  30. MartinY.C. A bioavailability score.J. Med. Chem.20054893164317010.1021/jm0492002 15857122
    [Google Scholar]
  31. UzzamanM. HoqueJ.M. Physiochemical, molecular docking, and pharmacokinetic studies of Naproxen and its modified derivatives based on DFT.Int. J. Scientific Res. Manag.201869121810.18535/ijsrm/v6i9.c01
    [Google Scholar]
  32. AniyeryR.B. SharmaA. GuptaA. Molecular docking studies and in silico pharmacokinetic property study of synthesized organotin complex of (1r, 2s, 5r)-2-isopropyl-5-methylcyclohexanol.J. Chem. Pharm. Sci.20159426562663
    [Google Scholar]
  33. KawsarS.M.A. OuassafM. ChtitaS. JuiA.B. BelaidiS. PASS prediction, molecular docking and pharmacokinetic studies of acyl substituted bioactive galactopyranoside esters as antibacterial agents.Maced. J. Chem. Chem. Eng.2022411476410.20450/mjcce.2022.2403
    [Google Scholar]
  34. SinanK.I. ZenginG. DimitrovaZ.D. EtienneO.K. MahomoodallyF.M. BouyahyaA. LobineD. ChiavaroliA. FerranteC. MenghiniL. RecinellaL. BrunettiL. LeoneS. OrlandoG. Qualitative phytochemical fingerprint and network pharmacology investigation of Achyranthes aspera Linn. extracts.Molecules2020258197310.3390/molecules25081973 32340217
    [Google Scholar]
  35. NdhlalaA.R. GhebrehiwotH.M. NcubeB. AremuA.O. GruzJ. ŠubrtováM. DoležalK. du PlooyC.P. AbdelgadirH.A. StadenV.J. Antimicrobial, anthelmintic activities and characterisation of functional phenolic acids of Achyranthes aspera Linn.: A medicinal plant used for the treatment of wounds and ringworm in east Africa.Front. Pharmacol.20156274
    [Google Scholar]
  36. BashirH. SadiaS. SaddiqeZ. MunirM. BaiX. JiaM. AhmadK.S. Application of microscopy and spectroscopy in investigating anti-cancer potential of Achyranthes aspera L. leaves.Microsc. Res. Tech.202487510311043
    [Google Scholar]
  37. VenkadassalapathySD RamasamyM Balashanmugam VictorDJ SubramanianS PraveenJAA AkbarMAR In Vitro Antibacterial, Cytotoxicity and Wound Healing Activities of Methanol and Aqueous Extracts from Achyranthes aspera.J Pharm Bioallied Sci202315S1S764S77010.4103/jpbs.jpbs_175_2337654304
    [Google Scholar]
  38. AdegbolaP.I. FadahunsiO.S. AdegbolaA.E. SemireB. In silico studies of Potency and safety assessment of selected trial drugs for the treatment of COVID-19. In Silico Pharmacol.2021914510.1007/s40203‑021‑00105‑x 34312587
    [Google Scholar]
  39. PaceC.N. FuH. Lee FryarK. LanduaJ. TrevinoS.R. SchellD. ThurlkillR.L. ImuraS. ScholtzJ.M. GajiwalaK. SevcikJ. UrbanikovaL. MyersJ.K. TakanoK. HebertE.J. ShirleyB.A. GrimsleyG.R. Contribution of hydrogen bonds to protein stability.Protein Sci.201423565266110.1002/pro.2449 24591301
    [Google Scholar]
  40. BrogiS. QuimqueM.T. NotarteK.I. AfricaJ.G. HernandezJ.B. TanS.M. CalderoneV. MacabeoA.P. Virtual combinatorial library screening of quinadoline B derivatives against SARS-CoV-2 RNA-dependent RNA polymerase.Computation2022101710.3390/computation10010007
    [Google Scholar]
  41. QuimqueM.T. NotarteK.I. de LeonV.N. ManzanoJ.A. MuñozJ.E. PilapilD.Y.IV LimJ.A. MacabeoA.P. Computationally Repurposed Natural Products Targeting SARS-CoV-2 Attachment and Entry Mechanisms.Frontiers of COVID-19: Scientific and Clinical Aspects of the Novel Coronavirus.ChamSpringer International Publishing202250553710.1007/978‑3‑031‑08045‑6_25
    [Google Scholar]
  42. MacabeoAP QuimqueMT NotarteKI AdvientoXA CabunocMH de LeonVN delos ReyesFSL LugtuEJ ManzanoJA MontonSN MuñozJE OngKD PilapilDY RoqueV TanSM LimJA Polyphenolic natural products active in silico against SARS-CoV-2 spike receptor binding domains and non-structural proteins - A review.Comb Chem High Throughput Screen202326345948810.2174/138620732566621091711320734533442
    [Google Scholar]
  43. NotarteK.I.R. QuimqueM.T.J. MacaranasI.T. KhanA. PastranaA.M. VillafloresO.B. ArturoH.C.P. PilapilD.Y.H.IV TanS.M.M. WeiD.Q. StorjohannW.A. TasdemirD. YenC.H. JiS.Y. KimG.Y. ChoiY.H. MacabeoA.P.G. Attenuation of lipopolysaccharide-induced inflammatory responses through inhibition of the NF-κB pathway and the increased Nrf2 level by a flavonol-enriched n-butanol fraction from Uvaria alba.ACS Omega2023865377539210.1021/acsomega.2c06451 36816691
    [Google Scholar]
  44. dela CruzT.E. NotarteK.I. ApurilloC.C. TarmanK. BungihanM.E. Biomining fungal endophytes from tropical plants and seaweeds for drug discovery.Biodiversity and Biomedicine Our Future.Academic Press2020516210.1016/B978‑0‑12‑819541‑3.00004‑9
    [Google Scholar]
  45. NotarteK.I. YaguchiT. SuganumaK. dela CruzT.E. Antibacterial, cytotoxic and trypanocidal activities of marine-derived fungi isolated from Philippine macroalgae and seagrasses.Acta Bot. Croat.201877214115110.2478/botcro‑2018‑0016
    [Google Scholar]
  46. NotarteK.I. NakaoY. YaguchiT. BungihanM. SuganumaK. Dela CruzT.E. Trypanocidal activity, cytotoxicity and histone modifications induced by malformin A1 isolated from the marine-derived fungus Aspergillus tubingensis IFM 63452.Mycosphere20178111112010.5943/mycosphere/8/1/10
    [Google Scholar]
  47. NamachivayamB. RajJ.S. KandakatlaN. 2D, 3D-QSAR, docking and optimization of 5-substituted-1H-Indazole as inhibitors of GSK3 b.Int. J. Pharm. Pharm. Sci.2014618
    [Google Scholar]
  48. NorinderU. BergströmC.A.S. Prediction of ADMET Properties.ChemMedChem20061992093710.1002/cmdc.200600155 16952133
    [Google Scholar]
  49. AndrawsR. ChawlaP. BrownD.L. Cardiovascular effects of ephedra alkaloids: A comprehensive review.Prog. Cardiovasc. Dis.200547421722510.1016/j.pcad.2004.07.006 15991150
    [Google Scholar]
  50. WilsonS.J. EvansL. WrigleyS. SteeleJ. AthertonJ. BoerJ. Biotransformation: Impact and Application of Metabolism in Drug Discovery.ACS Med. Chem. Lett.202011112087210710.1021/acsmedchemlett.0c00202 33214818
    [Google Scholar]
  51. kowati, J; Nofianti, D.N.KA Molecular Docking of Ferulic Acid Derivatives on P2Y12 Receptor and Their ADMET Prediction.J Math Fundam Sci20182203219
    [Google Scholar]
  52. AbdelrheemD.A. RahmanA.A. ElsayedK.N.M. MageedA.E.H.R. MohamedH.S. AhmedS.A. Isolation, characterization, in vitro anticancer activity, dft calculations, molecular docking, bioactivity score, drug-likeness and admet studies of eight phytoconstituents from brown alga sargassum platycarpum.J. Mol. Struct.2021122512924510.1016/j.molstruc.2020.129245
    [Google Scholar]
  53. ErbingY. ZhengmingL. The Lipinski’s Rules in Drug Discovery.Chem-peking2006116
    [Google Scholar]
  54. Proud foot, JR Drugs, leads, and drug-likeness: An analysis of some recently launched drugs.Bioorganic Med. Chem. Lett.2022121216471650
    [Google Scholar]
  55. LoveringF. BikkerJ. HumbletC. Escape from flatland: Increasing saturation as an approach to improving clinical success.J. Med. Chem.200952216752675610.1021/jm901241e 19827778
    [Google Scholar]
  56. RitchieT.J. ErtlP. LewisR. The graphical representation of ADME-related molecule properties for medicinal chemists.Drug Discov. Today2011161-2657210.1016/j.drudis.2010.11.002 21074634
    [Google Scholar]
  57. AlamM. KhanA. Bioassay-guided isolation of sesquiterpene coumarins from Ferula narthex Bioss: A new anticancer agent.Front. Pharmacol.20167165612
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073289916240503051643
Loading
/content/journals/cchts/10.2174/0113862073289916240503051643
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test