Skip to content
2000
Volume 28, Issue 2
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Organic solvents are hazardous and should be replaced with less harmful alternatives. When developing a new formulation for a medicine with low aqueous solubility, improving its solubility might be a significant difficulty. According to the mixed solvency concept, a novel concept of solubilization, the solubility of poorly soluble drugs can be increased by dissolving them in a concentrated solution comprising various substances. Methods commonly used to improve solubility include complexation, pH modification, salt formation, hydrotropy, cosolvency, and micelle solubilization. By reducing the concentration of specific solubilizers, this method can be used to reduce the toxicity of solubilizers in various formulations of poorly soluble medicines. This review aims to provide scientists with a fresh concept for enhancing medication solubility. The benefits and drawbacks of currently available green solvents have been analyzed as potential replacements for traditional solvents. Some examples of these solvents are bio-based solvents like ethanol, methanol, and cyrene; d-limonene; deep eutectic solvents such as ionic liquids and natural deep eutectic solvents; supercritical fluids; subcritical water; surfactant-based solutions like hydrotopes and supramolecular solvents; and deep eutectic solvents like cyrene.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073285654240308055228
2024-03-19
2025-11-06
Loading full text...

Full text loading...

References

  1. MalkawiW. AlRafayahE. AlHazabrehM. AbuLailaS. Al-GhananeemA. Formulation challenges and strategies to develop pediatric dosage forms.Children 20229448810.3390/children9040488 35455532
    [Google Scholar]
  2. ArdenN.S. FisherA.C. TynerK. YuL.X. LeeS.L. KopchaM. Industry 4.0 for pharmaceutical manufacturing: Preparing for the smart factories of the future.Int. J. Pharm.202160212055410.1016/j.ijpharm.2021.120554 33794326
    [Google Scholar]
  3. BhalaniD.V. NutanB. KumarA. ChandelS.A.K. Bioavailability enhancement techniques for poorly aqueous soluble drugs and therapeutics.Biomedicines2022109205510.3390/biomedicines10092055 36140156
    [Google Scholar]
  4. KumariL. ChoudhariY. PatelP. GuptaG.D. SinghD. RosenholmJ.M. BansalK.K. KurmiB.D. Advancement in solubilization approaches: A step towards bioavailability enhancement of poorly soluble drugs.Life2023135109910.3390/life13051099 37240744
    [Google Scholar]
  5. MunnangiS.R. YoussefA.A.A. NaralaN. LakkalaP. NaralaS. VemulaS.K. RepkaM. Drug complexes: Perspective from academic research and pharmaceutical market.Pharm. Res.20234061519154010.1007/s11095‑023‑03517‑w 37138135
    [Google Scholar]
  6. MaheshwariR.K. JainS. PadriaA. MulaniP. BaghelJ.S. MaheshwariN. “Eco-friendly extraction using solids” - A novel application of mixed solvency concept.J. Drug Deliv. Ther.20199224424910.22270/jddt.v9i2.2409
    [Google Scholar]
  7. van der MerweJ. SteenekampJ. SteynD. HammanJ. The role of functional excipients in solid oral dosage forms to overcome poor drug dissolution and bioavailability.Pharmaceutics202012539310.3390/pharmaceutics12050393 32344802
    [Google Scholar]
  8. PatelR. BarkerJ. ElShaerA. Pharmaceutical excipients and drug metabolism: A mini-review.Int. J. Mol. Sci.20202121822410.3390/ijms21218224 33153099
    [Google Scholar]
  9. DavidE. NiculescuV.C. Volatile Organic Compounds (VOCs) as environmental pollutants: Occurrence and mitigation using nanomaterials.Int. J. Environ. Res. Public Health202118241314710.3390/ijerph182413147 34948756
    [Google Scholar]
  10. MoshoodT.D. NawanirG. MahmudF. MohamadF. AhmadM.H. AbdulGhani, A. Sustainability of biodegradable plastics: New problem or solution to solve the global plastic pollution?Curr. Res. Green Sustain. Chem.2022510027310.1016/j.crgsc.2022.100273
    [Google Scholar]
  11. LimC. OhH. Organic solvent exposure for the chronic kidney disease: Updated systematic review with meta-analysis.Ann. Occup. Environ. Med.2023351e1110.35371/aoem.2023.35.e11 37342824
    [Google Scholar]
  12. AgrawalR. MaheshwariR.K. Novel application of mixed solvency concept in the development of oral liquisolid system of a poorly soluble drug, cefixime and its evaluation.J. Drug Deliv. Ther.201886-s5810.22270/jddt.v8i6‑s.2167
    [Google Scholar]
  13. SolankiS.S. SoniL.K. MaheshwariR.K. Study on mixed solvency concept in formulation development of aqueous injection of poorly water soluble drug.J. Pharm. 201320131810.1155/2013/678132 26555989
    [Google Scholar]
  14. MaheshwariR.K. “Mixed-solvency”—a novel concept for solubilization of poorly water-soluble drugs.J. Technol. Eng. Sci.2009113944
    [Google Scholar]
  15. AnastasP.T. KirchhoffM.M. Origins, current status, and future challenges of green chemistry.Acc. Chem. Res.200235968669410.1021/ar010065m 12234198
    [Google Scholar]
  16. de VeijM. VandenabeeleP. HallK.A. FernandezF.M. GreenM.D. WhiteN.J. DondorpA.M. NewtonP.N. MoensL. Fast detection and identification of counterfeit antimalarial tablets by Raman spectroscopy.J. Raman Spectrosc.200738218118710.1002/jrs.1621
    [Google Scholar]
  17. KimM. ChungH. WooY. KemperM.S. A new non-invasive, quantitative Raman technique for the determination of an active ingredient in pharmaceutical liquids by direct measurement through a plastic bottle.Anal. Chim. Acta2007587220020710.1016/j.aca.2007.01.062 17386774
    [Google Scholar]
  18. GuY. JérômeF. Bio-based solvents: An emerging generation of fluids for the design of eco-efficient processes in catalysis and organic chemistry.Chem. Soc. Rev.201342249550957010.1039/c3cs60241a 24056753
    [Google Scholar]
  19. AnastasP.T. WarnerJ.C. Green Chemistry: Theory and Practice.New YorkOxford University Press199830
    [Google Scholar]
  20. Gałuszka, A.; Migaszewski, Z.; Namieśnik, J. The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices, TrACTrends.Anal. Chem.2013507884
    [Google Scholar]
  21. FloresC.F.G. ArrebolaM.M.J. DobadoJ.A. GarcíaI.J. Green and bio-based solvents.Top. Curr. Chem. 201837631810.1007/s41061‑018‑0191‑6 29691726
    [Google Scholar]
  22. ArmentaS. TurrillasE.F.A. GarriguesS. de la GuardiaM. Alternative green solvents in sample preparation. Green Analyt.Chemistr2022110000710.1016/j.greeac.2022.100007
    [Google Scholar]
  23. MengX. WangY. ConteA.J. ZhangS. RyuJ. WieJ.J. PuY. DavisonB.H. YooC.G. RagauskasA.J. Applications of biomass-derived solvents in biomass pretreatment – Strategies, challenges, and prospects.Bioresour. Technol.202336812828010.1016/j.biortech.2022.128280 36368492
    [Google Scholar]
  24. FiorentinoG. RipaM. UlgiatiS. Chemicals from biomass: Technological versus environmental feasibility. A review.Biofuels Bioprod. Biorefin.201711119521410.1002/bbb.1729
    [Google Scholar]
  25. ComaM. HernandezM.E. AbelnF. RaikovaS. DonnellyJ. ArnotT.C. AllenM.J. HongD.D. ChuckC.J. Organic waste as a sustainable feedstock for platform chemicals.Faraday Discuss.2017202017519510.1039/C7FD00070G 28654113
    [Google Scholar]
  26. ÁlvarezD.A. CadiernoV. Glycerol: A promising green solvent and reducing agent for metal-catalyzed transfer hydrogenation reactions and nanoparticles formation.Appl. Sci. 201331556910.3390/app3010055
    [Google Scholar]
  27. AlashekF. KesheM. AlhassanG. Preparation of glycerol derivatives by entered of glycerol in different chemical organic reactions: A review.Results Chem.2022410035910.1016/j.rechem.2022.100359
    [Google Scholar]
  28. AmariJ.F.A.A. SangiorgioS. PargolettiE. RabuffettiM. ZaccheriaF. UsuelliF. Chemically vs enzymatically synthesized polyglycerol-based esters: A comparison between their surfactancy.ACS Omega2023829264052641310.1021/acsomega.3c02922
    [Google Scholar]
  29. YangF. HannaM.A. SunR. Value-added uses for crude glycerol--A byproduct of biodiesel production.Biotechnol. Biofuels2012511310.1186/1754‑6834‑5‑13 22413907
    [Google Scholar]
  30. MasyitaA. SariM.R. AstutiD.A. YasirB. RumataR.N. EmranT.B. NainuF. GandaraS.J. Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives.Food Chem. X20221310021710.1016/j.fochx.2022.100217 35498985
    [Google Scholar]
  31. NdaoA. AdjalléK. Overview of the biotransformation of limonene and α-pinene from wood and citrus residues by microorganisms.Waste20231484185910.3390/waste1040049
    [Google Scholar]
  32. AryafardM. Minofar, B.; Cséfalvay, E.; Malinová, L.; Řeha, D. Novel room temperature ionic liquids and low melting mixtures based on imidazolium: Cheap ionic solvents for chemical and biological applications.J. Mol. Liq.202134411787710.1016/j.molliq.2021.117877
    [Google Scholar]
  33. GreerA.J. JacqueminJ. HardacreC. Industrial applications of ionic liquids.Molecules20202521520710.3390/molecules25215207 33182328
    [Google Scholar]
  34. HussainS.M.S. AdewunmiA.A. AladeO.S. MurtazaM. MahboobA. KhanH.J. MahmoudM. KamalM.S. A review of ionic liquids: Recent synthetic advances and oilfield applications.J. Taiwan Inst. Chem. Eng.202315310519510.1016/j.jtice.2023.105195
    [Google Scholar]
  35. ShuklaM.K. TiwariH. VermaR. DongW.L. AzizovS. KumarB. PandeyS. KumarD. Role and recent advancements of ionic liquids in drug delivery systems.Pharmaceutics202315270210.3390/pharmaceutics15020702 36840024
    [Google Scholar]
  36. MessaliM. LgazH. AlmutairiS.M. SalghiR. Towards a deeper understanding of the coordination chemistry in pyridinium-based ionic liquids-iron systems: Insights from quantum chemical and semi-empirical investigations.Inorg. Chem. Commun.202415911176210.1016/j.inoche.2023.111762
    [Google Scholar]
  37. MahatoM. MurakamiY. DasS.K. Recent advances and applications of ionic liquids-based photonic materials.Appl. Mater. Today20233210180810.1016/j.apmt.2023.101808
    [Google Scholar]
  38. PeiY. ZhangY. MaJ. FanM. ZhangS. WangJ. Ionic liquids for advanced materials.Materials Today Nano20221710015910.1016/j.mtnano.2021.100159
    [Google Scholar]
  39. KhanR.A. MohammedH.A. SulaimanG.M. SubaiyelA.A. KaruppaiahA. RahmanH. MakhathiniS. RamburrunP. ChoonaraY.E. Molecule(s) of interest: I. Ionic liquids–gateway to newer nanotechnology applications: Advanced nanobiotechnical uses’, current status, emerging trends, challenges, and prospects.Int. J. Mol. Sci.202223221434610.3390/ijms232214346 36430823
    [Google Scholar]
  40. EgorovaK.S. GordeevE.G. AnanikovV.P. Biological activity of ionic liquids and their application in pharmaceutics and medicine.Chem. Rev.2017117107132718910.1021/acs.chemrev.6b00562 28125212
    [Google Scholar]
  41. HuangY. YaoS. SongH. Application of ionic liquids in liquid chromatography and electrodriven separation.J. Chromatogr. Sci.201351773975210.1093/chromsci/bmt076
    [Google Scholar]
  42. DamokhiA. YousefinejadS. YarmohammadiR. JafariS. Ionic liquids in biological monitoring for exposure assessments.J. Mol. Liq.202134411773210.1016/j.molliq.2021.117732
    [Google Scholar]
  43. TrederN. Bączek, T.; Wychodnik, K.; Rogowska, J.; Wolska, L.; Plenis, A. The influence of ionic liquids on the effectiveness of analytical methods used in the monitoring of human and veterinary pharmaceuticals in biological and environmental samples—trends and perspectives.Molecules202025228610.3390/molecules25020286 31936806
    [Google Scholar]
  44. FliegerJ. KubisF.J. MichalewskaT.M. Chiral ionic liquids: Structural diversity, properties and applications in selected separation techniques.Int. J. Mol. Sci.20202112425310.3390/ijms21124253 32549300
    [Google Scholar]
  45. GhanemA. NessimM.I. KhalilN.A. El-NagarR.A. Imidazolium-based ionic liquids as dispersants to improve the stability of asphaltene in Egyptian heavy crude oil.Sci. Rep.20231311715810.1038/s41598‑023‑44237‑w 37821519
    [Google Scholar]
  46. EzzatA.O. Al-LohedanH.A. AttaA.M. New amphiphilic tricationic imidazolium and pyridinium ionic liquids for demulsification of arabic heavy crude oil brine emulsions.ACS Omega2021675061507310.1021/acsomega.1c00188 33644615
    [Google Scholar]
  47. VekariyaR.L. A review of ionic liquids: Applications towards catalytic organic transformations.J. Mol. Liq.2017227446010.1016/j.molliq.2016.11.123
    [Google Scholar]
  48. FliegerJ. FliegerM. Ionic liquids toxicity—benefits and threats.Int. J. Mol. Sci.20202117626710.3390/ijms21176267 32872533
    [Google Scholar]
  49. KumariP. PillaiV.V.S. BenedettoA. Mechanisms of action of ionic liquids on living cells: The state of the art.Biophys. Rev.20201251187121510.1007/s12551‑020‑00754‑w 32936423
    [Google Scholar]
  50. CorreiaD.M. FernandesL.C. FernandesM.M. HermenegildoB. MeiraR.M. RibeiroC. RibeiroS. RegueraJ. MéndezL.S. Ionic liquid-based materials for biomedical applications.Nanomaterials 2021119240110.3390/nano11092401 34578716
    [Google Scholar]
  51. da LopesC.A.M. João, K.G.; Morais, A.R.C.; Łukasik, B.E.; Łukasik, B.R. Ionic liquids as a tool for lignocellulosic biomass fractionation.Sustain. Chem. Process.201311310.1186/2043‑7129‑1‑3
    [Google Scholar]
  52. HouQ. JuM. LiW. LiuL. ChenY. YangQ. Pretreatment of lignocellulosic biomass with ionic liquids and ionic liquid-based solvent systems.Molecules201722349010.3390/molecules22030490 28335528
    [Google Scholar]
  53. MuhammadN. HossainM.I. ManZ. El-HarbawiM. BustamM.A. NoamanY.A. Mohamed AlitheenN.B. NgM.K. HefterG. YinC-Y. Synthesis and physical properties of choline carboxylate ionic liquids.J. Chem. Eng. Data20125782191219610.1021/je300086w
    [Google Scholar]
  54. MoyerP. SmithM.D. AbdoulmoumineN. ChmelyS.C. SmithJ.C. PetridisL. LabbéN. Relationship between lignocellulosic biomass dissolution and physicochemical properties of ionic liquids composed of 3-methylimidazolium cations and carboxylate anions.Phys. Chem. Chem. Phys.20182042508251610.1039/C7CP07195G 29313537
    [Google Scholar]
  55. MoraisE.S. LopesA.M.C. FreireM.G. FreireC.S.R. CoutinhoJ.A.P. SilvestreA.J.D. Use of ionic liquids and deep eutectic solvents in polysaccharides dissolution and extraction processes towards sustainable biomass valorization.Molecules20202516365210.3390/molecules25163652 32796649
    [Google Scholar]
  56. PereiraaP.F. KloskowskicA. Namieśnik, J. Perspectives on the replacement of harmful organic solvents in analytical methodologies: A framework toward the implementation of a novel generation of eco-friendly alternatives.Green Chem.20151-3120
    [Google Scholar]
  57. HawthorneS.B. TrembleyS. MoniotC.L. GrabanskiC.B. MillerD.J. Static subcritical water extraction with simultaneous solid-phase extraction for determining polycyclic aromatic hydrocarbons on environmental solids.J. Chromatogr. A2000886237244
    [Google Scholar]
  58. HawthorneS.B. GrabanskiC.B. HagemanK.J. MillerD.J. Simple method for estimating polychlorinated biphenyl concentrations on soils and sediments using subcritical water extraction coupled with solid-phase microextraction.J. Chromatogr. A1998814151160
    [Google Scholar]
  59. YangY. Subcritical water chromatography: A green approach to high-temperature liquid chromatography.J. Sep. Sci.20073081131114010.1002/jssc.200700008 17595948
    [Google Scholar]
  60. YangY. BowadtS. HawthorneS.B. MillerD.J. Subcritical water extraction of polychlorinated-biphenyls from soil and sediment.Anal. Chem.199567244571457610.1021/ac00120a022
    [Google Scholar]
  61. ToddR. BaroutianS. A techno-economic comparison of subcritical water, supercritical CO2 and organic solvent extraction of bioactives from grape marc.J. Clean. Prod.201715834935810.1016/j.jclepro.2017.05.043
    [Google Scholar]
  62. ZougaghM. ValcárcelM. RíosA. Supercritical fluid extraction: A critical review of its analytical usefulness.Trends Analyt. Chem.200423539940510.1016/S0165‑9936(04)00524‑2
    [Google Scholar]
  63. HerreroM. CamargoS.A.P. CifuentesA. IbáñezE. Plants, seaweeds, microalgae and food by-products as natural sources of functional ingredients obtained using pressurized liquid extraction and supercritical fluid extraction.Trends Analyt. Chem.201571263810.1016/j.trac.2015.01.018
    [Google Scholar]
  64. HerreroM. CifuentesA. IbañezE. Sub- and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgaeA review.Food Chem.200698113614810.1016/j.foodchem.2005.05.058
    [Google Scholar]
  65. LangQ. WaiC.M. Supercritical fluid extraction in herbal and natural product studies — a practical review.Talanta200153477178210.1016/S0039‑9140(00)00557‑9 18968166
    [Google Scholar]
  66. WaiC.M. WangS. Supercritical fluid extraction: Metals as complexes.J. Chromatogr. A19977851-236938310.1016/S0021‑9673(97)00679‑1
    [Google Scholar]
  67. SolanaM. BoschieroI. Dall’AcquaS. BertuccoA. Extraction of bioactive enriched fractions from Eruca sativa leaves by supercritical CO2 technology using different co-solvents.J. Supercrit. Fluids20149424525110.1016/j.supflu.2014.08.022
    [Google Scholar]
  68. de MeloM.M.R. SilvestreA.J.D. SilvaC.M. Supercritical fluid extraction of vegetable matrices: Applications, trends and future perspectives of a convincing green technology.J. Supercrit. Fluids20149211517610.1016/j.supflu.2014.04.007
    [Google Scholar]
  69. LewisM.A. WeeV.T. Aquatic safety assessment for cationic surfactants.Environ. Toxicol. Chem.19832110511810.1002/etc.5620020112
    [Google Scholar]
  70. KoriS. Cloud point extraction coupled with back extraction: A green methodology in analytical chemistry.Forensic Sci. Res.202161193310.1080/20961790.2019.1643567 34007513
    [Google Scholar]
  71. ZhaoW. SunX. DengX. HuangL. YangM. ZhouZ. Cloud point extraction coupled with ultrasonic-assisted back-extraction for the determination of organophosphorus pesticides in concentrated fruit juice by gas chromatography with flame photometric detection.Food Chem.2011127268368810.1016/j.foodchem.2010.12.122 23140719
    [Google Scholar]
  72. RubioS. Twenty years of supramolecular solvents in sample preparation for chromatography: Achievements and challenges ahead.Anal. Bioanal. Chem.2020412246037605810.1007/s00216‑020‑02559‑y 32206847
    [Google Scholar]
  73. LianX. WangN. MaL. JiangH. BaiD. XueH. MaQ. Determination of aucubin by supramolecular solvent-based dispersive liquid-liquid microextraction and UPLC-MS/MS: Application to a pharmacokinetic study in rats with type 1 diabetes.J. Pharm. Biomed. Anal.202018611330110.1016/j.jpba.2020.113301 32353680
    [Google Scholar]
  74. JinleiL. WuritaA. XuejunW. HongkunY. JieG. LiqinC. Supramolecular solvent (SUPRASs) extraction method for detecting benzodiazepines and zolpidem in human urine and blood using gas chromatography tandem mass spectrometry.Leg. Med. 20214810182210.1016/j.legalmed.2020.101822 33285339
    [Google Scholar]
  75. PaivaA. CraveiroR. ArosoI. MartinsM. ReisR.L. DuarteA.R.C. Natural deep eutectic solvents - solvents for the 21st century.ACS Sustain. Chem. Eng.2014251063107110.1021/sc500096j
    [Google Scholar]
  76. WasylkaP.J. de la GuardiaM. AndruchV. VilkováM. Deep eutectic solvents vs ionic liquids: Similarities and differences.Microchem. J.202015910553910.1016/j.microc.2020.105539
    [Google Scholar]
  77. RadoševićK. BubaloC.M. SrčekG.V. GrgasD. Dragičević L.T. Redovniković R.I Evaluation of toxicity and biodegradability of choline chloride based deep eutectic solvents.Ecotoxicol. Environ. Saf.2015112465310.1016/j.ecoenv.2014.09.034 25463852
    [Google Scholar]
  78. MaheshwariR.K. ShilpkarR. Formulation development and evaluation of injection of poorly soluble drug using mixed solvency concept.Int. J. Pharma Bio Sci.201231179189
    [Google Scholar]
  79. PawarP.B. RawatS. MahajanY.Y. GalgatteU.C. MaheshwariR.K. Formulation development and evaluation of aqueous injection of poorly soluble drug made by novel application of mixed solvency concept.Int. J. Drug Deliv.201352152166
    [Google Scholar]
  80. SolankiS.S. SoniL.K. MaheshwariR.K. Solubilization of poorly water soluble drug using mixed solvency approach for aqueous injection.J. Pharm. Res. Int.201445549568
    [Google Scholar]
  81. MaheshwariN. MaheshwariR.K. Formulation development of dry injection for reconstitution of a poorly water soluble drug, candesartan cilexetil, using mixed solvency concept and their evaluations.Int. J. Sci. Res.201881213131320
    [Google Scholar]
  82. PadiyarA. MaheshwariR.K. Novel dry injection for reconstitution of aspirin using solid solubilisers.J. Drug Deliv. Ther.2017774445
    [Google Scholar]
  83. KhanM.A. Enhancement of solubility of poorly water soluble drugs diclofenac sodium by mixed solvency approach.Res. J. Pharm. Dos. Forms Technol.2013513941
    [Google Scholar]
  84. KendreP.N. PandeV.V. ChavanK.M. Novel formulation strategy to enhance solubility of quercetin.Pharmacophore201453358370
    [Google Scholar]
  85. KumarC.J. KumarM.D. Solubility enhancement of theophylline drug using mixed solvency approach.IJCST20151214
    [Google Scholar]
  86. GadadeD.D. LohadeT.S. LahotiS.R. RawatS.S. MaheshwariR.K. Solubility enhancement of ofloxacin by mixed solvency approach.INDIAN DRUGS2018556344010.53879/id.55.06.10738
    [Google Scholar]
  87. KushwahaA. GuptaM.K. GoswamiA. Formulation and evaluation of optimized batch in situ gel of ondansetron hydrochloride.Pharmacia. Int. J. Pharma Sci.2016311116
    [Google Scholar]
  88. MaheshwariR.K. RajagopalanR. Formulation and evaluation of paracetamol syrup made by mixed-solvency concept.Pharm. Lett.201241170174
    [Google Scholar]
  89. MaheshwariR.K. RajagopalanR. Formulation and evaluation of tinidazole syrup made by mixed solvency concept technique.Pharm. Lett.201136266271
    [Google Scholar]
  90. SoniL.K. SolankiS.S. MaheshwariR.K. Evaluation of analgesic, anti-inflammatory and ulcerogenic liability of oral solution (syrup) formulation developed by novel mixed solvency concept.Adv. Pharmacol. Toxicol.20151622130
    [Google Scholar]
  91. MulaniP. MaheshwariR.K. Formulation development of aqueous topical solutions and gels of poorly water soluble drug nimesulide, using novel application of mixed solvency concept and their evaluations.Int. J. Sci. Res.201881215211529
    [Google Scholar]
  92. SinghS. MaheshwariR.K. GahlotN. Formulation development of topical solutions of poorly water-soluble drug indomethacin employing novel application of mixed solvency concept and their evaluation.Int. J. Green Pharm.201812027379
    [Google Scholar]
  93. BagelJ. MaheshwariR.K. Novel application of mixed solvency concept in the development of fast dissolving solid dispersion of poorly water-soluble drug, torsemide and its evaluations.World J. Pharm. Res.20209118201839
    [Google Scholar]
  94. ChouhanM. GuptaD. ChoukseR. MaheshwariR.K. Formulation and evaluation fast dissolving tablets of lovastatin using solid dispersion method.J. Drug Deliv. Ther.201992-A2931
    [Google Scholar]
  95. JainS. MaheshwariR.K. Formulation development of oral liquisolid system of poorly water soluble drug, piroxicam, using mixed solvency concept and their evaluations.Int. J. Sci. Res.201881217031711
    [Google Scholar]
  96. RathodM. AgarwalS. Development and evaluation of furosemide microspheres made by mixed solvency concept.IJPE2013242231
    [Google Scholar]
  97. ShuchiJ. MohitC. ChintamanK. Titrimetric analysis of acelofenec sodium by using mixed solvency. Int. J. Sci. Trend Res. Dev.,20193-474674810.31142/ijtsrd23858
    [Google Scholar]
  98. MaheshwariR.K. RaiN. SharmaS. RajputM.S. SoniS. New titrimetric analysis of frusemide in bulk and tablets using mixed hydrotropy concept. Drug.Invent. Today201024223225
    [Google Scholar]
  99. MaheshwariR.K. Solubilization of ibuprofen by mixed-solvency approach.Indian Pharm.20098878184
    [Google Scholar]
  100. MaheshwariR.K. New quantitative estimation of salicylic acid bulk sample using calcium disodium edentate as hydrotropic solubilizing agent.Int. J. Curr. Pharm. Res.2009113841
    [Google Scholar]
  101. MaheshwariR.K. UpadhyayN. JainJ. PataniM. MathuriaK.C. New spectrophotometric estimation of naproxen tablets formulations employing mixed solvency concept (at 331nm).Int. J. Pharm. Technol.20113436183621
    [Google Scholar]
  102. MaheshwariR.K. FouzdarA. SinghS. GeorgeP. “Solid as solvent”—novel spectrophotometric analytical technique for ornidazole tablets using solids (eutectic liquid of phenol and niacinamide) as solubilizing agents (mixed solvency concept).INDIAN DRUGS2015526434510.53879/id.52.06.10300
    [Google Scholar]
  103. ChouhanM. KharbM. ChaturvediM. GuptaR.A. Formulation and development of solid dispersion of indomethacin drug using mixed solvency.Neuroquantology202220224401
    [Google Scholar]
  104. SoniK. SharmaK. Eco-friendly spectrophotometric analysis of mefenamic acid (poorly water-soluble drug) using the mixed solvency concept.Indian J. Sci. Technol.202114282337234110.17485/IJST/v14i28.476
    [Google Scholar]
  105. TalasilaM. Novel techniques to make innumerable, expectedly safe, and oily systems to make intramuscular injections (Solutions) of poorly oil soluble drugs using mixed solvency concept.Asian J. Pharm.2023202317
    [Google Scholar]
  106. PreetiS.P. SwarupanjaliP. Formulation of oral dosage form of antidiabetic drug glipizide using mixed solvency method.Res J Pharm Technol202114142743110.5958/0974‑360X.2021.00077.9
    [Google Scholar]
  107. KambleR. SharmaS. MehtaP. Norfloxacin mixed solvency based solid dispersions: An in-vitro and in-vivo investigation.J. Taibah Univ. Sci.201711351252210.1016/j.jtusci.2016.11.003
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073285654240308055228
Loading
/content/journals/cchts/10.2174/0113862073285654240308055228
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test